Abstract

Multi-chip and large size LEDs dominate the lighting market in developed countries these days. Nevertheless, a general optical design method to create prescribed intensity patterns for this type of extended sources does not exist. We present a design strategy in which the source and the target pattern are described by means of “edge wavefronts” of the system. The goal is then finding an optic coupling these wavefronts, which in the current work is a monolithic part comprising up to three freeform surfaces calculated with the simultaneous multiple surface (SMS) method. The resulting optic fully controls, for the first time, three freeform wavefronts, one more than previous SMS designs. Simulations with extended LEDs demonstrate improved intensity tailoring capabilities, confirming the effectiveness of our method and suggesting that enhanced performance features can be achieved by controlling additional wavefronts.

© 2017 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Design of illumination optics with extended sources based on wavefront tailoring

Simone Sorgato, Julio Chaves, Hugo Thienpont, and Fabian Duerr
Optica 6(8) 966-971 (2019)

Multi-element direct design using a freeform surface for a compact illumination system

Zhenfeng Zhuang, Phil Surman, and Simon Thibault
Appl. Opt. 56(32) 9090-9097 (2017)

Compact freeform illumination system design for pattern generation with extended light sources

Christoph Bösel and Herbert Gross
Appl. Opt. 58(10) 2713-2724 (2019)

References

  • View by:
  • |
  • |
  • |

  1. H. Ries and J. Muschaweck, “Tailored freeform optical surfaces,” J. Opt. Soc. Am. A 19(3), 590–595 (2002).
    [PubMed]
  2. F. R. Fournier, W. J. Cassarly, and J. P. Rolland, “Fast freeform reflector generation using source-target maps,” Opt. Express 18(5), 5295–5304 (2010).
    [PubMed]
  3. Y. Ding, X. Liu, Z. R. Zheng, and P. F. Gu, “Freeform LED lens for uniform illumination,” Opt. Express 16(17), 12958–12966 (2008).
    [PubMed]
  4. R. Wu, L. Xu, P. Liu, Y. Zhang, Z. Zheng, H. Li, and X. Liu, “Freeform illumination design: a nonlinear boundary problem for the elliptic Monge-Ampére equation,” Opt. Lett. 38(2), 229–231 (2013).
    [PubMed]
  5. Y. Luo, Z. Feng, Y. Han, and H. Li, “Design of compact and smooth free-form optical system with uniform illuminance for LED source,” Opt. Express 18(9), 9055–9063 (2010).
    [PubMed]
  6. R. Wester, G. Müller, A. Völl, M. Berens, J. Stollenwerk, and P. Loosen, “Designing optical free-form surfaces for extended sources,” Opt. Express 22(S2 Suppl 2Suppl 2), A552–A560 (2014).
    [PubMed]
  7. D. Rausch, M. Rommel, A. M. Herkommer, and T. Talpur, “Illumination design for extended sources based on phase space mapping,” Opt. Eng. 56(6), 065103 (2017).
  8. R. Wu, H. Hua, P. Benítez, and J. C. Miñano, “Direct design of aspherical lenses for extended non-Lambertian sources in two-dimensional geometry,” Opt. Lett. 40(13), 3037–3040 (2015).
    [PubMed]
  9. R. Wu and H. Hua, “Direct design of aspherical lenses for extended non-Lambertian sources in three-dimensional rotational geometry,” Opt. Express 24(2), 1017–1030 (2016).
    [PubMed]
  10. J. Chaves, Introduction to Nonimaging Optics, 2nd ed. (CRC, 2015).
  11. J. C. Miñano and J. C. González, “New method of design of nonimaging concentrators,” Appl. Opt. 31(16), 3051–3060 (1992).
    [PubMed]
  12. P. Benítez, J. C. Miñano, J. Blen, R. Mohedano, J. Chaves, O. Dross, M. Hernández, and W. Falicoff, “Simultaneous multiple surface optical design method in three dimensions,” Opt. Eng. 43(7), 1489–1502 (2004).
  13. O. Dross, R. Mohedano, P. Benítez, J. C. Miñano, J. Chaves, J. Blen, M. Hernández, and F. Muñoz, “Review of SMS design methods and real world applications,” Proc. SPIE 5529, 35–47 (2004).
  14. J. Miñano, P. Benitez, D. Grabovickic, B. Narasimhan, M. Nikolic, and J. Infante, “Freeform Aplanatism,” in Optical Design and Fabrication 2017 (Freeform, IODC, OFT), OSA Technical Digest (online) (Optical Society of America, 2017), paper JTu1C.2.
  15. J. C. Miñano, J. C. Gonźlez, and P. Benítez, “A high-gain, compact, nonimaging concentrator: RXI,” Appl. Opt. 34(34), 7850–7856 (1995).
    [PubMed]
  16. P. Benítez, J. C. Miñano, J. Blen, M. Hernández, R. Mohedano, and J. Chaves, “Three-dimensional simultaneous multiple-surface method and free-form illumination-optics designed therefrom,” US Patent 7,460,985 B2, Dec. 2, 2008.
  17. J. C. Miñano, P. Benítez, J. Blen, and A. Santamaría, “Design of a novel free-form condenser overcoming rotational symmetry limitations,” Proc. SPIE 7061, 7061E (2008).
  18. R. J. Koshel, Illumination Engineering: Design with Nonimaging Optics (Wiley, 2013).

2017 (1)

D. Rausch, M. Rommel, A. M. Herkommer, and T. Talpur, “Illumination design for extended sources based on phase space mapping,” Opt. Eng. 56(6), 065103 (2017).

2016 (1)

2015 (1)

2014 (1)

2013 (1)

2010 (2)

2008 (2)

Y. Ding, X. Liu, Z. R. Zheng, and P. F. Gu, “Freeform LED lens for uniform illumination,” Opt. Express 16(17), 12958–12966 (2008).
[PubMed]

J. C. Miñano, P. Benítez, J. Blen, and A. Santamaría, “Design of a novel free-form condenser overcoming rotational symmetry limitations,” Proc. SPIE 7061, 7061E (2008).

2004 (2)

P. Benítez, J. C. Miñano, J. Blen, R. Mohedano, J. Chaves, O. Dross, M. Hernández, and W. Falicoff, “Simultaneous multiple surface optical design method in three dimensions,” Opt. Eng. 43(7), 1489–1502 (2004).

O. Dross, R. Mohedano, P. Benítez, J. C. Miñano, J. Chaves, J. Blen, M. Hernández, and F. Muñoz, “Review of SMS design methods and real world applications,” Proc. SPIE 5529, 35–47 (2004).

2002 (1)

1995 (1)

1992 (1)

Benítez, P.

R. Wu, H. Hua, P. Benítez, and J. C. Miñano, “Direct design of aspherical lenses for extended non-Lambertian sources in two-dimensional geometry,” Opt. Lett. 40(13), 3037–3040 (2015).
[PubMed]

J. C. Miñano, P. Benítez, J. Blen, and A. Santamaría, “Design of a novel free-form condenser overcoming rotational symmetry limitations,” Proc. SPIE 7061, 7061E (2008).

O. Dross, R. Mohedano, P. Benítez, J. C. Miñano, J. Chaves, J. Blen, M. Hernández, and F. Muñoz, “Review of SMS design methods and real world applications,” Proc. SPIE 5529, 35–47 (2004).

P. Benítez, J. C. Miñano, J. Blen, R. Mohedano, J. Chaves, O. Dross, M. Hernández, and W. Falicoff, “Simultaneous multiple surface optical design method in three dimensions,” Opt. Eng. 43(7), 1489–1502 (2004).

J. C. Miñano, J. C. Gonźlez, and P. Benítez, “A high-gain, compact, nonimaging concentrator: RXI,” Appl. Opt. 34(34), 7850–7856 (1995).
[PubMed]

Berens, M.

Blen, J.

J. C. Miñano, P. Benítez, J. Blen, and A. Santamaría, “Design of a novel free-form condenser overcoming rotational symmetry limitations,” Proc. SPIE 7061, 7061E (2008).

O. Dross, R. Mohedano, P. Benítez, J. C. Miñano, J. Chaves, J. Blen, M. Hernández, and F. Muñoz, “Review of SMS design methods and real world applications,” Proc. SPIE 5529, 35–47 (2004).

P. Benítez, J. C. Miñano, J. Blen, R. Mohedano, J. Chaves, O. Dross, M. Hernández, and W. Falicoff, “Simultaneous multiple surface optical design method in three dimensions,” Opt. Eng. 43(7), 1489–1502 (2004).

Cassarly, W. J.

Chaves, J.

P. Benítez, J. C. Miñano, J. Blen, R. Mohedano, J. Chaves, O. Dross, M. Hernández, and W. Falicoff, “Simultaneous multiple surface optical design method in three dimensions,” Opt. Eng. 43(7), 1489–1502 (2004).

O. Dross, R. Mohedano, P. Benítez, J. C. Miñano, J. Chaves, J. Blen, M. Hernández, and F. Muñoz, “Review of SMS design methods and real world applications,” Proc. SPIE 5529, 35–47 (2004).

Ding, Y.

Dross, O.

P. Benítez, J. C. Miñano, J. Blen, R. Mohedano, J. Chaves, O. Dross, M. Hernández, and W. Falicoff, “Simultaneous multiple surface optical design method in three dimensions,” Opt. Eng. 43(7), 1489–1502 (2004).

O. Dross, R. Mohedano, P. Benítez, J. C. Miñano, J. Chaves, J. Blen, M. Hernández, and F. Muñoz, “Review of SMS design methods and real world applications,” Proc. SPIE 5529, 35–47 (2004).

Falicoff, W.

P. Benítez, J. C. Miñano, J. Blen, R. Mohedano, J. Chaves, O. Dross, M. Hernández, and W. Falicoff, “Simultaneous multiple surface optical design method in three dimensions,” Opt. Eng. 43(7), 1489–1502 (2004).

Feng, Z.

Fournier, F. R.

González, J. C.

Gonzlez, J. C.

Gu, P. F.

Han, Y.

Herkommer, A. M.

D. Rausch, M. Rommel, A. M. Herkommer, and T. Talpur, “Illumination design for extended sources based on phase space mapping,” Opt. Eng. 56(6), 065103 (2017).

Hernández, M.

P. Benítez, J. C. Miñano, J. Blen, R. Mohedano, J. Chaves, O. Dross, M. Hernández, and W. Falicoff, “Simultaneous multiple surface optical design method in three dimensions,” Opt. Eng. 43(7), 1489–1502 (2004).

O. Dross, R. Mohedano, P. Benítez, J. C. Miñano, J. Chaves, J. Blen, M. Hernández, and F. Muñoz, “Review of SMS design methods and real world applications,” Proc. SPIE 5529, 35–47 (2004).

Hua, H.

Li, H.

Liu, P.

Liu, X.

Loosen, P.

Luo, Y.

Miñano, J. C.

R. Wu, H. Hua, P. Benítez, and J. C. Miñano, “Direct design of aspherical lenses for extended non-Lambertian sources in two-dimensional geometry,” Opt. Lett. 40(13), 3037–3040 (2015).
[PubMed]

J. C. Miñano, P. Benítez, J. Blen, and A. Santamaría, “Design of a novel free-form condenser overcoming rotational symmetry limitations,” Proc. SPIE 7061, 7061E (2008).

O. Dross, R. Mohedano, P. Benítez, J. C. Miñano, J. Chaves, J. Blen, M. Hernández, and F. Muñoz, “Review of SMS design methods and real world applications,” Proc. SPIE 5529, 35–47 (2004).

P. Benítez, J. C. Miñano, J. Blen, R. Mohedano, J. Chaves, O. Dross, M. Hernández, and W. Falicoff, “Simultaneous multiple surface optical design method in three dimensions,” Opt. Eng. 43(7), 1489–1502 (2004).

J. C. Miñano, J. C. Gonźlez, and P. Benítez, “A high-gain, compact, nonimaging concentrator: RXI,” Appl. Opt. 34(34), 7850–7856 (1995).
[PubMed]

J. C. Miñano and J. C. González, “New method of design of nonimaging concentrators,” Appl. Opt. 31(16), 3051–3060 (1992).
[PubMed]

Mohedano, R.

P. Benítez, J. C. Miñano, J. Blen, R. Mohedano, J. Chaves, O. Dross, M. Hernández, and W. Falicoff, “Simultaneous multiple surface optical design method in three dimensions,” Opt. Eng. 43(7), 1489–1502 (2004).

O. Dross, R. Mohedano, P. Benítez, J. C. Miñano, J. Chaves, J. Blen, M. Hernández, and F. Muñoz, “Review of SMS design methods and real world applications,” Proc. SPIE 5529, 35–47 (2004).

Müller, G.

Muñoz, F.

O. Dross, R. Mohedano, P. Benítez, J. C. Miñano, J. Chaves, J. Blen, M. Hernández, and F. Muñoz, “Review of SMS design methods and real world applications,” Proc. SPIE 5529, 35–47 (2004).

Muschaweck, J.

Rausch, D.

D. Rausch, M. Rommel, A. M. Herkommer, and T. Talpur, “Illumination design for extended sources based on phase space mapping,” Opt. Eng. 56(6), 065103 (2017).

Ries, H.

Rolland, J. P.

Rommel, M.

D. Rausch, M. Rommel, A. M. Herkommer, and T. Talpur, “Illumination design for extended sources based on phase space mapping,” Opt. Eng. 56(6), 065103 (2017).

Santamaría, A.

J. C. Miñano, P. Benítez, J. Blen, and A. Santamaría, “Design of a novel free-form condenser overcoming rotational symmetry limitations,” Proc. SPIE 7061, 7061E (2008).

Stollenwerk, J.

Talpur, T.

D. Rausch, M. Rommel, A. M. Herkommer, and T. Talpur, “Illumination design for extended sources based on phase space mapping,” Opt. Eng. 56(6), 065103 (2017).

Völl, A.

Wester, R.

Wu, R.

Xu, L.

Zhang, Y.

Zheng, Z.

Zheng, Z. R.

Appl. Opt. (2)

J. Opt. Soc. Am. A (1)

Opt. Eng. (2)

D. Rausch, M. Rommel, A. M. Herkommer, and T. Talpur, “Illumination design for extended sources based on phase space mapping,” Opt. Eng. 56(6), 065103 (2017).

P. Benítez, J. C. Miñano, J. Blen, R. Mohedano, J. Chaves, O. Dross, M. Hernández, and W. Falicoff, “Simultaneous multiple surface optical design method in three dimensions,” Opt. Eng. 43(7), 1489–1502 (2004).

Opt. Express (5)

Opt. Lett. (2)

Proc. SPIE (2)

O. Dross, R. Mohedano, P. Benítez, J. C. Miñano, J. Chaves, J. Blen, M. Hernández, and F. Muñoz, “Review of SMS design methods and real world applications,” Proc. SPIE 5529, 35–47 (2004).

J. C. Miñano, P. Benítez, J. Blen, and A. Santamaría, “Design of a novel free-form condenser overcoming rotational symmetry limitations,” Proc. SPIE 7061, 7061E (2008).

Other (4)

R. J. Koshel, Illumination Engineering: Design with Nonimaging Optics (Wiley, 2013).

J. Miñano, P. Benitez, D. Grabovickic, B. Narasimhan, M. Nikolic, and J. Infante, “Freeform Aplanatism,” in Optical Design and Fabrication 2017 (Freeform, IODC, OFT), OSA Technical Digest (online) (Optical Society of America, 2017), paper JTu1C.2.

J. Chaves, Introduction to Nonimaging Optics, 2nd ed. (CRC, 2015).

P. Benítez, J. C. Miñano, J. Blen, M. Hernández, R. Mohedano, and J. Chaves, “Three-dimensional simultaneous multiple-surface method and free-form illumination-optics designed therefrom,” US Patent 7,460,985 B2, Dec. 2, 2008.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 A pinhole P on an optic OP projects an “image” (I)1(I)2(I)3(I)4 on target T of a source S with corners (S)1(S)2(S)3(S)4.
Fig. 2
Fig. 2 Lit area xminxmax in the x direction.
Fig. 3
Fig. 3 (a) A vertical section of the standard RXI optic and the optical paths of some rays departing from the source, propagating inside the RXI and finally exiting the RI surface. Surfaces X and RI are calculated by means of the SMS method, while the cavity surface is fixed. (b) Front view of a combination of two RXIs devices; the two RI surfaces are visible.
Fig. 4
Fig. 4 Schematic structure of the RXI and its input and output design wavefronts. The RXI and the output wavefronts are described in the Cartesian coordinate system x-y-z. The points emitting the input spherical wavefronts are referred to the source plane with coordinates xs-ys.
Fig. 5
Fig. 5 The standard 2-SMS-surface and the new 3-SMS-surface RXI calculated for the planar wavefronts design case.
Fig. 6
Fig. 6 Analysis, by means of reverse ray tracing, of the coupling of the design wavefront components for the 2- and the 3-SMS-surface RXIs, in the case of planar wavefronts. The detector is placed over the source plane and dimensions are in millimeters.
Fig. 7
Fig. 7 Intensity patterns created by the 2- and 3-SMS-surface RXIs with an extended square LED emitter, for the planar wavefronts case.
Fig. 8
Fig. 8 Prescribed intensity for the mid-beam pattern.
Fig. 9
Fig. 9 Structure of the design wavefronts for the mid-beam design example.
Fig. 10
Fig. 10 The standard 2-SMS-surface and the new 3-SMS-surface RXI calculated for the mid-beam pattern design case, with freeform wavefronts.
Fig. 11
Fig. 11 Reverse ray-trace analysis of the coupling of the design wavefront components for the 2- and the 3-SMS-surface RXIs, in the case of freeform wavefronts for the mid-beam pattern. Dimensions are in millimeters.
Fig. 12
Fig. 12 Intensity patterns created by the standard 2-SMS-surface RXI and the new 3-SMS-surface one, for the mid-beam pattern, with a square emitter. Arbitrary units are used.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

p k ( x,y )=( p k ( x,y ), q k ( x,y ), 1 p k 2 ( x,y ) q k 2 ( x,y ) )
p k ( x,y )=( p k ( x ), q k ( y ), 1 p k 2 ( x ) q k 2 ( y ) )
p 1 ( x,y )=( p max ( x ), q max ( y ), 1 p max 2 ( x ) q max 2 ( y ) ) p 2 ( x,y )=( p min ( x ), q max ( y ), 1 p min 2 ( x ) q max 2 ( y ) ) p 3 ( x,y )=( p max ( x ), q min ( y ), 1 p max 2 ( x ) q min 2 ( y ) ) p 4 ( x,y )=( p min ( x ), q min ( y ), 1 p min 2 ( x ) q min 2 ( y ) )
I( p I , q I )=L A I ( p I , q I ) 1 p I 2 q I 2

Metrics