Abstract

Scanning X-ray fluorescence tomography was once considered impractical due to prohibitive measurement time requirements but is now common for investigating metal distributions within small systems. A recent look-ahead to the possibilities of 4th-generation synchrotron light sources [J. Synchrotron. Radiat. 21, 1031 (2014)] raised the possibility of a spiral-scanning measurement scheme where motion overheads are almost completely eliminated. Here we demonstrate the spiral scanning measurement and use Fourier ring correlation analysis to interrogate sources of resolution degradation. We develop an extension to the Fourier ring correlation formalism that enables direct determination of resolution from the measured sinogram data, greatly enhancing its power as a diagnostic tool for computed tomography.

© 2017 Optical Society of America

Full Article  |  PDF Article

Corrections

18 September 2017: Typographical corrections were made to the author affiliations.


OSA Recommended Articles
Joint reconstruction of x-ray fluorescence and transmission tomography

Zichao Wendy Di, Si Chen, Young Pyo Hong, Chris Jacobsen, Sven Leyffer, and Stefan M. Wild
Opt. Express 25(12) 13107-13124 (2017)

Ptychographic X-ray computed tomography at a high-brilliance X-ray source

Simone Sala, Darren J. Batey, Anupama Prakash, Sharif Ahmed, Christoph Rau, and Pierre Thibault
Opt. Express 27(2) 533-542 (2019)

Hyperspectral image reconstruction for x-ray fluorescence tomography

Doǧa Gürsoy, Tekin Biçer, Antonio Lanzirotti, Matthew G. Newville, and Francesco De Carlo
Opt. Express 23(7) 9014-9023 (2015)

References

  • View by:
  • |
  • |
  • |

  1. M. D. de Jonge and S. Vogt, “Hard X-ray fluorescence tomography - an emerging tool for structural visualization,” Curr. Opin. Struct. Biol. 20, 606–614 (2010).
    [Crossref] [PubMed]
  2. J. P. Hogan, R. A. Gonsalves, and A. S. Krieger, “Fluorescent computer tomography: a model for correction of x-ray absorption,” IEEE Trans. Nucl. Sci. 38, 1721–1727 (1991).
    [Crossref]
  3. M. D. de Jonge, C. G. Ryan, and C. J. Jacobsen, “X-ray nanoprobes and diffraction-limited storage rings: opportunities and challenges of fluorescence tomography of biological specimens,” J. Synchrotron Radiat. 21, 1031–1047 (2014).
    [Crossref] [PubMed]
  4. C. G. Ryan, R. Kirkham, R. M. Hough, G. Moorhead, D. P. Siddons, M. D. de Jonge, D. J. Paterson, G. De Geronimo, D. L. Howard, and J. S. Cleverley, “Elemental x-ray imaging using the Maia detector array: The benefits and challenges of large solid-angle,” Nucl. Instr. Meth. Phys. Res. A 619, 37–43 (2010).
    [Crossref]
  5. http://www.xia.com/FalconX.html (accessed June 2017).
  6. http://quantumdetectors.com (accessed June 2017).
  7. R. A. Crowther, D. J. DeRosier, and A. Klug, “The reconstruction of a three-dimensional structure from projections and its application to electron microscopy,” Proceedings of the Royal Society of London A 317, 319–340 (1970).
    [Crossref]
  8. I. McNulty, S. P. Frigo, C. C. Retsch, Y. Wang, Y. Feng, Y. Qian, E. M. Trakhtenberg, B. Tieman, B.-C. Cha, K. Goetze, and T. Mooney, “Design and performance of the 2-id-b scanning x-ray microscope,” Proc. SPIE 199867–74 (1998).
    [Crossref]
  9. A. Kilcoyne, T. Tyliszczak, W. Steele, S. Fakra, P. Hitchcock, K. Franck, E. Anderson, B. Harteneck, E. Rightor, G. Mitchell, A. Hitchcock, L. Yang, T. Warwick, and H. Ade, “Interferometer-controlled scanning transmission x-ray microscopes at the Advanced Light Source,” J. Synchrotron Radiat. 10, 125–136 (2003).
    [Crossref] [PubMed]
  10. R. Kirkham, P. A. Dunn, A. J. Kuczewski, D. P. Siddons, R. Dodanwela, G. F. Moorhead, C. G. Ryan, G. De Geronimo, R. Beuttenmuller, D. Pinelli, M. Pfeffer, P. Davey, M. Jensen, D. J. Paterson, M. D. de Jonge, D. L. Howard, M. Küsel, and J. McKinlay, “The Maia spectroscopy detector system: Engineering for integrated pulse capture, low-latency scanning and real-time processing,” in “The 10th International Conference on Synchrotron Radiation Instrumentation,” R. Garrett, I. Gentle, K. Nugent, and S. Wilkins, eds. (AIP Conf. Proc., 2010), vol. 1234, pp. 240–243.
  11. G. McColl, S. A. James, S. Mayo, D. L. Howard, C. G. Ryan, R. Kirkham, G. F. Moorhead, D. Paterson, M. D. de Jonge, and A. I. Bush, “Caenorhabditis elegans maintains highly compartmentalized cellular distribution of metals and steep concentration gradients of manganese,” PLOS ONE 7, e32685 (2012).
    [Crossref] [PubMed]
  12. R. Hegerl and W. Hoppe, “Influence of electron noise on three-dimensional image reconstruction,” Z. Naturforsch. 31, 1717–1721 (1976).
  13. S. A. James, M. D. de Jonge, D. L. Howard, A. I. Bush, D. Paterson, and G. McColl, “Direct in vivo imaging of essential bioinorganics in caenorhabditis elegans,” Metallomics 5, 627 (2013).
    [Crossref] [PubMed]
  14. S. A. James, B. R. Roberts, D. J. Hare, M. D. de Jonge, I. E. Birchall, N. L. Jenkins, R. A. Cherny, A. I. Bush, and G. McColl, “Direct in vivo imaging of ferrous iron dyshomeostasis in ageing Caenorhabditis elegans,” Chem. Sci. 6, 2952–2962 (2015).
    [Crossref] [PubMed]
  15. S. A. James, R. Burke, D. L. Howard, K. M. Spiers, D. J. Paterson, S. Murphy, G. Ramm, R. Kirkham, C. G. Ryan, and M. D. de Jonge, “Visualising coordination chemistry: fluorescence X-ray absorption near edge structure tomography,” Chem. Commun. 52, 11834–11837 (2016).
    [Crossref]
  16. http://www.deltatau.com (accessed June 2017).
  17. A. Kingston, A. Sakellariou, T. Varslot, G. Myers, and A. Shepherd, “Reliable automatic alignment of tomographic projection data by passive auto-focus,” Med. Phys. 38, 4934–4945 (2011).
    [Crossref] [PubMed]
  18. J. Dengler, “A multi-resolution approach to the 3D reconstruction from an electron microscope tilt series solving the alignment problem without gold particles,” Ultramicroscopy 30, 337–348 (1989).
    [Crossref]
  19. G. Myers, S. Latham, A. Kingston, J. Kolomanzik, V. Krajicek, T. Krupka, T. Varslot, and A. Sheppard, “High cone-angle x-ray computed micro-tomography with 186 gigavoxel datasets,” Proc. SPIE 9967, 99670U (2016).
    [Crossref]
  20. W. Saxton and W. Baumeister, “The correlation averaging of a regularly arranged bacterial cell envelope protein,” J. Microsc. 127, 127–138 (1982).
    [Crossref] [PubMed]
  21. M. van Heel, W. Keegstra, W. Schutter, and E. Van Bruggen, “Arthropod hemocyanin structures studied by image analysis,” in “Life Chemistry Reports Supplement 1: The Structure and Function of Invertebrate Respiratory Proteins,” E. Wood, ed. (Leeds, 1982), pp. 69–73.
  22. A. C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging (IEEE Press, New York, 1988).
  23. I. McNulty, “Current and ultimate limitations of scanning x-ray nanotomography,” Proc. SPIE 4499, 23–28 (2001).
    [Crossref]
  24. Z. Levine, A. Kalukin, M. Kuhn, S. Frigo, I. McNulty, C. Retsch, Y. Wang, U. Arp, T. Lucatorto, B. Ravel, and C. Tarrio, “Tomography of integrated circuit interconnect with an electromigration void,” J. Appl. Phys. 87, 4483–4488 (2000).
    [Crossref]
  25. M. D. de Jonge, C. Holzner, S. B. Baines, B. S. Twining, K. Ignatyev, J. Diaz, D. L. Howard, D. Legnini, A. Miceli, I. McNulty, C. Jacobsen, and S. Vogt, “Quantitative 3D elemental microtomography of cyclotella meneghiniana at 400-nm resolutions,” Proc. Natl. Acad. Sci. U.S.A. 107, 15676–15680 (2010).
    [Crossref]
  26. P. La Rivière, P. Vargas, M. Newville, and S. Sutton, “Reduced-scan schemes for x-ray fluorescence computed tomography,” IEEE Trans. Nucl. Sci. 54, 1535–1542 (2007).
    [Crossref]

2016 (2)

S. A. James, R. Burke, D. L. Howard, K. M. Spiers, D. J. Paterson, S. Murphy, G. Ramm, R. Kirkham, C. G. Ryan, and M. D. de Jonge, “Visualising coordination chemistry: fluorescence X-ray absorption near edge structure tomography,” Chem. Commun. 52, 11834–11837 (2016).
[Crossref]

G. Myers, S. Latham, A. Kingston, J. Kolomanzik, V. Krajicek, T. Krupka, T. Varslot, and A. Sheppard, “High cone-angle x-ray computed micro-tomography with 186 gigavoxel datasets,” Proc. SPIE 9967, 99670U (2016).
[Crossref]

2015 (1)

S. A. James, B. R. Roberts, D. J. Hare, M. D. de Jonge, I. E. Birchall, N. L. Jenkins, R. A. Cherny, A. I. Bush, and G. McColl, “Direct in vivo imaging of ferrous iron dyshomeostasis in ageing Caenorhabditis elegans,” Chem. Sci. 6, 2952–2962 (2015).
[Crossref] [PubMed]

2014 (1)

M. D. de Jonge, C. G. Ryan, and C. J. Jacobsen, “X-ray nanoprobes and diffraction-limited storage rings: opportunities and challenges of fluorescence tomography of biological specimens,” J. Synchrotron Radiat. 21, 1031–1047 (2014).
[Crossref] [PubMed]

2013 (1)

S. A. James, M. D. de Jonge, D. L. Howard, A. I. Bush, D. Paterson, and G. McColl, “Direct in vivo imaging of essential bioinorganics in caenorhabditis elegans,” Metallomics 5, 627 (2013).
[Crossref] [PubMed]

2012 (1)

G. McColl, S. A. James, S. Mayo, D. L. Howard, C. G. Ryan, R. Kirkham, G. F. Moorhead, D. Paterson, M. D. de Jonge, and A. I. Bush, “Caenorhabditis elegans maintains highly compartmentalized cellular distribution of metals and steep concentration gradients of manganese,” PLOS ONE 7, e32685 (2012).
[Crossref] [PubMed]

2011 (1)

A. Kingston, A. Sakellariou, T. Varslot, G. Myers, and A. Shepherd, “Reliable automatic alignment of tomographic projection data by passive auto-focus,” Med. Phys. 38, 4934–4945 (2011).
[Crossref] [PubMed]

2010 (3)

C. G. Ryan, R. Kirkham, R. M. Hough, G. Moorhead, D. P. Siddons, M. D. de Jonge, D. J. Paterson, G. De Geronimo, D. L. Howard, and J. S. Cleverley, “Elemental x-ray imaging using the Maia detector array: The benefits and challenges of large solid-angle,” Nucl. Instr. Meth. Phys. Res. A 619, 37–43 (2010).
[Crossref]

M. D. de Jonge and S. Vogt, “Hard X-ray fluorescence tomography - an emerging tool for structural visualization,” Curr. Opin. Struct. Biol. 20, 606–614 (2010).
[Crossref] [PubMed]

M. D. de Jonge, C. Holzner, S. B. Baines, B. S. Twining, K. Ignatyev, J. Diaz, D. L. Howard, D. Legnini, A. Miceli, I. McNulty, C. Jacobsen, and S. Vogt, “Quantitative 3D elemental microtomography of cyclotella meneghiniana at 400-nm resolutions,” Proc. Natl. Acad. Sci. U.S.A. 107, 15676–15680 (2010).
[Crossref]

2007 (1)

P. La Rivière, P. Vargas, M. Newville, and S. Sutton, “Reduced-scan schemes for x-ray fluorescence computed tomography,” IEEE Trans. Nucl. Sci. 54, 1535–1542 (2007).
[Crossref]

2003 (1)

A. Kilcoyne, T. Tyliszczak, W. Steele, S. Fakra, P. Hitchcock, K. Franck, E. Anderson, B. Harteneck, E. Rightor, G. Mitchell, A. Hitchcock, L. Yang, T. Warwick, and H. Ade, “Interferometer-controlled scanning transmission x-ray microscopes at the Advanced Light Source,” J. Synchrotron Radiat. 10, 125–136 (2003).
[Crossref] [PubMed]

2001 (1)

I. McNulty, “Current and ultimate limitations of scanning x-ray nanotomography,” Proc. SPIE 4499, 23–28 (2001).
[Crossref]

2000 (1)

Z. Levine, A. Kalukin, M. Kuhn, S. Frigo, I. McNulty, C. Retsch, Y. Wang, U. Arp, T. Lucatorto, B. Ravel, and C. Tarrio, “Tomography of integrated circuit interconnect with an electromigration void,” J. Appl. Phys. 87, 4483–4488 (2000).
[Crossref]

1998 (1)

I. McNulty, S. P. Frigo, C. C. Retsch, Y. Wang, Y. Feng, Y. Qian, E. M. Trakhtenberg, B. Tieman, B.-C. Cha, K. Goetze, and T. Mooney, “Design and performance of the 2-id-b scanning x-ray microscope,” Proc. SPIE 199867–74 (1998).
[Crossref]

1991 (1)

J. P. Hogan, R. A. Gonsalves, and A. S. Krieger, “Fluorescent computer tomography: a model for correction of x-ray absorption,” IEEE Trans. Nucl. Sci. 38, 1721–1727 (1991).
[Crossref]

1989 (1)

J. Dengler, “A multi-resolution approach to the 3D reconstruction from an electron microscope tilt series solving the alignment problem without gold particles,” Ultramicroscopy 30, 337–348 (1989).
[Crossref]

1982 (1)

W. Saxton and W. Baumeister, “The correlation averaging of a regularly arranged bacterial cell envelope protein,” J. Microsc. 127, 127–138 (1982).
[Crossref] [PubMed]

1976 (1)

R. Hegerl and W. Hoppe, “Influence of electron noise on three-dimensional image reconstruction,” Z. Naturforsch. 31, 1717–1721 (1976).

1970 (1)

R. A. Crowther, D. J. DeRosier, and A. Klug, “The reconstruction of a three-dimensional structure from projections and its application to electron microscopy,” Proceedings of the Royal Society of London A 317, 319–340 (1970).
[Crossref]

Ade, H.

A. Kilcoyne, T. Tyliszczak, W. Steele, S. Fakra, P. Hitchcock, K. Franck, E. Anderson, B. Harteneck, E. Rightor, G. Mitchell, A. Hitchcock, L. Yang, T. Warwick, and H. Ade, “Interferometer-controlled scanning transmission x-ray microscopes at the Advanced Light Source,” J. Synchrotron Radiat. 10, 125–136 (2003).
[Crossref] [PubMed]

Anderson, E.

A. Kilcoyne, T. Tyliszczak, W. Steele, S. Fakra, P. Hitchcock, K. Franck, E. Anderson, B. Harteneck, E. Rightor, G. Mitchell, A. Hitchcock, L. Yang, T. Warwick, and H. Ade, “Interferometer-controlled scanning transmission x-ray microscopes at the Advanced Light Source,” J. Synchrotron Radiat. 10, 125–136 (2003).
[Crossref] [PubMed]

Arp, U.

Z. Levine, A. Kalukin, M. Kuhn, S. Frigo, I. McNulty, C. Retsch, Y. Wang, U. Arp, T. Lucatorto, B. Ravel, and C. Tarrio, “Tomography of integrated circuit interconnect with an electromigration void,” J. Appl. Phys. 87, 4483–4488 (2000).
[Crossref]

Baines, S. B.

M. D. de Jonge, C. Holzner, S. B. Baines, B. S. Twining, K. Ignatyev, J. Diaz, D. L. Howard, D. Legnini, A. Miceli, I. McNulty, C. Jacobsen, and S. Vogt, “Quantitative 3D elemental microtomography of cyclotella meneghiniana at 400-nm resolutions,” Proc. Natl. Acad. Sci. U.S.A. 107, 15676–15680 (2010).
[Crossref]

Baumeister, W.

W. Saxton and W. Baumeister, “The correlation averaging of a regularly arranged bacterial cell envelope protein,” J. Microsc. 127, 127–138 (1982).
[Crossref] [PubMed]

Beuttenmuller, R.

R. Kirkham, P. A. Dunn, A. J. Kuczewski, D. P. Siddons, R. Dodanwela, G. F. Moorhead, C. G. Ryan, G. De Geronimo, R. Beuttenmuller, D. Pinelli, M. Pfeffer, P. Davey, M. Jensen, D. J. Paterson, M. D. de Jonge, D. L. Howard, M. Küsel, and J. McKinlay, “The Maia spectroscopy detector system: Engineering for integrated pulse capture, low-latency scanning and real-time processing,” in “The 10th International Conference on Synchrotron Radiation Instrumentation,” R. Garrett, I. Gentle, K. Nugent, and S. Wilkins, eds. (AIP Conf. Proc., 2010), vol. 1234, pp. 240–243.

Birchall, I. E.

S. A. James, B. R. Roberts, D. J. Hare, M. D. de Jonge, I. E. Birchall, N. L. Jenkins, R. A. Cherny, A. I. Bush, and G. McColl, “Direct in vivo imaging of ferrous iron dyshomeostasis in ageing Caenorhabditis elegans,” Chem. Sci. 6, 2952–2962 (2015).
[Crossref] [PubMed]

Burke, R.

S. A. James, R. Burke, D. L. Howard, K. M. Spiers, D. J. Paterson, S. Murphy, G. Ramm, R. Kirkham, C. G. Ryan, and M. D. de Jonge, “Visualising coordination chemistry: fluorescence X-ray absorption near edge structure tomography,” Chem. Commun. 52, 11834–11837 (2016).
[Crossref]

Bush, A. I.

S. A. James, B. R. Roberts, D. J. Hare, M. D. de Jonge, I. E. Birchall, N. L. Jenkins, R. A. Cherny, A. I. Bush, and G. McColl, “Direct in vivo imaging of ferrous iron dyshomeostasis in ageing Caenorhabditis elegans,” Chem. Sci. 6, 2952–2962 (2015).
[Crossref] [PubMed]

S. A. James, M. D. de Jonge, D. L. Howard, A. I. Bush, D. Paterson, and G. McColl, “Direct in vivo imaging of essential bioinorganics in caenorhabditis elegans,” Metallomics 5, 627 (2013).
[Crossref] [PubMed]

G. McColl, S. A. James, S. Mayo, D. L. Howard, C. G. Ryan, R. Kirkham, G. F. Moorhead, D. Paterson, M. D. de Jonge, and A. I. Bush, “Caenorhabditis elegans maintains highly compartmentalized cellular distribution of metals and steep concentration gradients of manganese,” PLOS ONE 7, e32685 (2012).
[Crossref] [PubMed]

Cha, B.-C.

I. McNulty, S. P. Frigo, C. C. Retsch, Y. Wang, Y. Feng, Y. Qian, E. M. Trakhtenberg, B. Tieman, B.-C. Cha, K. Goetze, and T. Mooney, “Design and performance of the 2-id-b scanning x-ray microscope,” Proc. SPIE 199867–74 (1998).
[Crossref]

Cherny, R. A.

S. A. James, B. R. Roberts, D. J. Hare, M. D. de Jonge, I. E. Birchall, N. L. Jenkins, R. A. Cherny, A. I. Bush, and G. McColl, “Direct in vivo imaging of ferrous iron dyshomeostasis in ageing Caenorhabditis elegans,” Chem. Sci. 6, 2952–2962 (2015).
[Crossref] [PubMed]

Cleverley, J. S.

C. G. Ryan, R. Kirkham, R. M. Hough, G. Moorhead, D. P. Siddons, M. D. de Jonge, D. J. Paterson, G. De Geronimo, D. L. Howard, and J. S. Cleverley, “Elemental x-ray imaging using the Maia detector array: The benefits and challenges of large solid-angle,” Nucl. Instr. Meth. Phys. Res. A 619, 37–43 (2010).
[Crossref]

Crowther, R. A.

R. A. Crowther, D. J. DeRosier, and A. Klug, “The reconstruction of a three-dimensional structure from projections and its application to electron microscopy,” Proceedings of the Royal Society of London A 317, 319–340 (1970).
[Crossref]

Davey, P.

R. Kirkham, P. A. Dunn, A. J. Kuczewski, D. P. Siddons, R. Dodanwela, G. F. Moorhead, C. G. Ryan, G. De Geronimo, R. Beuttenmuller, D. Pinelli, M. Pfeffer, P. Davey, M. Jensen, D. J. Paterson, M. D. de Jonge, D. L. Howard, M. Küsel, and J. McKinlay, “The Maia spectroscopy detector system: Engineering for integrated pulse capture, low-latency scanning and real-time processing,” in “The 10th International Conference on Synchrotron Radiation Instrumentation,” R. Garrett, I. Gentle, K. Nugent, and S. Wilkins, eds. (AIP Conf. Proc., 2010), vol. 1234, pp. 240–243.

De Geronimo, G.

C. G. Ryan, R. Kirkham, R. M. Hough, G. Moorhead, D. P. Siddons, M. D. de Jonge, D. J. Paterson, G. De Geronimo, D. L. Howard, and J. S. Cleverley, “Elemental x-ray imaging using the Maia detector array: The benefits and challenges of large solid-angle,” Nucl. Instr. Meth. Phys. Res. A 619, 37–43 (2010).
[Crossref]

R. Kirkham, P. A. Dunn, A. J. Kuczewski, D. P. Siddons, R. Dodanwela, G. F. Moorhead, C. G. Ryan, G. De Geronimo, R. Beuttenmuller, D. Pinelli, M. Pfeffer, P. Davey, M. Jensen, D. J. Paterson, M. D. de Jonge, D. L. Howard, M. Küsel, and J. McKinlay, “The Maia spectroscopy detector system: Engineering for integrated pulse capture, low-latency scanning and real-time processing,” in “The 10th International Conference on Synchrotron Radiation Instrumentation,” R. Garrett, I. Gentle, K. Nugent, and S. Wilkins, eds. (AIP Conf. Proc., 2010), vol. 1234, pp. 240–243.

de Jonge, M. D.

S. A. James, R. Burke, D. L. Howard, K. M. Spiers, D. J. Paterson, S. Murphy, G. Ramm, R. Kirkham, C. G. Ryan, and M. D. de Jonge, “Visualising coordination chemistry: fluorescence X-ray absorption near edge structure tomography,” Chem. Commun. 52, 11834–11837 (2016).
[Crossref]

S. A. James, B. R. Roberts, D. J. Hare, M. D. de Jonge, I. E. Birchall, N. L. Jenkins, R. A. Cherny, A. I. Bush, and G. McColl, “Direct in vivo imaging of ferrous iron dyshomeostasis in ageing Caenorhabditis elegans,” Chem. Sci. 6, 2952–2962 (2015).
[Crossref] [PubMed]

M. D. de Jonge, C. G. Ryan, and C. J. Jacobsen, “X-ray nanoprobes and diffraction-limited storage rings: opportunities and challenges of fluorescence tomography of biological specimens,” J. Synchrotron Radiat. 21, 1031–1047 (2014).
[Crossref] [PubMed]

S. A. James, M. D. de Jonge, D. L. Howard, A. I. Bush, D. Paterson, and G. McColl, “Direct in vivo imaging of essential bioinorganics in caenorhabditis elegans,” Metallomics 5, 627 (2013).
[Crossref] [PubMed]

G. McColl, S. A. James, S. Mayo, D. L. Howard, C. G. Ryan, R. Kirkham, G. F. Moorhead, D. Paterson, M. D. de Jonge, and A. I. Bush, “Caenorhabditis elegans maintains highly compartmentalized cellular distribution of metals and steep concentration gradients of manganese,” PLOS ONE 7, e32685 (2012).
[Crossref] [PubMed]

M. D. de Jonge, C. Holzner, S. B. Baines, B. S. Twining, K. Ignatyev, J. Diaz, D. L. Howard, D. Legnini, A. Miceli, I. McNulty, C. Jacobsen, and S. Vogt, “Quantitative 3D elemental microtomography of cyclotella meneghiniana at 400-nm resolutions,” Proc. Natl. Acad. Sci. U.S.A. 107, 15676–15680 (2010).
[Crossref]

M. D. de Jonge and S. Vogt, “Hard X-ray fluorescence tomography - an emerging tool for structural visualization,” Curr. Opin. Struct. Biol. 20, 606–614 (2010).
[Crossref] [PubMed]

C. G. Ryan, R. Kirkham, R. M. Hough, G. Moorhead, D. P. Siddons, M. D. de Jonge, D. J. Paterson, G. De Geronimo, D. L. Howard, and J. S. Cleverley, “Elemental x-ray imaging using the Maia detector array: The benefits and challenges of large solid-angle,” Nucl. Instr. Meth. Phys. Res. A 619, 37–43 (2010).
[Crossref]

R. Kirkham, P. A. Dunn, A. J. Kuczewski, D. P. Siddons, R. Dodanwela, G. F. Moorhead, C. G. Ryan, G. De Geronimo, R. Beuttenmuller, D. Pinelli, M. Pfeffer, P. Davey, M. Jensen, D. J. Paterson, M. D. de Jonge, D. L. Howard, M. Küsel, and J. McKinlay, “The Maia spectroscopy detector system: Engineering for integrated pulse capture, low-latency scanning and real-time processing,” in “The 10th International Conference on Synchrotron Radiation Instrumentation,” R. Garrett, I. Gentle, K. Nugent, and S. Wilkins, eds. (AIP Conf. Proc., 2010), vol. 1234, pp. 240–243.

Dengler, J.

J. Dengler, “A multi-resolution approach to the 3D reconstruction from an electron microscope tilt series solving the alignment problem without gold particles,” Ultramicroscopy 30, 337–348 (1989).
[Crossref]

DeRosier, D. J.

R. A. Crowther, D. J. DeRosier, and A. Klug, “The reconstruction of a three-dimensional structure from projections and its application to electron microscopy,” Proceedings of the Royal Society of London A 317, 319–340 (1970).
[Crossref]

Diaz, J.

M. D. de Jonge, C. Holzner, S. B. Baines, B. S. Twining, K. Ignatyev, J. Diaz, D. L. Howard, D. Legnini, A. Miceli, I. McNulty, C. Jacobsen, and S. Vogt, “Quantitative 3D elemental microtomography of cyclotella meneghiniana at 400-nm resolutions,” Proc. Natl. Acad. Sci. U.S.A. 107, 15676–15680 (2010).
[Crossref]

Dodanwela, R.

R. Kirkham, P. A. Dunn, A. J. Kuczewski, D. P. Siddons, R. Dodanwela, G. F. Moorhead, C. G. Ryan, G. De Geronimo, R. Beuttenmuller, D. Pinelli, M. Pfeffer, P. Davey, M. Jensen, D. J. Paterson, M. D. de Jonge, D. L. Howard, M. Küsel, and J. McKinlay, “The Maia spectroscopy detector system: Engineering for integrated pulse capture, low-latency scanning and real-time processing,” in “The 10th International Conference on Synchrotron Radiation Instrumentation,” R. Garrett, I. Gentle, K. Nugent, and S. Wilkins, eds. (AIP Conf. Proc., 2010), vol. 1234, pp. 240–243.

Dunn, P. A.

R. Kirkham, P. A. Dunn, A. J. Kuczewski, D. P. Siddons, R. Dodanwela, G. F. Moorhead, C. G. Ryan, G. De Geronimo, R. Beuttenmuller, D. Pinelli, M. Pfeffer, P. Davey, M. Jensen, D. J. Paterson, M. D. de Jonge, D. L. Howard, M. Küsel, and J. McKinlay, “The Maia spectroscopy detector system: Engineering for integrated pulse capture, low-latency scanning and real-time processing,” in “The 10th International Conference on Synchrotron Radiation Instrumentation,” R. Garrett, I. Gentle, K. Nugent, and S. Wilkins, eds. (AIP Conf. Proc., 2010), vol. 1234, pp. 240–243.

Fakra, S.

A. Kilcoyne, T. Tyliszczak, W. Steele, S. Fakra, P. Hitchcock, K. Franck, E. Anderson, B. Harteneck, E. Rightor, G. Mitchell, A. Hitchcock, L. Yang, T. Warwick, and H. Ade, “Interferometer-controlled scanning transmission x-ray microscopes at the Advanced Light Source,” J. Synchrotron Radiat. 10, 125–136 (2003).
[Crossref] [PubMed]

Feng, Y.

I. McNulty, S. P. Frigo, C. C. Retsch, Y. Wang, Y. Feng, Y. Qian, E. M. Trakhtenberg, B. Tieman, B.-C. Cha, K. Goetze, and T. Mooney, “Design and performance of the 2-id-b scanning x-ray microscope,” Proc. SPIE 199867–74 (1998).
[Crossref]

Franck, K.

A. Kilcoyne, T. Tyliszczak, W. Steele, S. Fakra, P. Hitchcock, K. Franck, E. Anderson, B. Harteneck, E. Rightor, G. Mitchell, A. Hitchcock, L. Yang, T. Warwick, and H. Ade, “Interferometer-controlled scanning transmission x-ray microscopes at the Advanced Light Source,” J. Synchrotron Radiat. 10, 125–136 (2003).
[Crossref] [PubMed]

Frigo, S.

Z. Levine, A. Kalukin, M. Kuhn, S. Frigo, I. McNulty, C. Retsch, Y. Wang, U. Arp, T. Lucatorto, B. Ravel, and C. Tarrio, “Tomography of integrated circuit interconnect with an electromigration void,” J. Appl. Phys. 87, 4483–4488 (2000).
[Crossref]

Frigo, S. P.

I. McNulty, S. P. Frigo, C. C. Retsch, Y. Wang, Y. Feng, Y. Qian, E. M. Trakhtenberg, B. Tieman, B.-C. Cha, K. Goetze, and T. Mooney, “Design and performance of the 2-id-b scanning x-ray microscope,” Proc. SPIE 199867–74 (1998).
[Crossref]

Goetze, K.

I. McNulty, S. P. Frigo, C. C. Retsch, Y. Wang, Y. Feng, Y. Qian, E. M. Trakhtenberg, B. Tieman, B.-C. Cha, K. Goetze, and T. Mooney, “Design and performance of the 2-id-b scanning x-ray microscope,” Proc. SPIE 199867–74 (1998).
[Crossref]

Gonsalves, R. A.

J. P. Hogan, R. A. Gonsalves, and A. S. Krieger, “Fluorescent computer tomography: a model for correction of x-ray absorption,” IEEE Trans. Nucl. Sci. 38, 1721–1727 (1991).
[Crossref]

Hare, D. J.

S. A. James, B. R. Roberts, D. J. Hare, M. D. de Jonge, I. E. Birchall, N. L. Jenkins, R. A. Cherny, A. I. Bush, and G. McColl, “Direct in vivo imaging of ferrous iron dyshomeostasis in ageing Caenorhabditis elegans,” Chem. Sci. 6, 2952–2962 (2015).
[Crossref] [PubMed]

Harteneck, B.

A. Kilcoyne, T. Tyliszczak, W. Steele, S. Fakra, P. Hitchcock, K. Franck, E. Anderson, B. Harteneck, E. Rightor, G. Mitchell, A. Hitchcock, L. Yang, T. Warwick, and H. Ade, “Interferometer-controlled scanning transmission x-ray microscopes at the Advanced Light Source,” J. Synchrotron Radiat. 10, 125–136 (2003).
[Crossref] [PubMed]

Hegerl, R.

R. Hegerl and W. Hoppe, “Influence of electron noise on three-dimensional image reconstruction,” Z. Naturforsch. 31, 1717–1721 (1976).

Hitchcock, A.

A. Kilcoyne, T. Tyliszczak, W. Steele, S. Fakra, P. Hitchcock, K. Franck, E. Anderson, B. Harteneck, E. Rightor, G. Mitchell, A. Hitchcock, L. Yang, T. Warwick, and H. Ade, “Interferometer-controlled scanning transmission x-ray microscopes at the Advanced Light Source,” J. Synchrotron Radiat. 10, 125–136 (2003).
[Crossref] [PubMed]

Hitchcock, P.

A. Kilcoyne, T. Tyliszczak, W. Steele, S. Fakra, P. Hitchcock, K. Franck, E. Anderson, B. Harteneck, E. Rightor, G. Mitchell, A. Hitchcock, L. Yang, T. Warwick, and H. Ade, “Interferometer-controlled scanning transmission x-ray microscopes at the Advanced Light Source,” J. Synchrotron Radiat. 10, 125–136 (2003).
[Crossref] [PubMed]

Hogan, J. P.

J. P. Hogan, R. A. Gonsalves, and A. S. Krieger, “Fluorescent computer tomography: a model for correction of x-ray absorption,” IEEE Trans. Nucl. Sci. 38, 1721–1727 (1991).
[Crossref]

Holzner, C.

M. D. de Jonge, C. Holzner, S. B. Baines, B. S. Twining, K. Ignatyev, J. Diaz, D. L. Howard, D. Legnini, A. Miceli, I. McNulty, C. Jacobsen, and S. Vogt, “Quantitative 3D elemental microtomography of cyclotella meneghiniana at 400-nm resolutions,” Proc. Natl. Acad. Sci. U.S.A. 107, 15676–15680 (2010).
[Crossref]

Hoppe, W.

R. Hegerl and W. Hoppe, “Influence of electron noise on three-dimensional image reconstruction,” Z. Naturforsch. 31, 1717–1721 (1976).

Hough, R. M.

C. G. Ryan, R. Kirkham, R. M. Hough, G. Moorhead, D. P. Siddons, M. D. de Jonge, D. J. Paterson, G. De Geronimo, D. L. Howard, and J. S. Cleverley, “Elemental x-ray imaging using the Maia detector array: The benefits and challenges of large solid-angle,” Nucl. Instr. Meth. Phys. Res. A 619, 37–43 (2010).
[Crossref]

Howard, D. L.

S. A. James, R. Burke, D. L. Howard, K. M. Spiers, D. J. Paterson, S. Murphy, G. Ramm, R. Kirkham, C. G. Ryan, and M. D. de Jonge, “Visualising coordination chemistry: fluorescence X-ray absorption near edge structure tomography,” Chem. Commun. 52, 11834–11837 (2016).
[Crossref]

S. A. James, M. D. de Jonge, D. L. Howard, A. I. Bush, D. Paterson, and G. McColl, “Direct in vivo imaging of essential bioinorganics in caenorhabditis elegans,” Metallomics 5, 627 (2013).
[Crossref] [PubMed]

G. McColl, S. A. James, S. Mayo, D. L. Howard, C. G. Ryan, R. Kirkham, G. F. Moorhead, D. Paterson, M. D. de Jonge, and A. I. Bush, “Caenorhabditis elegans maintains highly compartmentalized cellular distribution of metals and steep concentration gradients of manganese,” PLOS ONE 7, e32685 (2012).
[Crossref] [PubMed]

C. G. Ryan, R. Kirkham, R. M. Hough, G. Moorhead, D. P. Siddons, M. D. de Jonge, D. J. Paterson, G. De Geronimo, D. L. Howard, and J. S. Cleverley, “Elemental x-ray imaging using the Maia detector array: The benefits and challenges of large solid-angle,” Nucl. Instr. Meth. Phys. Res. A 619, 37–43 (2010).
[Crossref]

M. D. de Jonge, C. Holzner, S. B. Baines, B. S. Twining, K. Ignatyev, J. Diaz, D. L. Howard, D. Legnini, A. Miceli, I. McNulty, C. Jacobsen, and S. Vogt, “Quantitative 3D elemental microtomography of cyclotella meneghiniana at 400-nm resolutions,” Proc. Natl. Acad. Sci. U.S.A. 107, 15676–15680 (2010).
[Crossref]

R. Kirkham, P. A. Dunn, A. J. Kuczewski, D. P. Siddons, R. Dodanwela, G. F. Moorhead, C. G. Ryan, G. De Geronimo, R. Beuttenmuller, D. Pinelli, M. Pfeffer, P. Davey, M. Jensen, D. J. Paterson, M. D. de Jonge, D. L. Howard, M. Küsel, and J. McKinlay, “The Maia spectroscopy detector system: Engineering for integrated pulse capture, low-latency scanning and real-time processing,” in “The 10th International Conference on Synchrotron Radiation Instrumentation,” R. Garrett, I. Gentle, K. Nugent, and S. Wilkins, eds. (AIP Conf. Proc., 2010), vol. 1234, pp. 240–243.

Ignatyev, K.

M. D. de Jonge, C. Holzner, S. B. Baines, B. S. Twining, K. Ignatyev, J. Diaz, D. L. Howard, D. Legnini, A. Miceli, I. McNulty, C. Jacobsen, and S. Vogt, “Quantitative 3D elemental microtomography of cyclotella meneghiniana at 400-nm resolutions,” Proc. Natl. Acad. Sci. U.S.A. 107, 15676–15680 (2010).
[Crossref]

Jacobsen, C.

M. D. de Jonge, C. Holzner, S. B. Baines, B. S. Twining, K. Ignatyev, J. Diaz, D. L. Howard, D. Legnini, A. Miceli, I. McNulty, C. Jacobsen, and S. Vogt, “Quantitative 3D elemental microtomography of cyclotella meneghiniana at 400-nm resolutions,” Proc. Natl. Acad. Sci. U.S.A. 107, 15676–15680 (2010).
[Crossref]

Jacobsen, C. J.

M. D. de Jonge, C. G. Ryan, and C. J. Jacobsen, “X-ray nanoprobes and diffraction-limited storage rings: opportunities and challenges of fluorescence tomography of biological specimens,” J. Synchrotron Radiat. 21, 1031–1047 (2014).
[Crossref] [PubMed]

James, S. A.

S. A. James, R. Burke, D. L. Howard, K. M. Spiers, D. J. Paterson, S. Murphy, G. Ramm, R. Kirkham, C. G. Ryan, and M. D. de Jonge, “Visualising coordination chemistry: fluorescence X-ray absorption near edge structure tomography,” Chem. Commun. 52, 11834–11837 (2016).
[Crossref]

S. A. James, B. R. Roberts, D. J. Hare, M. D. de Jonge, I. E. Birchall, N. L. Jenkins, R. A. Cherny, A. I. Bush, and G. McColl, “Direct in vivo imaging of ferrous iron dyshomeostasis in ageing Caenorhabditis elegans,” Chem. Sci. 6, 2952–2962 (2015).
[Crossref] [PubMed]

S. A. James, M. D. de Jonge, D. L. Howard, A. I. Bush, D. Paterson, and G. McColl, “Direct in vivo imaging of essential bioinorganics in caenorhabditis elegans,” Metallomics 5, 627 (2013).
[Crossref] [PubMed]

G. McColl, S. A. James, S. Mayo, D. L. Howard, C. G. Ryan, R. Kirkham, G. F. Moorhead, D. Paterson, M. D. de Jonge, and A. I. Bush, “Caenorhabditis elegans maintains highly compartmentalized cellular distribution of metals and steep concentration gradients of manganese,” PLOS ONE 7, e32685 (2012).
[Crossref] [PubMed]

Jenkins, N. L.

S. A. James, B. R. Roberts, D. J. Hare, M. D. de Jonge, I. E. Birchall, N. L. Jenkins, R. A. Cherny, A. I. Bush, and G. McColl, “Direct in vivo imaging of ferrous iron dyshomeostasis in ageing Caenorhabditis elegans,” Chem. Sci. 6, 2952–2962 (2015).
[Crossref] [PubMed]

Jensen, M.

R. Kirkham, P. A. Dunn, A. J. Kuczewski, D. P. Siddons, R. Dodanwela, G. F. Moorhead, C. G. Ryan, G. De Geronimo, R. Beuttenmuller, D. Pinelli, M. Pfeffer, P. Davey, M. Jensen, D. J. Paterson, M. D. de Jonge, D. L. Howard, M. Küsel, and J. McKinlay, “The Maia spectroscopy detector system: Engineering for integrated pulse capture, low-latency scanning and real-time processing,” in “The 10th International Conference on Synchrotron Radiation Instrumentation,” R. Garrett, I. Gentle, K. Nugent, and S. Wilkins, eds. (AIP Conf. Proc., 2010), vol. 1234, pp. 240–243.

Kak, A. C.

A. C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging (IEEE Press, New York, 1988).

Kalukin, A.

Z. Levine, A. Kalukin, M. Kuhn, S. Frigo, I. McNulty, C. Retsch, Y. Wang, U. Arp, T. Lucatorto, B. Ravel, and C. Tarrio, “Tomography of integrated circuit interconnect with an electromigration void,” J. Appl. Phys. 87, 4483–4488 (2000).
[Crossref]

Keegstra, W.

M. van Heel, W. Keegstra, W. Schutter, and E. Van Bruggen, “Arthropod hemocyanin structures studied by image analysis,” in “Life Chemistry Reports Supplement 1: The Structure and Function of Invertebrate Respiratory Proteins,” E. Wood, ed. (Leeds, 1982), pp. 69–73.

Kilcoyne, A.

A. Kilcoyne, T. Tyliszczak, W. Steele, S. Fakra, P. Hitchcock, K. Franck, E. Anderson, B. Harteneck, E. Rightor, G. Mitchell, A. Hitchcock, L. Yang, T. Warwick, and H. Ade, “Interferometer-controlled scanning transmission x-ray microscopes at the Advanced Light Source,” J. Synchrotron Radiat. 10, 125–136 (2003).
[Crossref] [PubMed]

Kingston, A.

G. Myers, S. Latham, A. Kingston, J. Kolomanzik, V. Krajicek, T. Krupka, T. Varslot, and A. Sheppard, “High cone-angle x-ray computed micro-tomography with 186 gigavoxel datasets,” Proc. SPIE 9967, 99670U (2016).
[Crossref]

A. Kingston, A. Sakellariou, T. Varslot, G. Myers, and A. Shepherd, “Reliable automatic alignment of tomographic projection data by passive auto-focus,” Med. Phys. 38, 4934–4945 (2011).
[Crossref] [PubMed]

Kirkham, R.

S. A. James, R. Burke, D. L. Howard, K. M. Spiers, D. J. Paterson, S. Murphy, G. Ramm, R. Kirkham, C. G. Ryan, and M. D. de Jonge, “Visualising coordination chemistry: fluorescence X-ray absorption near edge structure tomography,” Chem. Commun. 52, 11834–11837 (2016).
[Crossref]

G. McColl, S. A. James, S. Mayo, D. L. Howard, C. G. Ryan, R. Kirkham, G. F. Moorhead, D. Paterson, M. D. de Jonge, and A. I. Bush, “Caenorhabditis elegans maintains highly compartmentalized cellular distribution of metals and steep concentration gradients of manganese,” PLOS ONE 7, e32685 (2012).
[Crossref] [PubMed]

C. G. Ryan, R. Kirkham, R. M. Hough, G. Moorhead, D. P. Siddons, M. D. de Jonge, D. J. Paterson, G. De Geronimo, D. L. Howard, and J. S. Cleverley, “Elemental x-ray imaging using the Maia detector array: The benefits and challenges of large solid-angle,” Nucl. Instr. Meth. Phys. Res. A 619, 37–43 (2010).
[Crossref]

R. Kirkham, P. A. Dunn, A. J. Kuczewski, D. P. Siddons, R. Dodanwela, G. F. Moorhead, C. G. Ryan, G. De Geronimo, R. Beuttenmuller, D. Pinelli, M. Pfeffer, P. Davey, M. Jensen, D. J. Paterson, M. D. de Jonge, D. L. Howard, M. Küsel, and J. McKinlay, “The Maia spectroscopy detector system: Engineering for integrated pulse capture, low-latency scanning and real-time processing,” in “The 10th International Conference on Synchrotron Radiation Instrumentation,” R. Garrett, I. Gentle, K. Nugent, and S. Wilkins, eds. (AIP Conf. Proc., 2010), vol. 1234, pp. 240–243.

Klug, A.

R. A. Crowther, D. J. DeRosier, and A. Klug, “The reconstruction of a three-dimensional structure from projections and its application to electron microscopy,” Proceedings of the Royal Society of London A 317, 319–340 (1970).
[Crossref]

Kolomanzik, J.

G. Myers, S. Latham, A. Kingston, J. Kolomanzik, V. Krajicek, T. Krupka, T. Varslot, and A. Sheppard, “High cone-angle x-ray computed micro-tomography with 186 gigavoxel datasets,” Proc. SPIE 9967, 99670U (2016).
[Crossref]

Krajicek, V.

G. Myers, S. Latham, A. Kingston, J. Kolomanzik, V. Krajicek, T. Krupka, T. Varslot, and A. Sheppard, “High cone-angle x-ray computed micro-tomography with 186 gigavoxel datasets,” Proc. SPIE 9967, 99670U (2016).
[Crossref]

Krieger, A. S.

J. P. Hogan, R. A. Gonsalves, and A. S. Krieger, “Fluorescent computer tomography: a model for correction of x-ray absorption,” IEEE Trans. Nucl. Sci. 38, 1721–1727 (1991).
[Crossref]

Krupka, T.

G. Myers, S. Latham, A. Kingston, J. Kolomanzik, V. Krajicek, T. Krupka, T. Varslot, and A. Sheppard, “High cone-angle x-ray computed micro-tomography with 186 gigavoxel datasets,” Proc. SPIE 9967, 99670U (2016).
[Crossref]

Kuczewski, A. J.

R. Kirkham, P. A. Dunn, A. J. Kuczewski, D. P. Siddons, R. Dodanwela, G. F. Moorhead, C. G. Ryan, G. De Geronimo, R. Beuttenmuller, D. Pinelli, M. Pfeffer, P. Davey, M. Jensen, D. J. Paterson, M. D. de Jonge, D. L. Howard, M. Küsel, and J. McKinlay, “The Maia spectroscopy detector system: Engineering for integrated pulse capture, low-latency scanning and real-time processing,” in “The 10th International Conference on Synchrotron Radiation Instrumentation,” R. Garrett, I. Gentle, K. Nugent, and S. Wilkins, eds. (AIP Conf. Proc., 2010), vol. 1234, pp. 240–243.

Kuhn, M.

Z. Levine, A. Kalukin, M. Kuhn, S. Frigo, I. McNulty, C. Retsch, Y. Wang, U. Arp, T. Lucatorto, B. Ravel, and C. Tarrio, “Tomography of integrated circuit interconnect with an electromigration void,” J. Appl. Phys. 87, 4483–4488 (2000).
[Crossref]

Küsel, M.

R. Kirkham, P. A. Dunn, A. J. Kuczewski, D. P. Siddons, R. Dodanwela, G. F. Moorhead, C. G. Ryan, G. De Geronimo, R. Beuttenmuller, D. Pinelli, M. Pfeffer, P. Davey, M. Jensen, D. J. Paterson, M. D. de Jonge, D. L. Howard, M. Küsel, and J. McKinlay, “The Maia spectroscopy detector system: Engineering for integrated pulse capture, low-latency scanning and real-time processing,” in “The 10th International Conference on Synchrotron Radiation Instrumentation,” R. Garrett, I. Gentle, K. Nugent, and S. Wilkins, eds. (AIP Conf. Proc., 2010), vol. 1234, pp. 240–243.

La Rivière, P.

P. La Rivière, P. Vargas, M. Newville, and S. Sutton, “Reduced-scan schemes for x-ray fluorescence computed tomography,” IEEE Trans. Nucl. Sci. 54, 1535–1542 (2007).
[Crossref]

Latham, S.

G. Myers, S. Latham, A. Kingston, J. Kolomanzik, V. Krajicek, T. Krupka, T. Varslot, and A. Sheppard, “High cone-angle x-ray computed micro-tomography with 186 gigavoxel datasets,” Proc. SPIE 9967, 99670U (2016).
[Crossref]

Legnini, D.

M. D. de Jonge, C. Holzner, S. B. Baines, B. S. Twining, K. Ignatyev, J. Diaz, D. L. Howard, D. Legnini, A. Miceli, I. McNulty, C. Jacobsen, and S. Vogt, “Quantitative 3D elemental microtomography of cyclotella meneghiniana at 400-nm resolutions,” Proc. Natl. Acad. Sci. U.S.A. 107, 15676–15680 (2010).
[Crossref]

Levine, Z.

Z. Levine, A. Kalukin, M. Kuhn, S. Frigo, I. McNulty, C. Retsch, Y. Wang, U. Arp, T. Lucatorto, B. Ravel, and C. Tarrio, “Tomography of integrated circuit interconnect with an electromigration void,” J. Appl. Phys. 87, 4483–4488 (2000).
[Crossref]

Lucatorto, T.

Z. Levine, A. Kalukin, M. Kuhn, S. Frigo, I. McNulty, C. Retsch, Y. Wang, U. Arp, T. Lucatorto, B. Ravel, and C. Tarrio, “Tomography of integrated circuit interconnect with an electromigration void,” J. Appl. Phys. 87, 4483–4488 (2000).
[Crossref]

Mayo, S.

G. McColl, S. A. James, S. Mayo, D. L. Howard, C. G. Ryan, R. Kirkham, G. F. Moorhead, D. Paterson, M. D. de Jonge, and A. I. Bush, “Caenorhabditis elegans maintains highly compartmentalized cellular distribution of metals and steep concentration gradients of manganese,” PLOS ONE 7, e32685 (2012).
[Crossref] [PubMed]

McColl, G.

S. A. James, B. R. Roberts, D. J. Hare, M. D. de Jonge, I. E. Birchall, N. L. Jenkins, R. A. Cherny, A. I. Bush, and G. McColl, “Direct in vivo imaging of ferrous iron dyshomeostasis in ageing Caenorhabditis elegans,” Chem. Sci. 6, 2952–2962 (2015).
[Crossref] [PubMed]

S. A. James, M. D. de Jonge, D. L. Howard, A. I. Bush, D. Paterson, and G. McColl, “Direct in vivo imaging of essential bioinorganics in caenorhabditis elegans,” Metallomics 5, 627 (2013).
[Crossref] [PubMed]

G. McColl, S. A. James, S. Mayo, D. L. Howard, C. G. Ryan, R. Kirkham, G. F. Moorhead, D. Paterson, M. D. de Jonge, and A. I. Bush, “Caenorhabditis elegans maintains highly compartmentalized cellular distribution of metals and steep concentration gradients of manganese,” PLOS ONE 7, e32685 (2012).
[Crossref] [PubMed]

McKinlay, J.

R. Kirkham, P. A. Dunn, A. J. Kuczewski, D. P. Siddons, R. Dodanwela, G. F. Moorhead, C. G. Ryan, G. De Geronimo, R. Beuttenmuller, D. Pinelli, M. Pfeffer, P. Davey, M. Jensen, D. J. Paterson, M. D. de Jonge, D. L. Howard, M. Küsel, and J. McKinlay, “The Maia spectroscopy detector system: Engineering for integrated pulse capture, low-latency scanning and real-time processing,” in “The 10th International Conference on Synchrotron Radiation Instrumentation,” R. Garrett, I. Gentle, K. Nugent, and S. Wilkins, eds. (AIP Conf. Proc., 2010), vol. 1234, pp. 240–243.

McNulty, I.

M. D. de Jonge, C. Holzner, S. B. Baines, B. S. Twining, K. Ignatyev, J. Diaz, D. L. Howard, D. Legnini, A. Miceli, I. McNulty, C. Jacobsen, and S. Vogt, “Quantitative 3D elemental microtomography of cyclotella meneghiniana at 400-nm resolutions,” Proc. Natl. Acad. Sci. U.S.A. 107, 15676–15680 (2010).
[Crossref]

I. McNulty, “Current and ultimate limitations of scanning x-ray nanotomography,” Proc. SPIE 4499, 23–28 (2001).
[Crossref]

Z. Levine, A. Kalukin, M. Kuhn, S. Frigo, I. McNulty, C. Retsch, Y. Wang, U. Arp, T. Lucatorto, B. Ravel, and C. Tarrio, “Tomography of integrated circuit interconnect with an electromigration void,” J. Appl. Phys. 87, 4483–4488 (2000).
[Crossref]

I. McNulty, S. P. Frigo, C. C. Retsch, Y. Wang, Y. Feng, Y. Qian, E. M. Trakhtenberg, B. Tieman, B.-C. Cha, K. Goetze, and T. Mooney, “Design and performance of the 2-id-b scanning x-ray microscope,” Proc. SPIE 199867–74 (1998).
[Crossref]

Miceli, A.

M. D. de Jonge, C. Holzner, S. B. Baines, B. S. Twining, K. Ignatyev, J. Diaz, D. L. Howard, D. Legnini, A. Miceli, I. McNulty, C. Jacobsen, and S. Vogt, “Quantitative 3D elemental microtomography of cyclotella meneghiniana at 400-nm resolutions,” Proc. Natl. Acad. Sci. U.S.A. 107, 15676–15680 (2010).
[Crossref]

Mitchell, G.

A. Kilcoyne, T. Tyliszczak, W. Steele, S. Fakra, P. Hitchcock, K. Franck, E. Anderson, B. Harteneck, E. Rightor, G. Mitchell, A. Hitchcock, L. Yang, T. Warwick, and H. Ade, “Interferometer-controlled scanning transmission x-ray microscopes at the Advanced Light Source,” J. Synchrotron Radiat. 10, 125–136 (2003).
[Crossref] [PubMed]

Mooney, T.

I. McNulty, S. P. Frigo, C. C. Retsch, Y. Wang, Y. Feng, Y. Qian, E. M. Trakhtenberg, B. Tieman, B.-C. Cha, K. Goetze, and T. Mooney, “Design and performance of the 2-id-b scanning x-ray microscope,” Proc. SPIE 199867–74 (1998).
[Crossref]

Moorhead, G.

C. G. Ryan, R. Kirkham, R. M. Hough, G. Moorhead, D. P. Siddons, M. D. de Jonge, D. J. Paterson, G. De Geronimo, D. L. Howard, and J. S. Cleverley, “Elemental x-ray imaging using the Maia detector array: The benefits and challenges of large solid-angle,” Nucl. Instr. Meth. Phys. Res. A 619, 37–43 (2010).
[Crossref]

Moorhead, G. F.

G. McColl, S. A. James, S. Mayo, D. L. Howard, C. G. Ryan, R. Kirkham, G. F. Moorhead, D. Paterson, M. D. de Jonge, and A. I. Bush, “Caenorhabditis elegans maintains highly compartmentalized cellular distribution of metals and steep concentration gradients of manganese,” PLOS ONE 7, e32685 (2012).
[Crossref] [PubMed]

R. Kirkham, P. A. Dunn, A. J. Kuczewski, D. P. Siddons, R. Dodanwela, G. F. Moorhead, C. G. Ryan, G. De Geronimo, R. Beuttenmuller, D. Pinelli, M. Pfeffer, P. Davey, M. Jensen, D. J. Paterson, M. D. de Jonge, D. L. Howard, M. Küsel, and J. McKinlay, “The Maia spectroscopy detector system: Engineering for integrated pulse capture, low-latency scanning and real-time processing,” in “The 10th International Conference on Synchrotron Radiation Instrumentation,” R. Garrett, I. Gentle, K. Nugent, and S. Wilkins, eds. (AIP Conf. Proc., 2010), vol. 1234, pp. 240–243.

Murphy, S.

S. A. James, R. Burke, D. L. Howard, K. M. Spiers, D. J. Paterson, S. Murphy, G. Ramm, R. Kirkham, C. G. Ryan, and M. D. de Jonge, “Visualising coordination chemistry: fluorescence X-ray absorption near edge structure tomography,” Chem. Commun. 52, 11834–11837 (2016).
[Crossref]

Myers, G.

G. Myers, S. Latham, A. Kingston, J. Kolomanzik, V. Krajicek, T. Krupka, T. Varslot, and A. Sheppard, “High cone-angle x-ray computed micro-tomography with 186 gigavoxel datasets,” Proc. SPIE 9967, 99670U (2016).
[Crossref]

A. Kingston, A. Sakellariou, T. Varslot, G. Myers, and A. Shepherd, “Reliable automatic alignment of tomographic projection data by passive auto-focus,” Med. Phys. 38, 4934–4945 (2011).
[Crossref] [PubMed]

Newville, M.

P. La Rivière, P. Vargas, M. Newville, and S. Sutton, “Reduced-scan schemes for x-ray fluorescence computed tomography,” IEEE Trans. Nucl. Sci. 54, 1535–1542 (2007).
[Crossref]

Paterson, D.

S. A. James, M. D. de Jonge, D. L. Howard, A. I. Bush, D. Paterson, and G. McColl, “Direct in vivo imaging of essential bioinorganics in caenorhabditis elegans,” Metallomics 5, 627 (2013).
[Crossref] [PubMed]

G. McColl, S. A. James, S. Mayo, D. L. Howard, C. G. Ryan, R. Kirkham, G. F. Moorhead, D. Paterson, M. D. de Jonge, and A. I. Bush, “Caenorhabditis elegans maintains highly compartmentalized cellular distribution of metals and steep concentration gradients of manganese,” PLOS ONE 7, e32685 (2012).
[Crossref] [PubMed]

Paterson, D. J.

S. A. James, R. Burke, D. L. Howard, K. M. Spiers, D. J. Paterson, S. Murphy, G. Ramm, R. Kirkham, C. G. Ryan, and M. D. de Jonge, “Visualising coordination chemistry: fluorescence X-ray absorption near edge structure tomography,” Chem. Commun. 52, 11834–11837 (2016).
[Crossref]

C. G. Ryan, R. Kirkham, R. M. Hough, G. Moorhead, D. P. Siddons, M. D. de Jonge, D. J. Paterson, G. De Geronimo, D. L. Howard, and J. S. Cleverley, “Elemental x-ray imaging using the Maia detector array: The benefits and challenges of large solid-angle,” Nucl. Instr. Meth. Phys. Res. A 619, 37–43 (2010).
[Crossref]

R. Kirkham, P. A. Dunn, A. J. Kuczewski, D. P. Siddons, R. Dodanwela, G. F. Moorhead, C. G. Ryan, G. De Geronimo, R. Beuttenmuller, D. Pinelli, M. Pfeffer, P. Davey, M. Jensen, D. J. Paterson, M. D. de Jonge, D. L. Howard, M. Küsel, and J. McKinlay, “The Maia spectroscopy detector system: Engineering for integrated pulse capture, low-latency scanning and real-time processing,” in “The 10th International Conference on Synchrotron Radiation Instrumentation,” R. Garrett, I. Gentle, K. Nugent, and S. Wilkins, eds. (AIP Conf. Proc., 2010), vol. 1234, pp. 240–243.

Pfeffer, M.

R. Kirkham, P. A. Dunn, A. J. Kuczewski, D. P. Siddons, R. Dodanwela, G. F. Moorhead, C. G. Ryan, G. De Geronimo, R. Beuttenmuller, D. Pinelli, M. Pfeffer, P. Davey, M. Jensen, D. J. Paterson, M. D. de Jonge, D. L. Howard, M. Küsel, and J. McKinlay, “The Maia spectroscopy detector system: Engineering for integrated pulse capture, low-latency scanning and real-time processing,” in “The 10th International Conference on Synchrotron Radiation Instrumentation,” R. Garrett, I. Gentle, K. Nugent, and S. Wilkins, eds. (AIP Conf. Proc., 2010), vol. 1234, pp. 240–243.

Pinelli, D.

R. Kirkham, P. A. Dunn, A. J. Kuczewski, D. P. Siddons, R. Dodanwela, G. F. Moorhead, C. G. Ryan, G. De Geronimo, R. Beuttenmuller, D. Pinelli, M. Pfeffer, P. Davey, M. Jensen, D. J. Paterson, M. D. de Jonge, D. L. Howard, M. Küsel, and J. McKinlay, “The Maia spectroscopy detector system: Engineering for integrated pulse capture, low-latency scanning and real-time processing,” in “The 10th International Conference on Synchrotron Radiation Instrumentation,” R. Garrett, I. Gentle, K. Nugent, and S. Wilkins, eds. (AIP Conf. Proc., 2010), vol. 1234, pp. 240–243.

Qian, Y.

I. McNulty, S. P. Frigo, C. C. Retsch, Y. Wang, Y. Feng, Y. Qian, E. M. Trakhtenberg, B. Tieman, B.-C. Cha, K. Goetze, and T. Mooney, “Design and performance of the 2-id-b scanning x-ray microscope,” Proc. SPIE 199867–74 (1998).
[Crossref]

Ramm, G.

S. A. James, R. Burke, D. L. Howard, K. M. Spiers, D. J. Paterson, S. Murphy, G. Ramm, R. Kirkham, C. G. Ryan, and M. D. de Jonge, “Visualising coordination chemistry: fluorescence X-ray absorption near edge structure tomography,” Chem. Commun. 52, 11834–11837 (2016).
[Crossref]

Ravel, B.

Z. Levine, A. Kalukin, M. Kuhn, S. Frigo, I. McNulty, C. Retsch, Y. Wang, U. Arp, T. Lucatorto, B. Ravel, and C. Tarrio, “Tomography of integrated circuit interconnect with an electromigration void,” J. Appl. Phys. 87, 4483–4488 (2000).
[Crossref]

Retsch, C.

Z. Levine, A. Kalukin, M. Kuhn, S. Frigo, I. McNulty, C. Retsch, Y. Wang, U. Arp, T. Lucatorto, B. Ravel, and C. Tarrio, “Tomography of integrated circuit interconnect with an electromigration void,” J. Appl. Phys. 87, 4483–4488 (2000).
[Crossref]

Retsch, C. C.

I. McNulty, S. P. Frigo, C. C. Retsch, Y. Wang, Y. Feng, Y. Qian, E. M. Trakhtenberg, B. Tieman, B.-C. Cha, K. Goetze, and T. Mooney, “Design and performance of the 2-id-b scanning x-ray microscope,” Proc. SPIE 199867–74 (1998).
[Crossref]

Rightor, E.

A. Kilcoyne, T. Tyliszczak, W. Steele, S. Fakra, P. Hitchcock, K. Franck, E. Anderson, B. Harteneck, E. Rightor, G. Mitchell, A. Hitchcock, L. Yang, T. Warwick, and H. Ade, “Interferometer-controlled scanning transmission x-ray microscopes at the Advanced Light Source,” J. Synchrotron Radiat. 10, 125–136 (2003).
[Crossref] [PubMed]

Roberts, B. R.

S. A. James, B. R. Roberts, D. J. Hare, M. D. de Jonge, I. E. Birchall, N. L. Jenkins, R. A. Cherny, A. I. Bush, and G. McColl, “Direct in vivo imaging of ferrous iron dyshomeostasis in ageing Caenorhabditis elegans,” Chem. Sci. 6, 2952–2962 (2015).
[Crossref] [PubMed]

Ryan, C. G.

S. A. James, R. Burke, D. L. Howard, K. M. Spiers, D. J. Paterson, S. Murphy, G. Ramm, R. Kirkham, C. G. Ryan, and M. D. de Jonge, “Visualising coordination chemistry: fluorescence X-ray absorption near edge structure tomography,” Chem. Commun. 52, 11834–11837 (2016).
[Crossref]

M. D. de Jonge, C. G. Ryan, and C. J. Jacobsen, “X-ray nanoprobes and diffraction-limited storage rings: opportunities and challenges of fluorescence tomography of biological specimens,” J. Synchrotron Radiat. 21, 1031–1047 (2014).
[Crossref] [PubMed]

G. McColl, S. A. James, S. Mayo, D. L. Howard, C. G. Ryan, R. Kirkham, G. F. Moorhead, D. Paterson, M. D. de Jonge, and A. I. Bush, “Caenorhabditis elegans maintains highly compartmentalized cellular distribution of metals and steep concentration gradients of manganese,” PLOS ONE 7, e32685 (2012).
[Crossref] [PubMed]

C. G. Ryan, R. Kirkham, R. M. Hough, G. Moorhead, D. P. Siddons, M. D. de Jonge, D. J. Paterson, G. De Geronimo, D. L. Howard, and J. S. Cleverley, “Elemental x-ray imaging using the Maia detector array: The benefits and challenges of large solid-angle,” Nucl. Instr. Meth. Phys. Res. A 619, 37–43 (2010).
[Crossref]

R. Kirkham, P. A. Dunn, A. J. Kuczewski, D. P. Siddons, R. Dodanwela, G. F. Moorhead, C. G. Ryan, G. De Geronimo, R. Beuttenmuller, D. Pinelli, M. Pfeffer, P. Davey, M. Jensen, D. J. Paterson, M. D. de Jonge, D. L. Howard, M. Küsel, and J. McKinlay, “The Maia spectroscopy detector system: Engineering for integrated pulse capture, low-latency scanning and real-time processing,” in “The 10th International Conference on Synchrotron Radiation Instrumentation,” R. Garrett, I. Gentle, K. Nugent, and S. Wilkins, eds. (AIP Conf. Proc., 2010), vol. 1234, pp. 240–243.

Sakellariou, A.

A. Kingston, A. Sakellariou, T. Varslot, G. Myers, and A. Shepherd, “Reliable automatic alignment of tomographic projection data by passive auto-focus,” Med. Phys. 38, 4934–4945 (2011).
[Crossref] [PubMed]

Saxton, W.

W. Saxton and W. Baumeister, “The correlation averaging of a regularly arranged bacterial cell envelope protein,” J. Microsc. 127, 127–138 (1982).
[Crossref] [PubMed]

Schutter, W.

M. van Heel, W. Keegstra, W. Schutter, and E. Van Bruggen, “Arthropod hemocyanin structures studied by image analysis,” in “Life Chemistry Reports Supplement 1: The Structure and Function of Invertebrate Respiratory Proteins,” E. Wood, ed. (Leeds, 1982), pp. 69–73.

Shepherd, A.

A. Kingston, A. Sakellariou, T. Varslot, G. Myers, and A. Shepherd, “Reliable automatic alignment of tomographic projection data by passive auto-focus,” Med. Phys. 38, 4934–4945 (2011).
[Crossref] [PubMed]

Sheppard, A.

G. Myers, S. Latham, A. Kingston, J. Kolomanzik, V. Krajicek, T. Krupka, T. Varslot, and A. Sheppard, “High cone-angle x-ray computed micro-tomography with 186 gigavoxel datasets,” Proc. SPIE 9967, 99670U (2016).
[Crossref]

Siddons, D. P.

C. G. Ryan, R. Kirkham, R. M. Hough, G. Moorhead, D. P. Siddons, M. D. de Jonge, D. J. Paterson, G. De Geronimo, D. L. Howard, and J. S. Cleverley, “Elemental x-ray imaging using the Maia detector array: The benefits and challenges of large solid-angle,” Nucl. Instr. Meth. Phys. Res. A 619, 37–43 (2010).
[Crossref]

R. Kirkham, P. A. Dunn, A. J. Kuczewski, D. P. Siddons, R. Dodanwela, G. F. Moorhead, C. G. Ryan, G. De Geronimo, R. Beuttenmuller, D. Pinelli, M. Pfeffer, P. Davey, M. Jensen, D. J. Paterson, M. D. de Jonge, D. L. Howard, M. Küsel, and J. McKinlay, “The Maia spectroscopy detector system: Engineering for integrated pulse capture, low-latency scanning and real-time processing,” in “The 10th International Conference on Synchrotron Radiation Instrumentation,” R. Garrett, I. Gentle, K. Nugent, and S. Wilkins, eds. (AIP Conf. Proc., 2010), vol. 1234, pp. 240–243.

Slaney, M.

A. C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging (IEEE Press, New York, 1988).

Spiers, K. M.

S. A. James, R. Burke, D. L. Howard, K. M. Spiers, D. J. Paterson, S. Murphy, G. Ramm, R. Kirkham, C. G. Ryan, and M. D. de Jonge, “Visualising coordination chemistry: fluorescence X-ray absorption near edge structure tomography,” Chem. Commun. 52, 11834–11837 (2016).
[Crossref]

Steele, W.

A. Kilcoyne, T. Tyliszczak, W. Steele, S. Fakra, P. Hitchcock, K. Franck, E. Anderson, B. Harteneck, E. Rightor, G. Mitchell, A. Hitchcock, L. Yang, T. Warwick, and H. Ade, “Interferometer-controlled scanning transmission x-ray microscopes at the Advanced Light Source,” J. Synchrotron Radiat. 10, 125–136 (2003).
[Crossref] [PubMed]

Sutton, S.

P. La Rivière, P. Vargas, M. Newville, and S. Sutton, “Reduced-scan schemes for x-ray fluorescence computed tomography,” IEEE Trans. Nucl. Sci. 54, 1535–1542 (2007).
[Crossref]

Tarrio, C.

Z. Levine, A. Kalukin, M. Kuhn, S. Frigo, I. McNulty, C. Retsch, Y. Wang, U. Arp, T. Lucatorto, B. Ravel, and C. Tarrio, “Tomography of integrated circuit interconnect with an electromigration void,” J. Appl. Phys. 87, 4483–4488 (2000).
[Crossref]

Tieman, B.

I. McNulty, S. P. Frigo, C. C. Retsch, Y. Wang, Y. Feng, Y. Qian, E. M. Trakhtenberg, B. Tieman, B.-C. Cha, K. Goetze, and T. Mooney, “Design and performance of the 2-id-b scanning x-ray microscope,” Proc. SPIE 199867–74 (1998).
[Crossref]

Trakhtenberg, E. M.

I. McNulty, S. P. Frigo, C. C. Retsch, Y. Wang, Y. Feng, Y. Qian, E. M. Trakhtenberg, B. Tieman, B.-C. Cha, K. Goetze, and T. Mooney, “Design and performance of the 2-id-b scanning x-ray microscope,” Proc. SPIE 199867–74 (1998).
[Crossref]

Twining, B. S.

M. D. de Jonge, C. Holzner, S. B. Baines, B. S. Twining, K. Ignatyev, J. Diaz, D. L. Howard, D. Legnini, A. Miceli, I. McNulty, C. Jacobsen, and S. Vogt, “Quantitative 3D elemental microtomography of cyclotella meneghiniana at 400-nm resolutions,” Proc. Natl. Acad. Sci. U.S.A. 107, 15676–15680 (2010).
[Crossref]

Tyliszczak, T.

A. Kilcoyne, T. Tyliszczak, W. Steele, S. Fakra, P. Hitchcock, K. Franck, E. Anderson, B. Harteneck, E. Rightor, G. Mitchell, A. Hitchcock, L. Yang, T. Warwick, and H. Ade, “Interferometer-controlled scanning transmission x-ray microscopes at the Advanced Light Source,” J. Synchrotron Radiat. 10, 125–136 (2003).
[Crossref] [PubMed]

Van Bruggen, E.

M. van Heel, W. Keegstra, W. Schutter, and E. Van Bruggen, “Arthropod hemocyanin structures studied by image analysis,” in “Life Chemistry Reports Supplement 1: The Structure and Function of Invertebrate Respiratory Proteins,” E. Wood, ed. (Leeds, 1982), pp. 69–73.

van Heel, M.

M. van Heel, W. Keegstra, W. Schutter, and E. Van Bruggen, “Arthropod hemocyanin structures studied by image analysis,” in “Life Chemistry Reports Supplement 1: The Structure and Function of Invertebrate Respiratory Proteins,” E. Wood, ed. (Leeds, 1982), pp. 69–73.

Vargas, P.

P. La Rivière, P. Vargas, M. Newville, and S. Sutton, “Reduced-scan schemes for x-ray fluorescence computed tomography,” IEEE Trans. Nucl. Sci. 54, 1535–1542 (2007).
[Crossref]

Varslot, T.

G. Myers, S. Latham, A. Kingston, J. Kolomanzik, V. Krajicek, T. Krupka, T. Varslot, and A. Sheppard, “High cone-angle x-ray computed micro-tomography with 186 gigavoxel datasets,” Proc. SPIE 9967, 99670U (2016).
[Crossref]

A. Kingston, A. Sakellariou, T. Varslot, G. Myers, and A. Shepherd, “Reliable automatic alignment of tomographic projection data by passive auto-focus,” Med. Phys. 38, 4934–4945 (2011).
[Crossref] [PubMed]

Vogt, S.

M. D. de Jonge and S. Vogt, “Hard X-ray fluorescence tomography - an emerging tool for structural visualization,” Curr. Opin. Struct. Biol. 20, 606–614 (2010).
[Crossref] [PubMed]

M. D. de Jonge, C. Holzner, S. B. Baines, B. S. Twining, K. Ignatyev, J. Diaz, D. L. Howard, D. Legnini, A. Miceli, I. McNulty, C. Jacobsen, and S. Vogt, “Quantitative 3D elemental microtomography of cyclotella meneghiniana at 400-nm resolutions,” Proc. Natl. Acad. Sci. U.S.A. 107, 15676–15680 (2010).
[Crossref]

Wang, Y.

Z. Levine, A. Kalukin, M. Kuhn, S. Frigo, I. McNulty, C. Retsch, Y. Wang, U. Arp, T. Lucatorto, B. Ravel, and C. Tarrio, “Tomography of integrated circuit interconnect with an electromigration void,” J. Appl. Phys. 87, 4483–4488 (2000).
[Crossref]

I. McNulty, S. P. Frigo, C. C. Retsch, Y. Wang, Y. Feng, Y. Qian, E. M. Trakhtenberg, B. Tieman, B.-C. Cha, K. Goetze, and T. Mooney, “Design and performance of the 2-id-b scanning x-ray microscope,” Proc. SPIE 199867–74 (1998).
[Crossref]

Warwick, T.

A. Kilcoyne, T. Tyliszczak, W. Steele, S. Fakra, P. Hitchcock, K. Franck, E. Anderson, B. Harteneck, E. Rightor, G. Mitchell, A. Hitchcock, L. Yang, T. Warwick, and H. Ade, “Interferometer-controlled scanning transmission x-ray microscopes at the Advanced Light Source,” J. Synchrotron Radiat. 10, 125–136 (2003).
[Crossref] [PubMed]

Yang, L.

A. Kilcoyne, T. Tyliszczak, W. Steele, S. Fakra, P. Hitchcock, K. Franck, E. Anderson, B. Harteneck, E. Rightor, G. Mitchell, A. Hitchcock, L. Yang, T. Warwick, and H. Ade, “Interferometer-controlled scanning transmission x-ray microscopes at the Advanced Light Source,” J. Synchrotron Radiat. 10, 125–136 (2003).
[Crossref] [PubMed]

Chem. Commun. (1)

S. A. James, R. Burke, D. L. Howard, K. M. Spiers, D. J. Paterson, S. Murphy, G. Ramm, R. Kirkham, C. G. Ryan, and M. D. de Jonge, “Visualising coordination chemistry: fluorescence X-ray absorption near edge structure tomography,” Chem. Commun. 52, 11834–11837 (2016).
[Crossref]

Chem. Sci. (1)

S. A. James, B. R. Roberts, D. J. Hare, M. D. de Jonge, I. E. Birchall, N. L. Jenkins, R. A. Cherny, A. I. Bush, and G. McColl, “Direct in vivo imaging of ferrous iron dyshomeostasis in ageing Caenorhabditis elegans,” Chem. Sci. 6, 2952–2962 (2015).
[Crossref] [PubMed]

Curr. Opin. Struct. Biol. (1)

M. D. de Jonge and S. Vogt, “Hard X-ray fluorescence tomography - an emerging tool for structural visualization,” Curr. Opin. Struct. Biol. 20, 606–614 (2010).
[Crossref] [PubMed]

IEEE Trans. Nucl. Sci. (2)

J. P. Hogan, R. A. Gonsalves, and A. S. Krieger, “Fluorescent computer tomography: a model for correction of x-ray absorption,” IEEE Trans. Nucl. Sci. 38, 1721–1727 (1991).
[Crossref]

P. La Rivière, P. Vargas, M. Newville, and S. Sutton, “Reduced-scan schemes for x-ray fluorescence computed tomography,” IEEE Trans. Nucl. Sci. 54, 1535–1542 (2007).
[Crossref]

J. Appl. Phys. (1)

Z. Levine, A. Kalukin, M. Kuhn, S. Frigo, I. McNulty, C. Retsch, Y. Wang, U. Arp, T. Lucatorto, B. Ravel, and C. Tarrio, “Tomography of integrated circuit interconnect with an electromigration void,” J. Appl. Phys. 87, 4483–4488 (2000).
[Crossref]

J. Microsc. (1)

W. Saxton and W. Baumeister, “The correlation averaging of a regularly arranged bacterial cell envelope protein,” J. Microsc. 127, 127–138 (1982).
[Crossref] [PubMed]

J. Synchrotron Radiat. (2)

M. D. de Jonge, C. G. Ryan, and C. J. Jacobsen, “X-ray nanoprobes and diffraction-limited storage rings: opportunities and challenges of fluorescence tomography of biological specimens,” J. Synchrotron Radiat. 21, 1031–1047 (2014).
[Crossref] [PubMed]

A. Kilcoyne, T. Tyliszczak, W. Steele, S. Fakra, P. Hitchcock, K. Franck, E. Anderson, B. Harteneck, E. Rightor, G. Mitchell, A. Hitchcock, L. Yang, T. Warwick, and H. Ade, “Interferometer-controlled scanning transmission x-ray microscopes at the Advanced Light Source,” J. Synchrotron Radiat. 10, 125–136 (2003).
[Crossref] [PubMed]

Med. Phys. (1)

A. Kingston, A. Sakellariou, T. Varslot, G. Myers, and A. Shepherd, “Reliable automatic alignment of tomographic projection data by passive auto-focus,” Med. Phys. 38, 4934–4945 (2011).
[Crossref] [PubMed]

Metallomics (1)

S. A. James, M. D. de Jonge, D. L. Howard, A. I. Bush, D. Paterson, and G. McColl, “Direct in vivo imaging of essential bioinorganics in caenorhabditis elegans,” Metallomics 5, 627 (2013).
[Crossref] [PubMed]

Nucl. Instr. Meth. Phys. Res. A (1)

C. G. Ryan, R. Kirkham, R. M. Hough, G. Moorhead, D. P. Siddons, M. D. de Jonge, D. J. Paterson, G. De Geronimo, D. L. Howard, and J. S. Cleverley, “Elemental x-ray imaging using the Maia detector array: The benefits and challenges of large solid-angle,” Nucl. Instr. Meth. Phys. Res. A 619, 37–43 (2010).
[Crossref]

PLOS ONE (1)

G. McColl, S. A. James, S. Mayo, D. L. Howard, C. G. Ryan, R. Kirkham, G. F. Moorhead, D. Paterson, M. D. de Jonge, and A. I. Bush, “Caenorhabditis elegans maintains highly compartmentalized cellular distribution of metals and steep concentration gradients of manganese,” PLOS ONE 7, e32685 (2012).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

M. D. de Jonge, C. Holzner, S. B. Baines, B. S. Twining, K. Ignatyev, J. Diaz, D. L. Howard, D. Legnini, A. Miceli, I. McNulty, C. Jacobsen, and S. Vogt, “Quantitative 3D elemental microtomography of cyclotella meneghiniana at 400-nm resolutions,” Proc. Natl. Acad. Sci. U.S.A. 107, 15676–15680 (2010).
[Crossref]

Proc. SPIE (3)

G. Myers, S. Latham, A. Kingston, J. Kolomanzik, V. Krajicek, T. Krupka, T. Varslot, and A. Sheppard, “High cone-angle x-ray computed micro-tomography with 186 gigavoxel datasets,” Proc. SPIE 9967, 99670U (2016).
[Crossref]

I. McNulty, “Current and ultimate limitations of scanning x-ray nanotomography,” Proc. SPIE 4499, 23–28 (2001).
[Crossref]

I. McNulty, S. P. Frigo, C. C. Retsch, Y. Wang, Y. Feng, Y. Qian, E. M. Trakhtenberg, B. Tieman, B.-C. Cha, K. Goetze, and T. Mooney, “Design and performance of the 2-id-b scanning x-ray microscope,” Proc. SPIE 199867–74 (1998).
[Crossref]

Proceedings of the Royal Society of London A (1)

R. A. Crowther, D. J. DeRosier, and A. Klug, “The reconstruction of a three-dimensional structure from projections and its application to electron microscopy,” Proceedings of the Royal Society of London A 317, 319–340 (1970).
[Crossref]

Ultramicroscopy (1)

J. Dengler, “A multi-resolution approach to the 3D reconstruction from an electron microscope tilt series solving the alignment problem without gold particles,” Ultramicroscopy 30, 337–348 (1989).
[Crossref]

Z. Naturforsch. (1)

R. Hegerl and W. Hoppe, “Influence of electron noise on three-dimensional image reconstruction,” Z. Naturforsch. 31, 1717–1721 (1976).

Other (6)

http://www.deltatau.com (accessed June 2017).

R. Kirkham, P. A. Dunn, A. J. Kuczewski, D. P. Siddons, R. Dodanwela, G. F. Moorhead, C. G. Ryan, G. De Geronimo, R. Beuttenmuller, D. Pinelli, M. Pfeffer, P. Davey, M. Jensen, D. J. Paterson, M. D. de Jonge, D. L. Howard, M. Küsel, and J. McKinlay, “The Maia spectroscopy detector system: Engineering for integrated pulse capture, low-latency scanning and real-time processing,” in “The 10th International Conference on Synchrotron Radiation Instrumentation,” R. Garrett, I. Gentle, K. Nugent, and S. Wilkins, eds. (AIP Conf. Proc., 2010), vol. 1234, pp. 240–243.

http://www.xia.com/FalconX.html (accessed June 2017).

http://quantumdetectors.com (accessed June 2017).

M. van Heel, W. Keegstra, W. Schutter, and E. Van Bruggen, “Arthropod hemocyanin structures studied by image analysis,” in “Life Chemistry Reports Supplement 1: The Structure and Function of Invertebrate Respiratory Proteins,” E. Wood, ed. (Leeds, 1982), pp. 69–73.

A. C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging (IEEE Press, New York, 1988).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Loci of specimen motion in single-slice scanning tomography. The grids represent the encoder or pixel boundaries and the red lines indicate the specimen loci. (a) ‘Slice’ tomography, employing traditional ‘rotation-series’ addressing via traverse-and-rotate. Overheads are incurred at the beginning and end of each distinct motion due to the need to accelerate inertial bodies. (b) ‘Spiral’ tomography. The specimen rotates and traverses continuously, with the traverse achieving one resolution element per rotation. Acceleration occurs only at the beginning and end of the scan. The discontinuities seen at the left and right of the spiral scan locus are the 0° to 360° step discontinuity in angle, and are managed by employing modulo arithmetic in the pixel counter.
Fig. 2
Fig. 2 Two-dimensional (projected) map of Mn, K, and Cu (RGB) in C. elegans. Scalebar: 100 µm.
Fig. 3
Fig. 3 Spiral sinogram of the C. elegans specimen shown in Fig. 2, indicating the distributions of Ca, K, and Cu (RGB). The measurement was recorded with a gearing of 1 µm/rev, an angular velocity of 1 rev/s, and at an angular resolution of 4,625 steps/rev. The image presented here comprises 250 pixels across the specimen (vertical as displayed) and 4,625 in the rotation direction (horizontal as displayed). At this angular velocity and degree of fractionation, the pixel transit time is 1/4,625 s ≈ 216 µs. The sequence of the data acquisition was as per Fig. 1(b), starting from the lower left of this image, heading right (fast rotational axis), across the image until the right-edge is reached, whereupon the angular coordinate wraps to the left-hand side of the image. This angular wrapping was introduced into the data by effecting a modulo counter in the Maia detector system [10], so that the angular pixel modulo 4,625 was reported in the data-stream. The spatial traversal pixel increment (vertical direction in this image) occurs when the relevant encoder pulse is received by the Maia detector system.
Fig. 4
Fig. 4 Left-to-right: distributions of K, Cu, Zn in a single plane of C. elegans, as recorded using the ‘slice’ addressing modality. The linear scan covered 71 µm, and was measured at 221 unique angular orientations. The frequent, sudden positioning errors, of order 2–4 µm in size, are easily seen as discontinuities in the sinogram, but significant low-frequency distortions are also present. Both effects are the result of eccentricity in the rotation stage.
Fig. 5
Fig. 5 Horizontal specimen alignment correction for the spiral and slice measurement modalities, estimated using the reprojection alignment method [18].
Fig. 6
Fig. 6 Left-to-right, top-to-bottom: distributions of K, Ca, Mn, Fe, Cu, and Zn, the mass-density determined from the Compton scatter signal, and the absorption-contrast signal in C. elegans, as reconstructed from measurements made using the spiral addressing modality.
Fig. 7
Fig. 7 Tomograms generated by standard filtered back-projection from the potassium and Compton scatter signals from the slice (leftmost panels, respectively), and spiral (rightmost panels, respectively) measurement modalities. Slice data was acquired over a different region of the C. elegans and has a smaller field-of-view (FOV); the spiral tomogram has been cropped to present the two at comparable FOV (64µm) and pixel size (1µm). The structural similarity of the potassium and Compton scatter signals indicates that they might be used as independent inputs for the Fourier Ring Correlation resolution measure.
Fig. 8
Fig. 8 Fourier Ring Correlation (FRC) analysis for reconstructions derived from (a) the potassium (K) and Compton data, and from reconstructions derived from the odd and even angular increments from the potassium (K1-K2) and Compton scatter (C1-C2) data. In order to evaluate the spiral addressing modality, we present also the FRC analysis of data acquired in the slice measurement modality, which shows considerably improved resolution over the spiral scheme. Three commonly-used resolution estimates are presented, being the 1-bit information threshold, the 1/2-bit information threshold, and the 2σ information limit. Numerical estimates presented in this article use the 1/2-bit threshold.
Fig. 9
Fig. 9 Fourier Ring Correlation (FRC) analysis as per Figure 8, but here evaluated directly from the un-processed sinogram data using Eq. (7). The number of sinogram rows (i.e., projection angles) was binned down to approximately π/2 times the number of measurements per row.
Fig. 10
Fig. 10 Spiral sinogram of the C. elegans specimen indicating the distributions of Ca, K, and Compton scatter (RGB). Measurement parameters were similar to Fig. 3. This figure has been thresholded so as to emphasise the pixels that were not addressed by the scanning stages, particularly noticeable in the Compton scatter image. The image is 550 µm high and 360° wide.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

T = n θ [ n x ( D + t x ) + t θ ] = π 2 n x [ n x ( D + t x ) + t θ ] ,
T = π 2 n x ( n x D + t θ ) ,
G ( k x ) = d x g ( x ) exp ( i 2 π k x x ) ,
FRC ( ω ) = | R | = ω F 1 ( R ) F 2 * ( R ) | R | = ω | F 1 ( R ) | 2 | R | = ω | F 2 ( R ) | 2 ,
g θ ( ρ ) = d x d y f ( x , y ) δ ( ρ x cos θ y sin θ ) ,
G θ ( k ρ ) = d ρ g θ ( ρ ) exp ( i 2 π k ρ ρ ) = d x d y d ρ f ( x , y ) δ ( ρ x cos θ y sin θ ) exp ( i 2 π k ρ ρ ) = d x d y f ( x , y ) exp [ i 2 π k ρ ( x cos θ + y sin θ ) ] = F ( k ρ cos θ , k ρ sin θ )
FRC ( ω ) = | R | = ω G 1 θ ( k ρ ) G 2 θ * ( k ρ ) | R | = ω | G 1 θ ( k ρ ) | 2 | R | = ω | G 2 θ ( k ρ ) | 2 .

Metrics