Abstract

Visible light communication (VLC) is an attractive complementary communication technology for vehicular applications such as platooning. Although data rates around 100 kbps are enough for crucial data transmission, it may be useful to reach a few megabits per second for other applications like networking. Such data rates can be reached by using appropriate modulations and clock rates. In this paper, three forms of pulse amplitude modulations (PAM) are compared in a vehicular context: on-off keying (OOK), PAM-4 and generalized space-shift keying (GSSK). A prototype based on off-the-shelf light-emitting diodes (LED) headlamps is used for static tests in straight line configuration, with an inter-vehicle distance up to 30 m, and curves of minimum radius 100 m and inter-vehicle distance of 10 m. These tests show that OOK and GSSK are the most interesting modulations for highway platooning applications. OOK provides indeed a good mobility while remaining simple to implement. A 1 Mbps link of BER below 10−6 is thus demonstrated. In GSSK, the data rate reaches 2 Mbps for an equivalent BER. These performances are obtained by using, in particular, two spatially distinct receivers, which limits strongly the complexity of GSSK decoding.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Multilevel modulation scheme using the overlapping of two light sources for visible light communication with mobile phone camera

Jin Shi, Jing He, Jing He, Rui Deng, Yiran Wei, Fengting Long, Yun Cheng, and Lin Chen
Opt. Express 25(14) 15905-15912 (2017)

3.375-Gb/s RGB-LED based WDM visible light communication system employing PAM-8 modulation with phase shifted Manchester coding

Nan Chi, Mengjie Zhang, Yingjun Zhou, and Jiaqi Zhao
Opt. Express 24(19) 21663-21673 (2016)

Experimental demonstration of highway I2V using visible light communications

Yong Hyeon Kim and Yeon Ho Chung
Appl. Opt. 55(22) 5840-5845 (2016)

References

  • View by:
  • |
  • |
  • |

  1. C. Bergenhem, S. Shladover, E. Coelingh, C. Englund, and S. Tsugawa, “Overview of platooning systems,” 19th ITS World Congress, Vienna, Austria, 22–26 Oct. 2012.
  2. S. Tsugawa, S. Jeschke, and S.E. Shladover, “A Review of Truck Platooning Projects for Energy Savings,” IEEE Trans. Intell. Veh. 1(1), 68–77 (2016).
    [Crossref]
  3. P. S. Jootel, “SAfe Road TRains for the Environment–Final Report,” http://www.sartre-project.eu/en/publications/Sidor/default.aspx .
  4. A. Böhm, M. Jonsson, and E. Uhlemann, “Performance comparison of a platooning application using the IEEE 802.11p MAC on the control channel and a centralized MAC on a service channel,” in Proceedings of IEEE International Conference on Wireless and Mobile Computing, Networking and Communications (IEEE, 2013), pp. 545–552.
  5. U.S. Department of Transportation, “Vehicle Safety Communications Project Task 3–Final Report,” http://ntl.bts.gov/lib/jpodocs/repts_te/14136.htm
  6. M. Y. Abualhoul, M. Marouf, O. Shagdar, and F. Nashashibi, “Platooning control using visible light communications: A feasibility study,” in Proceedings of IEEE International Conference on Intelligent Transportation Systems (IEEE, 2013), pp. 1535–1540.
  7. M. Segata, R. L. Cigno, H. M. M. Tsai, and F. Dressler, “On platooning control using IEEE 802.11p in conjunction with visible light communications,” in Proceedings of IEEE/IFIP Wireless On-demand Network systems and Services Conference (IEEE, 2016), pp. 1–4.
  8. C. B. Liu, B. Sadeghi, and E. W. Knightly, “Enabling Vehicular Visible Light Communication (V2LC) Networks,” in Proceedings ACM International Workshop on Vehicular Inter-Networking (ACM, 2011), pp. 41–50.
  9. S.-H. Yu, O. Shih, H.-M. Tsai, N. Wisitpongphan, and R. Roberts, “Smart automotive lighting for vehicle safety,” IEEE Commun. Mag. 51(12), 50–59 (2013).
    [Crossref]
  10. A.-M. Cailean, B. Cagneau, L. Chassagne, M. Dimian, and V. Popa, “Novel Receiver Sensor for Visible Light Communications in Automotive Applications,” IEEE Sens. J. 15(8), 4632–4639 (2015).
    [Crossref]
  11. T. Saito, S. Haruyama, and M. Nakagawa, “A New Tracking Method using Image Sensor and Photo Diode for Visible Light Road-to-Vehicle Communication,” in Proceedings IEEE International Conference on Advanced Communications Technology (IEEE, 2008), pp. 673–678.
  12. B. Béchadergue, H. Guan, L. Chassagne, S. Tohmé, and J.-L. Franchineau, “Visible Light Communication System for Platooning Applications,” in Proceedings SIA International Conference on Vision (SIA, 2016).
  13. S. Okada, T. Yendo, T. Yamazato, T. Fujii, M. Tanimoto, and Y. Kimura, “On-vehicle receiver for distant visible light road-to-vehicle communication,” in Proceedings IEEE Intelligent Vehicles Symposium (IEEE, 2009), pp. 1033–1038.
  14. M. Wada, T. Yendo, T. Fujii, and M. Tanimoto, “Road-to-vehicle communication using LED traffic light,” in Proceedings IEEE Intelligent Vehicles Symposium (IEEE, 2005), pp. 601–606.
  15. T. Yamazato, I. Takai, H. Okada, T. Fujii, T. Yendo, S. Arai, M. Andoh, T. Harada, K. Yasutomi, K. Kagawa, and S. Kawahito, “Image-sensor-based visible light communication for automotive applications,” IEEE Commun. Mag. 52(7), 88–97 (2014).
    [Crossref]
  16. S. Rajagopal, R. D. Roberts, and S.-K. Lim, “IEEE 802.15.7 visible light communication: modulation schemes and dimming support,” IEEE Commun. Mag. 50(3), 72–82 (2012).
    [Crossref]
  17. H. L. Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, and Y. Oh, “80 Mbit/s Visible Light Communications using pre-equalized white LED,” in Proceedings IEEE European Conference on Optical Communication (IEEE, 2008), pp. 1–2.
  18. S. H. Lee, K. I. Ahn, and J. K. Kwon, “Multilevel Transmission in Dimmable Visible Light Communication Systems,” J. Light. Technol. 31(20), 3267–3276 (2013).
    [Crossref]
  19. K. I. Ahn and J. K. Kwon, “Capacity Analysis of M-PAM Inverse Source Coding in Visible Light Communications,” J. Light. Technol. 30(10), 1399–1404 (2012).
    [Crossref]
  20. B. Turan, S. Ucar, S. C. Ergen, and O. Ozkasap, “Dual channel visible light communications for enhanced vehicular connectivity,” in Proceedings IEEE Vehicular Networking Conference (IEEE, 2015), pp. 84–87.
  21. W. O. Popoola, E. Poves, and H. Haas, “Error Performance of Generalised Space Shift Keying for Indoor Visible Light Communications,” IEEE Trans. Commun. 61(5), 1968–1976 (2013).
    [Crossref]
  22. W. O. Popoola and H. Haas, “Demonstration of the Merit and Limitation of Generalised Space Shift Keying for Indoor Visible Light Communications,” J. Light. Technol. 32(10), 1960–1965 (2014).
    [Crossref]
  23. K. Cui, G. Chen, Z. Xu, and R. D. Roberts, “Traffic light to vehicle visible light communication channel characterization,” Appl. Opt. 51(27), 6594–6605 (2012).
    [Crossref] [PubMed]
  24. J. M. Kahn and J. R. Barry, “Wireless infrared communications,” Proc. IEEE 85(2), 265–298 (1997).
    [Crossref]

2016 (1)

S. Tsugawa, S. Jeschke, and S.E. Shladover, “A Review of Truck Platooning Projects for Energy Savings,” IEEE Trans. Intell. Veh. 1(1), 68–77 (2016).
[Crossref]

2015 (1)

A.-M. Cailean, B. Cagneau, L. Chassagne, M. Dimian, and V. Popa, “Novel Receiver Sensor for Visible Light Communications in Automotive Applications,” IEEE Sens. J. 15(8), 4632–4639 (2015).
[Crossref]

2014 (2)

T. Yamazato, I. Takai, H. Okada, T. Fujii, T. Yendo, S. Arai, M. Andoh, T. Harada, K. Yasutomi, K. Kagawa, and S. Kawahito, “Image-sensor-based visible light communication for automotive applications,” IEEE Commun. Mag. 52(7), 88–97 (2014).
[Crossref]

W. O. Popoola and H. Haas, “Demonstration of the Merit and Limitation of Generalised Space Shift Keying for Indoor Visible Light Communications,” J. Light. Technol. 32(10), 1960–1965 (2014).
[Crossref]

2013 (3)

S. H. Lee, K. I. Ahn, and J. K. Kwon, “Multilevel Transmission in Dimmable Visible Light Communication Systems,” J. Light. Technol. 31(20), 3267–3276 (2013).
[Crossref]

S.-H. Yu, O. Shih, H.-M. Tsai, N. Wisitpongphan, and R. Roberts, “Smart automotive lighting for vehicle safety,” IEEE Commun. Mag. 51(12), 50–59 (2013).
[Crossref]

W. O. Popoola, E. Poves, and H. Haas, “Error Performance of Generalised Space Shift Keying for Indoor Visible Light Communications,” IEEE Trans. Commun. 61(5), 1968–1976 (2013).
[Crossref]

2012 (3)

S. Rajagopal, R. D. Roberts, and S.-K. Lim, “IEEE 802.15.7 visible light communication: modulation schemes and dimming support,” IEEE Commun. Mag. 50(3), 72–82 (2012).
[Crossref]

K. I. Ahn and J. K. Kwon, “Capacity Analysis of M-PAM Inverse Source Coding in Visible Light Communications,” J. Light. Technol. 30(10), 1399–1404 (2012).
[Crossref]

K. Cui, G. Chen, Z. Xu, and R. D. Roberts, “Traffic light to vehicle visible light communication channel characterization,” Appl. Opt. 51(27), 6594–6605 (2012).
[Crossref] [PubMed]

1997 (1)

J. M. Kahn and J. R. Barry, “Wireless infrared communications,” Proc. IEEE 85(2), 265–298 (1997).
[Crossref]

Abualhoul, M. Y.

M. Y. Abualhoul, M. Marouf, O. Shagdar, and F. Nashashibi, “Platooning control using visible light communications: A feasibility study,” in Proceedings of IEEE International Conference on Intelligent Transportation Systems (IEEE, 2013), pp. 1535–1540.

Ahn, K. I.

S. H. Lee, K. I. Ahn, and J. K. Kwon, “Multilevel Transmission in Dimmable Visible Light Communication Systems,” J. Light. Technol. 31(20), 3267–3276 (2013).
[Crossref]

K. I. Ahn and J. K. Kwon, “Capacity Analysis of M-PAM Inverse Source Coding in Visible Light Communications,” J. Light. Technol. 30(10), 1399–1404 (2012).
[Crossref]

Andoh, M.

T. Yamazato, I. Takai, H. Okada, T. Fujii, T. Yendo, S. Arai, M. Andoh, T. Harada, K. Yasutomi, K. Kagawa, and S. Kawahito, “Image-sensor-based visible light communication for automotive applications,” IEEE Commun. Mag. 52(7), 88–97 (2014).
[Crossref]

Arai, S.

T. Yamazato, I. Takai, H. Okada, T. Fujii, T. Yendo, S. Arai, M. Andoh, T. Harada, K. Yasutomi, K. Kagawa, and S. Kawahito, “Image-sensor-based visible light communication for automotive applications,” IEEE Commun. Mag. 52(7), 88–97 (2014).
[Crossref]

Barry, J. R.

J. M. Kahn and J. R. Barry, “Wireless infrared communications,” Proc. IEEE 85(2), 265–298 (1997).
[Crossref]

Béchadergue, B.

B. Béchadergue, H. Guan, L. Chassagne, S. Tohmé, and J.-L. Franchineau, “Visible Light Communication System for Platooning Applications,” in Proceedings SIA International Conference on Vision (SIA, 2016).

Bergenhem, C.

C. Bergenhem, S. Shladover, E. Coelingh, C. Englund, and S. Tsugawa, “Overview of platooning systems,” 19th ITS World Congress, Vienna, Austria, 22–26 Oct. 2012.

Böhm, A.

A. Böhm, M. Jonsson, and E. Uhlemann, “Performance comparison of a platooning application using the IEEE 802.11p MAC on the control channel and a centralized MAC on a service channel,” in Proceedings of IEEE International Conference on Wireless and Mobile Computing, Networking and Communications (IEEE, 2013), pp. 545–552.

Cagneau, B.

A.-M. Cailean, B. Cagneau, L. Chassagne, M. Dimian, and V. Popa, “Novel Receiver Sensor for Visible Light Communications in Automotive Applications,” IEEE Sens. J. 15(8), 4632–4639 (2015).
[Crossref]

Cailean, A.-M.

A.-M. Cailean, B. Cagneau, L. Chassagne, M. Dimian, and V. Popa, “Novel Receiver Sensor for Visible Light Communications in Automotive Applications,” IEEE Sens. J. 15(8), 4632–4639 (2015).
[Crossref]

Chassagne, L.

A.-M. Cailean, B. Cagneau, L. Chassagne, M. Dimian, and V. Popa, “Novel Receiver Sensor for Visible Light Communications in Automotive Applications,” IEEE Sens. J. 15(8), 4632–4639 (2015).
[Crossref]

B. Béchadergue, H. Guan, L. Chassagne, S. Tohmé, and J.-L. Franchineau, “Visible Light Communication System for Platooning Applications,” in Proceedings SIA International Conference on Vision (SIA, 2016).

Chen, G.

Cigno, R. L.

M. Segata, R. L. Cigno, H. M. M. Tsai, and F. Dressler, “On platooning control using IEEE 802.11p in conjunction with visible light communications,” in Proceedings of IEEE/IFIP Wireless On-demand Network systems and Services Conference (IEEE, 2016), pp. 1–4.

Coelingh, E.

C. Bergenhem, S. Shladover, E. Coelingh, C. Englund, and S. Tsugawa, “Overview of platooning systems,” 19th ITS World Congress, Vienna, Austria, 22–26 Oct. 2012.

Cui, K.

Dimian, M.

A.-M. Cailean, B. Cagneau, L. Chassagne, M. Dimian, and V. Popa, “Novel Receiver Sensor for Visible Light Communications in Automotive Applications,” IEEE Sens. J. 15(8), 4632–4639 (2015).
[Crossref]

Dressler, F.

M. Segata, R. L. Cigno, H. M. M. Tsai, and F. Dressler, “On platooning control using IEEE 802.11p in conjunction with visible light communications,” in Proceedings of IEEE/IFIP Wireless On-demand Network systems and Services Conference (IEEE, 2016), pp. 1–4.

Englund, C.

C. Bergenhem, S. Shladover, E. Coelingh, C. Englund, and S. Tsugawa, “Overview of platooning systems,” 19th ITS World Congress, Vienna, Austria, 22–26 Oct. 2012.

Ergen, S. C.

B. Turan, S. Ucar, S. C. Ergen, and O. Ozkasap, “Dual channel visible light communications for enhanced vehicular connectivity,” in Proceedings IEEE Vehicular Networking Conference (IEEE, 2015), pp. 84–87.

Faulkner, G.

H. L. Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, and Y. Oh, “80 Mbit/s Visible Light Communications using pre-equalized white LED,” in Proceedings IEEE European Conference on Optical Communication (IEEE, 2008), pp. 1–2.

Franchineau, J.-L.

B. Béchadergue, H. Guan, L. Chassagne, S. Tohmé, and J.-L. Franchineau, “Visible Light Communication System for Platooning Applications,” in Proceedings SIA International Conference on Vision (SIA, 2016).

Fujii, T.

T. Yamazato, I. Takai, H. Okada, T. Fujii, T. Yendo, S. Arai, M. Andoh, T. Harada, K. Yasutomi, K. Kagawa, and S. Kawahito, “Image-sensor-based visible light communication for automotive applications,” IEEE Commun. Mag. 52(7), 88–97 (2014).
[Crossref]

M. Wada, T. Yendo, T. Fujii, and M. Tanimoto, “Road-to-vehicle communication using LED traffic light,” in Proceedings IEEE Intelligent Vehicles Symposium (IEEE, 2005), pp. 601–606.

S. Okada, T. Yendo, T. Yamazato, T. Fujii, M. Tanimoto, and Y. Kimura, “On-vehicle receiver for distant visible light road-to-vehicle communication,” in Proceedings IEEE Intelligent Vehicles Symposium (IEEE, 2009), pp. 1033–1038.

Guan, H.

B. Béchadergue, H. Guan, L. Chassagne, S. Tohmé, and J.-L. Franchineau, “Visible Light Communication System for Platooning Applications,” in Proceedings SIA International Conference on Vision (SIA, 2016).

Haas, H.

W. O. Popoola and H. Haas, “Demonstration of the Merit and Limitation of Generalised Space Shift Keying for Indoor Visible Light Communications,” J. Light. Technol. 32(10), 1960–1965 (2014).
[Crossref]

W. O. Popoola, E. Poves, and H. Haas, “Error Performance of Generalised Space Shift Keying for Indoor Visible Light Communications,” IEEE Trans. Commun. 61(5), 1968–1976 (2013).
[Crossref]

Harada, T.

T. Yamazato, I. Takai, H. Okada, T. Fujii, T. Yendo, S. Arai, M. Andoh, T. Harada, K. Yasutomi, K. Kagawa, and S. Kawahito, “Image-sensor-based visible light communication for automotive applications,” IEEE Commun. Mag. 52(7), 88–97 (2014).
[Crossref]

Haruyama, S.

T. Saito, S. Haruyama, and M. Nakagawa, “A New Tracking Method using Image Sensor and Photo Diode for Visible Light Road-to-Vehicle Communication,” in Proceedings IEEE International Conference on Advanced Communications Technology (IEEE, 2008), pp. 673–678.

Jeschke, S.

S. Tsugawa, S. Jeschke, and S.E. Shladover, “A Review of Truck Platooning Projects for Energy Savings,” IEEE Trans. Intell. Veh. 1(1), 68–77 (2016).
[Crossref]

Jonsson, M.

A. Böhm, M. Jonsson, and E. Uhlemann, “Performance comparison of a platooning application using the IEEE 802.11p MAC on the control channel and a centralized MAC on a service channel,” in Proceedings of IEEE International Conference on Wireless and Mobile Computing, Networking and Communications (IEEE, 2013), pp. 545–552.

Jung, D.

H. L. Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, and Y. Oh, “80 Mbit/s Visible Light Communications using pre-equalized white LED,” in Proceedings IEEE European Conference on Optical Communication (IEEE, 2008), pp. 1–2.

Kagawa, K.

T. Yamazato, I. Takai, H. Okada, T. Fujii, T. Yendo, S. Arai, M. Andoh, T. Harada, K. Yasutomi, K. Kagawa, and S. Kawahito, “Image-sensor-based visible light communication for automotive applications,” IEEE Commun. Mag. 52(7), 88–97 (2014).
[Crossref]

Kahn, J. M.

J. M. Kahn and J. R. Barry, “Wireless infrared communications,” Proc. IEEE 85(2), 265–298 (1997).
[Crossref]

Kawahito, S.

T. Yamazato, I. Takai, H. Okada, T. Fujii, T. Yendo, S. Arai, M. Andoh, T. Harada, K. Yasutomi, K. Kagawa, and S. Kawahito, “Image-sensor-based visible light communication for automotive applications,” IEEE Commun. Mag. 52(7), 88–97 (2014).
[Crossref]

Kimura, Y.

S. Okada, T. Yendo, T. Yamazato, T. Fujii, M. Tanimoto, and Y. Kimura, “On-vehicle receiver for distant visible light road-to-vehicle communication,” in Proceedings IEEE Intelligent Vehicles Symposium (IEEE, 2009), pp. 1033–1038.

Knightly, E. W.

C. B. Liu, B. Sadeghi, and E. W. Knightly, “Enabling Vehicular Visible Light Communication (V2LC) Networks,” in Proceedings ACM International Workshop on Vehicular Inter-Networking (ACM, 2011), pp. 41–50.

Kwon, J. K.

S. H. Lee, K. I. Ahn, and J. K. Kwon, “Multilevel Transmission in Dimmable Visible Light Communication Systems,” J. Light. Technol. 31(20), 3267–3276 (2013).
[Crossref]

K. I. Ahn and J. K. Kwon, “Capacity Analysis of M-PAM Inverse Source Coding in Visible Light Communications,” J. Light. Technol. 30(10), 1399–1404 (2012).
[Crossref]

Lee, K.

H. L. Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, and Y. Oh, “80 Mbit/s Visible Light Communications using pre-equalized white LED,” in Proceedings IEEE European Conference on Optical Communication (IEEE, 2008), pp. 1–2.

Lee, S. H.

S. H. Lee, K. I. Ahn, and J. K. Kwon, “Multilevel Transmission in Dimmable Visible Light Communication Systems,” J. Light. Technol. 31(20), 3267–3276 (2013).
[Crossref]

Lim, S.-K.

S. Rajagopal, R. D. Roberts, and S.-K. Lim, “IEEE 802.15.7 visible light communication: modulation schemes and dimming support,” IEEE Commun. Mag. 50(3), 72–82 (2012).
[Crossref]

Liu, C. B.

C. B. Liu, B. Sadeghi, and E. W. Knightly, “Enabling Vehicular Visible Light Communication (V2LC) Networks,” in Proceedings ACM International Workshop on Vehicular Inter-Networking (ACM, 2011), pp. 41–50.

Marouf, M.

M. Y. Abualhoul, M. Marouf, O. Shagdar, and F. Nashashibi, “Platooning control using visible light communications: A feasibility study,” in Proceedings of IEEE International Conference on Intelligent Transportation Systems (IEEE, 2013), pp. 1535–1540.

Minh, H. L.

H. L. Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, and Y. Oh, “80 Mbit/s Visible Light Communications using pre-equalized white LED,” in Proceedings IEEE European Conference on Optical Communication (IEEE, 2008), pp. 1–2.

Nakagawa, M.

T. Saito, S. Haruyama, and M. Nakagawa, “A New Tracking Method using Image Sensor and Photo Diode for Visible Light Road-to-Vehicle Communication,” in Proceedings IEEE International Conference on Advanced Communications Technology (IEEE, 2008), pp. 673–678.

Nashashibi, F.

M. Y. Abualhoul, M. Marouf, O. Shagdar, and F. Nashashibi, “Platooning control using visible light communications: A feasibility study,” in Proceedings of IEEE International Conference on Intelligent Transportation Systems (IEEE, 2013), pp. 1535–1540.

O’Brien, D.

H. L. Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, and Y. Oh, “80 Mbit/s Visible Light Communications using pre-equalized white LED,” in Proceedings IEEE European Conference on Optical Communication (IEEE, 2008), pp. 1–2.

Oh, Y.

H. L. Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, and Y. Oh, “80 Mbit/s Visible Light Communications using pre-equalized white LED,” in Proceedings IEEE European Conference on Optical Communication (IEEE, 2008), pp. 1–2.

Okada, H.

T. Yamazato, I. Takai, H. Okada, T. Fujii, T. Yendo, S. Arai, M. Andoh, T. Harada, K. Yasutomi, K. Kagawa, and S. Kawahito, “Image-sensor-based visible light communication for automotive applications,” IEEE Commun. Mag. 52(7), 88–97 (2014).
[Crossref]

Okada, S.

S. Okada, T. Yendo, T. Yamazato, T. Fujii, M. Tanimoto, and Y. Kimura, “On-vehicle receiver for distant visible light road-to-vehicle communication,” in Proceedings IEEE Intelligent Vehicles Symposium (IEEE, 2009), pp. 1033–1038.

Ozkasap, O.

B. Turan, S. Ucar, S. C. Ergen, and O. Ozkasap, “Dual channel visible light communications for enhanced vehicular connectivity,” in Proceedings IEEE Vehicular Networking Conference (IEEE, 2015), pp. 84–87.

Popa, V.

A.-M. Cailean, B. Cagneau, L. Chassagne, M. Dimian, and V. Popa, “Novel Receiver Sensor for Visible Light Communications in Automotive Applications,” IEEE Sens. J. 15(8), 4632–4639 (2015).
[Crossref]

Popoola, W. O.

W. O. Popoola and H. Haas, “Demonstration of the Merit and Limitation of Generalised Space Shift Keying for Indoor Visible Light Communications,” J. Light. Technol. 32(10), 1960–1965 (2014).
[Crossref]

W. O. Popoola, E. Poves, and H. Haas, “Error Performance of Generalised Space Shift Keying for Indoor Visible Light Communications,” IEEE Trans. Commun. 61(5), 1968–1976 (2013).
[Crossref]

Poves, E.

W. O. Popoola, E. Poves, and H. Haas, “Error Performance of Generalised Space Shift Keying for Indoor Visible Light Communications,” IEEE Trans. Commun. 61(5), 1968–1976 (2013).
[Crossref]

Rajagopal, S.

S. Rajagopal, R. D. Roberts, and S.-K. Lim, “IEEE 802.15.7 visible light communication: modulation schemes and dimming support,” IEEE Commun. Mag. 50(3), 72–82 (2012).
[Crossref]

Roberts, R.

S.-H. Yu, O. Shih, H.-M. Tsai, N. Wisitpongphan, and R. Roberts, “Smart automotive lighting for vehicle safety,” IEEE Commun. Mag. 51(12), 50–59 (2013).
[Crossref]

Roberts, R. D.

S. Rajagopal, R. D. Roberts, and S.-K. Lim, “IEEE 802.15.7 visible light communication: modulation schemes and dimming support,” IEEE Commun. Mag. 50(3), 72–82 (2012).
[Crossref]

K. Cui, G. Chen, Z. Xu, and R. D. Roberts, “Traffic light to vehicle visible light communication channel characterization,” Appl. Opt. 51(27), 6594–6605 (2012).
[Crossref] [PubMed]

Sadeghi, B.

C. B. Liu, B. Sadeghi, and E. W. Knightly, “Enabling Vehicular Visible Light Communication (V2LC) Networks,” in Proceedings ACM International Workshop on Vehicular Inter-Networking (ACM, 2011), pp. 41–50.

Saito, T.

T. Saito, S. Haruyama, and M. Nakagawa, “A New Tracking Method using Image Sensor and Photo Diode for Visible Light Road-to-Vehicle Communication,” in Proceedings IEEE International Conference on Advanced Communications Technology (IEEE, 2008), pp. 673–678.

Segata, M.

M. Segata, R. L. Cigno, H. M. M. Tsai, and F. Dressler, “On platooning control using IEEE 802.11p in conjunction with visible light communications,” in Proceedings of IEEE/IFIP Wireless On-demand Network systems and Services Conference (IEEE, 2016), pp. 1–4.

Shagdar, O.

M. Y. Abualhoul, M. Marouf, O. Shagdar, and F. Nashashibi, “Platooning control using visible light communications: A feasibility study,” in Proceedings of IEEE International Conference on Intelligent Transportation Systems (IEEE, 2013), pp. 1535–1540.

Shih, O.

S.-H. Yu, O. Shih, H.-M. Tsai, N. Wisitpongphan, and R. Roberts, “Smart automotive lighting for vehicle safety,” IEEE Commun. Mag. 51(12), 50–59 (2013).
[Crossref]

Shladover, S.

C. Bergenhem, S. Shladover, E. Coelingh, C. Englund, and S. Tsugawa, “Overview of platooning systems,” 19th ITS World Congress, Vienna, Austria, 22–26 Oct. 2012.

Shladover, S.E.

S. Tsugawa, S. Jeschke, and S.E. Shladover, “A Review of Truck Platooning Projects for Energy Savings,” IEEE Trans. Intell. Veh. 1(1), 68–77 (2016).
[Crossref]

Takai, I.

T. Yamazato, I. Takai, H. Okada, T. Fujii, T. Yendo, S. Arai, M. Andoh, T. Harada, K. Yasutomi, K. Kagawa, and S. Kawahito, “Image-sensor-based visible light communication for automotive applications,” IEEE Commun. Mag. 52(7), 88–97 (2014).
[Crossref]

Tanimoto, M.

M. Wada, T. Yendo, T. Fujii, and M. Tanimoto, “Road-to-vehicle communication using LED traffic light,” in Proceedings IEEE Intelligent Vehicles Symposium (IEEE, 2005), pp. 601–606.

S. Okada, T. Yendo, T. Yamazato, T. Fujii, M. Tanimoto, and Y. Kimura, “On-vehicle receiver for distant visible light road-to-vehicle communication,” in Proceedings IEEE Intelligent Vehicles Symposium (IEEE, 2009), pp. 1033–1038.

Tohmé, S.

B. Béchadergue, H. Guan, L. Chassagne, S. Tohmé, and J.-L. Franchineau, “Visible Light Communication System for Platooning Applications,” in Proceedings SIA International Conference on Vision (SIA, 2016).

Tsai, H. M. M.

M. Segata, R. L. Cigno, H. M. M. Tsai, and F. Dressler, “On platooning control using IEEE 802.11p in conjunction with visible light communications,” in Proceedings of IEEE/IFIP Wireless On-demand Network systems and Services Conference (IEEE, 2016), pp. 1–4.

Tsai, H.-M.

S.-H. Yu, O. Shih, H.-M. Tsai, N. Wisitpongphan, and R. Roberts, “Smart automotive lighting for vehicle safety,” IEEE Commun. Mag. 51(12), 50–59 (2013).
[Crossref]

Tsugawa, S.

S. Tsugawa, S. Jeschke, and S.E. Shladover, “A Review of Truck Platooning Projects for Energy Savings,” IEEE Trans. Intell. Veh. 1(1), 68–77 (2016).
[Crossref]

C. Bergenhem, S. Shladover, E. Coelingh, C. Englund, and S. Tsugawa, “Overview of platooning systems,” 19th ITS World Congress, Vienna, Austria, 22–26 Oct. 2012.

Turan, B.

B. Turan, S. Ucar, S. C. Ergen, and O. Ozkasap, “Dual channel visible light communications for enhanced vehicular connectivity,” in Proceedings IEEE Vehicular Networking Conference (IEEE, 2015), pp. 84–87.

Ucar, S.

B. Turan, S. Ucar, S. C. Ergen, and O. Ozkasap, “Dual channel visible light communications for enhanced vehicular connectivity,” in Proceedings IEEE Vehicular Networking Conference (IEEE, 2015), pp. 84–87.

Uhlemann, E.

A. Böhm, M. Jonsson, and E. Uhlemann, “Performance comparison of a platooning application using the IEEE 802.11p MAC on the control channel and a centralized MAC on a service channel,” in Proceedings of IEEE International Conference on Wireless and Mobile Computing, Networking and Communications (IEEE, 2013), pp. 545–552.

Wada, M.

M. Wada, T. Yendo, T. Fujii, and M. Tanimoto, “Road-to-vehicle communication using LED traffic light,” in Proceedings IEEE Intelligent Vehicles Symposium (IEEE, 2005), pp. 601–606.

Wisitpongphan, N.

S.-H. Yu, O. Shih, H.-M. Tsai, N. Wisitpongphan, and R. Roberts, “Smart automotive lighting for vehicle safety,” IEEE Commun. Mag. 51(12), 50–59 (2013).
[Crossref]

Xu, Z.

Yamazato, T.

T. Yamazato, I. Takai, H. Okada, T. Fujii, T. Yendo, S. Arai, M. Andoh, T. Harada, K. Yasutomi, K. Kagawa, and S. Kawahito, “Image-sensor-based visible light communication for automotive applications,” IEEE Commun. Mag. 52(7), 88–97 (2014).
[Crossref]

S. Okada, T. Yendo, T. Yamazato, T. Fujii, M. Tanimoto, and Y. Kimura, “On-vehicle receiver for distant visible light road-to-vehicle communication,” in Proceedings IEEE Intelligent Vehicles Symposium (IEEE, 2009), pp. 1033–1038.

Yasutomi, K.

T. Yamazato, I. Takai, H. Okada, T. Fujii, T. Yendo, S. Arai, M. Andoh, T. Harada, K. Yasutomi, K. Kagawa, and S. Kawahito, “Image-sensor-based visible light communication for automotive applications,” IEEE Commun. Mag. 52(7), 88–97 (2014).
[Crossref]

Yendo, T.

T. Yamazato, I. Takai, H. Okada, T. Fujii, T. Yendo, S. Arai, M. Andoh, T. Harada, K. Yasutomi, K. Kagawa, and S. Kawahito, “Image-sensor-based visible light communication for automotive applications,” IEEE Commun. Mag. 52(7), 88–97 (2014).
[Crossref]

S. Okada, T. Yendo, T. Yamazato, T. Fujii, M. Tanimoto, and Y. Kimura, “On-vehicle receiver for distant visible light road-to-vehicle communication,” in Proceedings IEEE Intelligent Vehicles Symposium (IEEE, 2009), pp. 1033–1038.

M. Wada, T. Yendo, T. Fujii, and M. Tanimoto, “Road-to-vehicle communication using LED traffic light,” in Proceedings IEEE Intelligent Vehicles Symposium (IEEE, 2005), pp. 601–606.

Yu, S.-H.

S.-H. Yu, O. Shih, H.-M. Tsai, N. Wisitpongphan, and R. Roberts, “Smart automotive lighting for vehicle safety,” IEEE Commun. Mag. 51(12), 50–59 (2013).
[Crossref]

Zeng, L.

H. L. Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, and Y. Oh, “80 Mbit/s Visible Light Communications using pre-equalized white LED,” in Proceedings IEEE European Conference on Optical Communication (IEEE, 2008), pp. 1–2.

Appl. Opt. (1)

IEEE Commun. Mag. (3)

T. Yamazato, I. Takai, H. Okada, T. Fujii, T. Yendo, S. Arai, M. Andoh, T. Harada, K. Yasutomi, K. Kagawa, and S. Kawahito, “Image-sensor-based visible light communication for automotive applications,” IEEE Commun. Mag. 52(7), 88–97 (2014).
[Crossref]

S. Rajagopal, R. D. Roberts, and S.-K. Lim, “IEEE 802.15.7 visible light communication: modulation schemes and dimming support,” IEEE Commun. Mag. 50(3), 72–82 (2012).
[Crossref]

S.-H. Yu, O. Shih, H.-M. Tsai, N. Wisitpongphan, and R. Roberts, “Smart automotive lighting for vehicle safety,” IEEE Commun. Mag. 51(12), 50–59 (2013).
[Crossref]

IEEE Sens. J. (1)

A.-M. Cailean, B. Cagneau, L. Chassagne, M. Dimian, and V. Popa, “Novel Receiver Sensor for Visible Light Communications in Automotive Applications,” IEEE Sens. J. 15(8), 4632–4639 (2015).
[Crossref]

IEEE Trans. Commun. (1)

W. O. Popoola, E. Poves, and H. Haas, “Error Performance of Generalised Space Shift Keying for Indoor Visible Light Communications,” IEEE Trans. Commun. 61(5), 1968–1976 (2013).
[Crossref]

IEEE Trans. Intell. Veh. (1)

S. Tsugawa, S. Jeschke, and S.E. Shladover, “A Review of Truck Platooning Projects for Energy Savings,” IEEE Trans. Intell. Veh. 1(1), 68–77 (2016).
[Crossref]

J. Light. Technol. (3)

W. O. Popoola and H. Haas, “Demonstration of the Merit and Limitation of Generalised Space Shift Keying for Indoor Visible Light Communications,” J. Light. Technol. 32(10), 1960–1965 (2014).
[Crossref]

S. H. Lee, K. I. Ahn, and J. K. Kwon, “Multilevel Transmission in Dimmable Visible Light Communication Systems,” J. Light. Technol. 31(20), 3267–3276 (2013).
[Crossref]

K. I. Ahn and J. K. Kwon, “Capacity Analysis of M-PAM Inverse Source Coding in Visible Light Communications,” J. Light. Technol. 30(10), 1399–1404 (2012).
[Crossref]

Proc. IEEE (1)

J. M. Kahn and J. R. Barry, “Wireless infrared communications,” Proc. IEEE 85(2), 265–298 (1997).
[Crossref]

Other (13)

C. Bergenhem, S. Shladover, E. Coelingh, C. Englund, and S. Tsugawa, “Overview of platooning systems,” 19th ITS World Congress, Vienna, Austria, 22–26 Oct. 2012.

B. Turan, S. Ucar, S. C. Ergen, and O. Ozkasap, “Dual channel visible light communications for enhanced vehicular connectivity,” in Proceedings IEEE Vehicular Networking Conference (IEEE, 2015), pp. 84–87.

H. L. Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, and Y. Oh, “80 Mbit/s Visible Light Communications using pre-equalized white LED,” in Proceedings IEEE European Conference on Optical Communication (IEEE, 2008), pp. 1–2.

P. S. Jootel, “SAfe Road TRains for the Environment–Final Report,” http://www.sartre-project.eu/en/publications/Sidor/default.aspx .

A. Böhm, M. Jonsson, and E. Uhlemann, “Performance comparison of a platooning application using the IEEE 802.11p MAC on the control channel and a centralized MAC on a service channel,” in Proceedings of IEEE International Conference on Wireless and Mobile Computing, Networking and Communications (IEEE, 2013), pp. 545–552.

U.S. Department of Transportation, “Vehicle Safety Communications Project Task 3–Final Report,” http://ntl.bts.gov/lib/jpodocs/repts_te/14136.htm

M. Y. Abualhoul, M. Marouf, O. Shagdar, and F. Nashashibi, “Platooning control using visible light communications: A feasibility study,” in Proceedings of IEEE International Conference on Intelligent Transportation Systems (IEEE, 2013), pp. 1535–1540.

M. Segata, R. L. Cigno, H. M. M. Tsai, and F. Dressler, “On platooning control using IEEE 802.11p in conjunction with visible light communications,” in Proceedings of IEEE/IFIP Wireless On-demand Network systems and Services Conference (IEEE, 2016), pp. 1–4.

C. B. Liu, B. Sadeghi, and E. W. Knightly, “Enabling Vehicular Visible Light Communication (V2LC) Networks,” in Proceedings ACM International Workshop on Vehicular Inter-Networking (ACM, 2011), pp. 41–50.

T. Saito, S. Haruyama, and M. Nakagawa, “A New Tracking Method using Image Sensor and Photo Diode for Visible Light Road-to-Vehicle Communication,” in Proceedings IEEE International Conference on Advanced Communications Technology (IEEE, 2008), pp. 673–678.

B. Béchadergue, H. Guan, L. Chassagne, S. Tohmé, and J.-L. Franchineau, “Visible Light Communication System for Platooning Applications,” in Proceedings SIA International Conference on Vision (SIA, 2016).

S. Okada, T. Yendo, T. Yamazato, T. Fujii, M. Tanimoto, and Y. Kimura, “On-vehicle receiver for distant visible light road-to-vehicle communication,” in Proceedings IEEE Intelligent Vehicles Symposium (IEEE, 2009), pp. 1033–1038.

M. Wada, T. Yendo, T. Fujii, and M. Tanimoto, “Road-to-vehicle communication using LED traffic light,” in Proceedings IEEE Intelligent Vehicles Symposium (IEEE, 2005), pp. 601–606.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 (a) Evolution of the maximum illuminance at 50 cm of both headlamps with the forward current and (b) their frequency responses.
Fig. 2
Fig. 2 Spatial distribution of the illuminance of a headlamp when projecting on a vertical plane at 4.5 m. The point of origin is the point of maximum illuminance.
Fig. 3
Fig. 3 The VLC receiver, composed of a photodiode (PD) and a trans-impedance amplifier (TIA) followed by a filter, an amplifier and an analog-to-digital converter (ADC).
Fig. 4
Fig. 4 Examples of (a) OOK and (b) PAM-4 data signals, with their respective decoding zones defined by the black horizontal lines, whereas (c) is the distribution of the resulting consecutive samples count values in the case of PAM-4, with a sampling rate of 12.5 fc.
Fig. 5
Fig. 5 Two-vehicles platoon of inter-distance d, in a curve of center C and radius R and fully defined by the angle α.
Fig. 6
Fig. 6 Left column: GSSK signals sampled by the left receiver (blue line) and the right receiver (orange dashes) when the V2V distance is (a) 5 m, (b) 10m and (c) 30 m. Right column: Lateral evolution, at the receivers level, of the illuminance produced by the left headlamp (blue dotted dashes), the right headlamp (red dotted plain line) and both headlamps (orange line) when the V2V distance is (d) 5 m, (e) 10 m and (f) 30 m.
Fig. 7
Fig. 7 Example of GSSK data signals sampled by the left receiver (blue line) and the right receiver (orange dashes) when the FV/LV distance is d = 10 m and the radius of the curve is R = 100 m.
Fig. 8
Fig. 8 Example of (a) OOK data signal with fc = 2 MHz, (b) PAM-4 data signals with fc = 200 kHz (blue line), fc = 500 kHz (red dashes), fc = 1 MHz (yellow dots-dashes) and fc = 2 MHz (purple dots) and (c) GSSK data signals of the left (blue line) and right (red dashed line) receivers, with fc = 2 MHz. In (b), signals are time scaled to ease comparison.
Fig. 9
Fig. 9 Comparison of the characteristics of OOK, PAM-4 and GSSK according to their data rate, simplicity and mobility, for a BER below 10−6, in highway platooning configurations.

Tables (2)

Tables Icon

Table 1 OOK and PAM-4 modulation with Manchester coding

Tables Icon

Table 2 GSSK modulation with two transmitters and Manchester coding

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

α = sin 1 d 2 R .

Metrics