Abstract

An analytical model is presented firstly in this paper to formulate the link bandwidth of non-line-of-sight (NLOS) ultraviolet (UV) channel. The link bandwidth is characterized by three geometrical parameters including transmitter (Tx) elevation angle, receiver (Rx) field of view (FOV), and transceiver separation distance, and further expressed as a closed-form through software-aided numerical fitting. Comparison with the link bandwidth obtained via a Monte Carlo model is done to verify the feasibility of this model. Based on this model, we investigate the diversity reception on the NLOS UV communication from a new perspective. A spatially squared distributed Rx array is customized for the NLOS UV channel. Lower temporal broadening is enabled, leading to a higher link bandwidth. Numerical results suggest that over 100% improvement of the link bandwidth is predicted by the square array reception and the ratio grows rapidly with the narrowing of Tx beam divergence. Therefore, this paper provides a guide for link analysis and receiver design for NLOS UV communication.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Study of effects of obstacle on non-line-of-sight ultraviolet communication links

Hailiang Zhang, Hongwei Yin, Honghui Jia, Juncai Yang, and Shengli Chang
Opt. Express 19(22) 21216-21226 (2011)

Experimental demonstration of ultraviolet pulse broadening in short-range non-line-of-sight communication channels

Gang Chen, Zhengyuan Xu, and Brian M. Sadler
Opt. Express 18(10) 10500-10509 (2010)

Analytical model of non-line-of-sight single-scatter propagation

Hongwei Yin, Shengli Chang, Xiaofeng Wang, Jiankun Yang, Juncai Yang, and Jichun Tan
J. Opt. Soc. Am. A 27(7) 1505-1509 (2010)

References

  • View by:
  • |
  • |
  • |

  1. Z. Xu and B. M. Sadler, “Ultraviolet communications: potential and state-of-the-Art,” IEEE Commun. Mag. 46(5), 67–73 (2008).
    [Crossref]
  2. X. Zhang, Y. Tang, H. Huang, L. Zhang, and T. Bai, “Design of an omnidirectional optical antenna for ultraviolet communication,” Appl. Opt. 53(15), 3225–3232 (2014).
    [Crossref] [PubMed]
  3. H. Qin, Y. Zuo, D. Zhang, Y. Li, and J. Wu, “Received response based heuristic LDPC code for short-range non-line-of-sight ultraviolet communication,” Opt. Express 25(5), 5018–5030 (2017).
    [Crossref] [PubMed]
  4. Q. He, B. M. Sadler, and Z. Xu, “Modulation and coding tradeoffs for non-line-of-sight ultraviolet communications,” Proc. SPIE 7464, 74640H (2009).
    [Crossref]
  5. G. Chen, Z. Xu, and B. M. Sadler, “Experimental demonstration of ultraviolet pulse broadening in short-range non-line-of-sight communication channels,” Opt. Express 18(10), 10500–10509 (2010).
    [Crossref] [PubMed]
  6. Q. He, Z. Xu, and B. M. Sadler, “Performance of short-range non-line-of-sight LED-based ultraviolet communication receivers,” Opt. Express 18(12), 12226–12238 (2010).
    [Crossref] [PubMed]
  7. Z. Xu, H. Ding, B. M. Sadler, and G. Chen, “Analytical performance study of solar blind non-line-of-sight ultraviolet short-range communication links,” Opt. Lett. 33(16), 1860–1862 (2008).
    [Crossref] [PubMed]
  8. L. Wang, Z. Xu, and B. M. Sadler, “An approximate closed-form link loss model for non-line-of-sight ultraviolet communication in noncoplanar geometry,” Opt. Lett. 36(7), 1224–1226 (2011).
    [Crossref] [PubMed]
  9. Y. Zuo, H. Xiao, J. Wu, Y. Li, and J. Lin, “A single-scatter path loss model for non-line-of-sight ultraviolet channels,” Opt. Express 20(9), 10359–10369 (2012).
    [Crossref] [PubMed]
  10. Y. Zuo, H. Xiao, J. Wu, W. Li, and J. Lin, “Closed-form path loss model of non-line-of-sight ultraviolet single-scatter propagation,” Opt. Lett. 38(12), 2116–2118 (2013).
    [Crossref] [PubMed]
  11. P. Luo, M. Zhang, D. Han, and Q. Li, “Performance analysis of short-range NLOS UV communication system using Monte Carlo simulation based on measured channel parameters,” Opt. Express 20(21), 23489–23501 (2012).
    [Crossref] [PubMed]
  12. H. Ding, G. Chen, A. K. Majumdar, B. M. Sadler, and Z. Xu, “Modeling of non-line-of-sight ultraviolet scattering channels for communication,” IEEE J. Sel. Areas Commun. 27(9), 1535–1544 (2009).
    [Crossref]
  13. H. Ding, G. Chen, Z. Xu, and B. M. Sadler, “Channel modeling and performance of non-line-of-sight ultraviolet scattering communication,” IET Commun. 6(5), 514–524 (2012).
    [Crossref]
  14. Y. Sun and Y. Zhan, “Closed-form impulse response model of non-line-of-sight single-scatter propagation,” J. Opt. Soc. Am. A 33(4), 752–757 (2016).
    [Crossref] [PubMed]
  15. M. A. El-Shimy and S. Hranilovic, “Binary-Input Non-Line-of-Sight Solar-Blind UV Channels: Modeling, Capacity and Coding,” J. Opt. Commun. Netw. 4(12), 1008–1017 (2012).
    [Crossref]
  16. A. Vavoulas, H. G. Sandalidis, and D. Varoutas, “Node Isolation Probability for Serial Ultraviolet UV-C Multi-hop Networks,” J. Opt. Commun. Netw. 3(9), 750–757 (2011).
    [Crossref]
  17. G. Huang, Y. Tang, G. Ni, H. Huang, and X. Zhang, “Application of MIMO technology in ultraviolet communication,” Proc. SPIE 9043, 237–244 (2013).
  18. C. Gong and Z. Xu, “LMMSE SIMO receiver for short-range non-line-of-sight scattering communication,” IEEE Trans. Wirel. Commun. 14(10), 5338–5349 (2015).
    [Crossref]
  19. M. A. El-Shimy and S. Hranilovic, “Spatial-Diversity Imaging Receivers for Non-Line-of-Sight Solar-Blind UV Communications,” J. Lightwave Technol. 33(11), 2246–2255 (2015).
    [Crossref]
  20. N. L. Johnson, S. Kotz, and N. Balakrishnan, Continuous Univariate Distributions-2 (NJ: John Wiley & Sons, 1995).
  21. Q. He, Z. Xu, and B. M. Sadler, “Performance of short-range non-line-of-sight LED-based ultraviolet communication receivers,” Opt. Express 18(12), 12226–12238 (2010).
    [Crossref] [PubMed]
  22. C. Gong, B. Huang, and Z. Xu, “Correlation and outage probability of NLOS SIMO optical wireless scattering communication channels under turbulence,” J. Opt. Commun. Netw. 8(12), 928–937 (2016).
    [Crossref]

2017 (1)

2016 (2)

2015 (2)

C. Gong and Z. Xu, “LMMSE SIMO receiver for short-range non-line-of-sight scattering communication,” IEEE Trans. Wirel. Commun. 14(10), 5338–5349 (2015).
[Crossref]

M. A. El-Shimy and S. Hranilovic, “Spatial-Diversity Imaging Receivers for Non-Line-of-Sight Solar-Blind UV Communications,” J. Lightwave Technol. 33(11), 2246–2255 (2015).
[Crossref]

2014 (1)

2013 (2)

G. Huang, Y. Tang, G. Ni, H. Huang, and X. Zhang, “Application of MIMO technology in ultraviolet communication,” Proc. SPIE 9043, 237–244 (2013).

Y. Zuo, H. Xiao, J. Wu, W. Li, and J. Lin, “Closed-form path loss model of non-line-of-sight ultraviolet single-scatter propagation,” Opt. Lett. 38(12), 2116–2118 (2013).
[Crossref] [PubMed]

2012 (4)

2011 (2)

2010 (3)

2009 (2)

Q. He, B. M. Sadler, and Z. Xu, “Modulation and coding tradeoffs for non-line-of-sight ultraviolet communications,” Proc. SPIE 7464, 74640H (2009).
[Crossref]

H. Ding, G. Chen, A. K. Majumdar, B. M. Sadler, and Z. Xu, “Modeling of non-line-of-sight ultraviolet scattering channels for communication,” IEEE J. Sel. Areas Commun. 27(9), 1535–1544 (2009).
[Crossref]

2008 (2)

Bai, T.

Chen, G.

H. Ding, G. Chen, Z. Xu, and B. M. Sadler, “Channel modeling and performance of non-line-of-sight ultraviolet scattering communication,” IET Commun. 6(5), 514–524 (2012).
[Crossref]

G. Chen, Z. Xu, and B. M. Sadler, “Experimental demonstration of ultraviolet pulse broadening in short-range non-line-of-sight communication channels,” Opt. Express 18(10), 10500–10509 (2010).
[Crossref] [PubMed]

H. Ding, G. Chen, A. K. Majumdar, B. M. Sadler, and Z. Xu, “Modeling of non-line-of-sight ultraviolet scattering channels for communication,” IEEE J. Sel. Areas Commun. 27(9), 1535–1544 (2009).
[Crossref]

Z. Xu, H. Ding, B. M. Sadler, and G. Chen, “Analytical performance study of solar blind non-line-of-sight ultraviolet short-range communication links,” Opt. Lett. 33(16), 1860–1862 (2008).
[Crossref] [PubMed]

Ding, H.

H. Ding, G. Chen, Z. Xu, and B. M. Sadler, “Channel modeling and performance of non-line-of-sight ultraviolet scattering communication,” IET Commun. 6(5), 514–524 (2012).
[Crossref]

H. Ding, G. Chen, A. K. Majumdar, B. M. Sadler, and Z. Xu, “Modeling of non-line-of-sight ultraviolet scattering channels for communication,” IEEE J. Sel. Areas Commun. 27(9), 1535–1544 (2009).
[Crossref]

Z. Xu, H. Ding, B. M. Sadler, and G. Chen, “Analytical performance study of solar blind non-line-of-sight ultraviolet short-range communication links,” Opt. Lett. 33(16), 1860–1862 (2008).
[Crossref] [PubMed]

El-Shimy, M. A.

Gong, C.

C. Gong, B. Huang, and Z. Xu, “Correlation and outage probability of NLOS SIMO optical wireless scattering communication channels under turbulence,” J. Opt. Commun. Netw. 8(12), 928–937 (2016).
[Crossref]

C. Gong and Z. Xu, “LMMSE SIMO receiver for short-range non-line-of-sight scattering communication,” IEEE Trans. Wirel. Commun. 14(10), 5338–5349 (2015).
[Crossref]

Han, D.

He, Q.

Hranilovic, S.

Huang, B.

Huang, G.

G. Huang, Y. Tang, G. Ni, H. Huang, and X. Zhang, “Application of MIMO technology in ultraviolet communication,” Proc. SPIE 9043, 237–244 (2013).

Huang, H.

X. Zhang, Y. Tang, H. Huang, L. Zhang, and T. Bai, “Design of an omnidirectional optical antenna for ultraviolet communication,” Appl. Opt. 53(15), 3225–3232 (2014).
[Crossref] [PubMed]

G. Huang, Y. Tang, G. Ni, H. Huang, and X. Zhang, “Application of MIMO technology in ultraviolet communication,” Proc. SPIE 9043, 237–244 (2013).

Li, Q.

Li, W.

Li, Y.

Lin, J.

Luo, P.

Majumdar, A. K.

H. Ding, G. Chen, A. K. Majumdar, B. M. Sadler, and Z. Xu, “Modeling of non-line-of-sight ultraviolet scattering channels for communication,” IEEE J. Sel. Areas Commun. 27(9), 1535–1544 (2009).
[Crossref]

Ni, G.

G. Huang, Y. Tang, G. Ni, H. Huang, and X. Zhang, “Application of MIMO technology in ultraviolet communication,” Proc. SPIE 9043, 237–244 (2013).

Qin, H.

Sadler, B. M.

H. Ding, G. Chen, Z. Xu, and B. M. Sadler, “Channel modeling and performance of non-line-of-sight ultraviolet scattering communication,” IET Commun. 6(5), 514–524 (2012).
[Crossref]

L. Wang, Z. Xu, and B. M. Sadler, “An approximate closed-form link loss model for non-line-of-sight ultraviolet communication in noncoplanar geometry,” Opt. Lett. 36(7), 1224–1226 (2011).
[Crossref] [PubMed]

Q. He, Z. Xu, and B. M. Sadler, “Performance of short-range non-line-of-sight LED-based ultraviolet communication receivers,” Opt. Express 18(12), 12226–12238 (2010).
[Crossref] [PubMed]

Q. He, Z. Xu, and B. M. Sadler, “Performance of short-range non-line-of-sight LED-based ultraviolet communication receivers,” Opt. Express 18(12), 12226–12238 (2010).
[Crossref] [PubMed]

G. Chen, Z. Xu, and B. M. Sadler, “Experimental demonstration of ultraviolet pulse broadening in short-range non-line-of-sight communication channels,” Opt. Express 18(10), 10500–10509 (2010).
[Crossref] [PubMed]

Q. He, B. M. Sadler, and Z. Xu, “Modulation and coding tradeoffs for non-line-of-sight ultraviolet communications,” Proc. SPIE 7464, 74640H (2009).
[Crossref]

H. Ding, G. Chen, A. K. Majumdar, B. M. Sadler, and Z. Xu, “Modeling of non-line-of-sight ultraviolet scattering channels for communication,” IEEE J. Sel. Areas Commun. 27(9), 1535–1544 (2009).
[Crossref]

Z. Xu, H. Ding, B. M. Sadler, and G. Chen, “Analytical performance study of solar blind non-line-of-sight ultraviolet short-range communication links,” Opt. Lett. 33(16), 1860–1862 (2008).
[Crossref] [PubMed]

Z. Xu and B. M. Sadler, “Ultraviolet communications: potential and state-of-the-Art,” IEEE Commun. Mag. 46(5), 67–73 (2008).
[Crossref]

Sandalidis, H. G.

Sun, Y.

Tang, Y.

X. Zhang, Y. Tang, H. Huang, L. Zhang, and T. Bai, “Design of an omnidirectional optical antenna for ultraviolet communication,” Appl. Opt. 53(15), 3225–3232 (2014).
[Crossref] [PubMed]

G. Huang, Y. Tang, G. Ni, H. Huang, and X. Zhang, “Application of MIMO technology in ultraviolet communication,” Proc. SPIE 9043, 237–244 (2013).

Varoutas, D.

Vavoulas, A.

Wang, L.

Wu, J.

Xiao, H.

Xu, Z.

C. Gong, B. Huang, and Z. Xu, “Correlation and outage probability of NLOS SIMO optical wireless scattering communication channels under turbulence,” J. Opt. Commun. Netw. 8(12), 928–937 (2016).
[Crossref]

C. Gong and Z. Xu, “LMMSE SIMO receiver for short-range non-line-of-sight scattering communication,” IEEE Trans. Wirel. Commun. 14(10), 5338–5349 (2015).
[Crossref]

H. Ding, G. Chen, Z. Xu, and B. M. Sadler, “Channel modeling and performance of non-line-of-sight ultraviolet scattering communication,” IET Commun. 6(5), 514–524 (2012).
[Crossref]

L. Wang, Z. Xu, and B. M. Sadler, “An approximate closed-form link loss model for non-line-of-sight ultraviolet communication in noncoplanar geometry,” Opt. Lett. 36(7), 1224–1226 (2011).
[Crossref] [PubMed]

Q. He, Z. Xu, and B. M. Sadler, “Performance of short-range non-line-of-sight LED-based ultraviolet communication receivers,” Opt. Express 18(12), 12226–12238 (2010).
[Crossref] [PubMed]

Q. He, Z. Xu, and B. M. Sadler, “Performance of short-range non-line-of-sight LED-based ultraviolet communication receivers,” Opt. Express 18(12), 12226–12238 (2010).
[Crossref] [PubMed]

G. Chen, Z. Xu, and B. M. Sadler, “Experimental demonstration of ultraviolet pulse broadening in short-range non-line-of-sight communication channels,” Opt. Express 18(10), 10500–10509 (2010).
[Crossref] [PubMed]

Q. He, B. M. Sadler, and Z. Xu, “Modulation and coding tradeoffs for non-line-of-sight ultraviolet communications,” Proc. SPIE 7464, 74640H (2009).
[Crossref]

H. Ding, G. Chen, A. K. Majumdar, B. M. Sadler, and Z. Xu, “Modeling of non-line-of-sight ultraviolet scattering channels for communication,” IEEE J. Sel. Areas Commun. 27(9), 1535–1544 (2009).
[Crossref]

Z. Xu and B. M. Sadler, “Ultraviolet communications: potential and state-of-the-Art,” IEEE Commun. Mag. 46(5), 67–73 (2008).
[Crossref]

Z. Xu, H. Ding, B. M. Sadler, and G. Chen, “Analytical performance study of solar blind non-line-of-sight ultraviolet short-range communication links,” Opt. Lett. 33(16), 1860–1862 (2008).
[Crossref] [PubMed]

Zhan, Y.

Zhang, D.

Zhang, L.

Zhang, M.

Zhang, X.

X. Zhang, Y. Tang, H. Huang, L. Zhang, and T. Bai, “Design of an omnidirectional optical antenna for ultraviolet communication,” Appl. Opt. 53(15), 3225–3232 (2014).
[Crossref] [PubMed]

G. Huang, Y. Tang, G. Ni, H. Huang, and X. Zhang, “Application of MIMO technology in ultraviolet communication,” Proc. SPIE 9043, 237–244 (2013).

Zuo, Y.

Appl. Opt. (1)

IEEE Commun. Mag. (1)

Z. Xu and B. M. Sadler, “Ultraviolet communications: potential and state-of-the-Art,” IEEE Commun. Mag. 46(5), 67–73 (2008).
[Crossref]

IEEE J. Sel. Areas Commun. (1)

H. Ding, G. Chen, A. K. Majumdar, B. M. Sadler, and Z. Xu, “Modeling of non-line-of-sight ultraviolet scattering channels for communication,” IEEE J. Sel. Areas Commun. 27(9), 1535–1544 (2009).
[Crossref]

IEEE Trans. Wirel. Commun. (1)

C. Gong and Z. Xu, “LMMSE SIMO receiver for short-range non-line-of-sight scattering communication,” IEEE Trans. Wirel. Commun. 14(10), 5338–5349 (2015).
[Crossref]

IET Commun. (1)

H. Ding, G. Chen, Z. Xu, and B. M. Sadler, “Channel modeling and performance of non-line-of-sight ultraviolet scattering communication,” IET Commun. 6(5), 514–524 (2012).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. Commun. Netw. (3)

J. Opt. Soc. Am. A (1)

Opt. Express (6)

Opt. Lett. (3)

Proc. SPIE (2)

G. Huang, Y. Tang, G. Ni, H. Huang, and X. Zhang, “Application of MIMO technology in ultraviolet communication,” Proc. SPIE 9043, 237–244 (2013).

Q. He, B. M. Sadler, and Z. Xu, “Modulation and coding tradeoffs for non-line-of-sight ultraviolet communications,” Proc. SPIE 7464, 74640H (2009).
[Crossref]

Other (1)

N. L. Johnson, S. Kotz, and N. Balakrishnan, Continuous Univariate Distributions-2 (NJ: John Wiley & Sons, 1995).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Schematic drawing of the short-range NLOS UV communication system geometry. Rx (PMT) is placed at distance r from the Tx (LED). Each photon escapes from the LED Tx to the PMT Rx across a random scattered path. The scattered propagation path is marked by the green dashed line for an example. Three geometry parameters: Tx/Rx distance r, Tx elevation angle θT, Rx FOV βR are focused on in the model as shown by the three cases, where θT, βR and r’ denote the corresponding changes in these three parameters. The red solid lines denote the scattered path of the first photon and last photon arriving at the Rx by time tmin and tmsx. The time domain impulse response width is defined by Td = tmax-tmin.
Fig. 2
Fig. 2 Lists of coefficient a and b in the expression of Bc = aTd-b. θT is selected at 30°, 45°, 60°. Different ranges of βR [0°~5°], [5°~10°], [15°~25°], [25°~35°], [35°~45°] are measured.
Fig. 3
Fig. 3 The atmospheric and geometric parameters used in Monte Carlo method
Fig. 4
Fig. 4 Demonstration of the simulated impulse responses and comparison with the results by numerical fitting. In our simulations, θT is 30° and 45°, βR is 30° and 45°, r = 100m. Gamma, chi-square and MC denote the Gamma functional fitting, non-central chi-square distribution functional fitting and Monte Carlo method.
Fig. 5
Fig. 5 Comparison of the link bandwidth by the analytical model and Monte Carlo method. βR = 30°, 45° and θT = 30°, 45°. r ranges from 20m to 100m. MSER is given to indicate the accuracy of the numerical functional approximation.
Fig. 6
Fig. 6 Schematic drawing of the square array receiver where N × N Rx are distributed by a matrix structure. βR(1) and βR(N) denotes the FOV of a single Rx and each Rx in the square array receiver. L denotes the path loss. d is the Rx spacing of the multiple output receiver. dr is the projected width of the diffusing Tx beam at the receiver side. d is chose as 1~10cm in this receiver design.
Fig. 7
Fig. 7 Demonstration of the link bandwidth of NLOS UV channel using the square array receiver with size N × N. N = 1 represents the single Rx situation. In out simulations, βR = 30° and 45°, r = 60m and 100m. Comparison of the link bandwidth is done by different N to evaluate the performance of square array reception.
Fig. 8
Fig. 8 Results of the link bandwidth of NLOS UV channel using square array reception when βT = 10° and 5°. Compared with the cases when βT = 17° as listed in the above Fig. 7, better performance of the square array reception is found.

Equations (21)

Equations on this page are rendered with MathJax. Learn more.

B c 1/( t max t min ),
t min =[ d min sin( θ T β T /2) + d min cos( β R /2) ]/c,
t max =[ d max sin( θ T + β T /2) + d max cos( β R /2) ]/c.
t max = r c [ 1 cos( θ T + β T /2)tan( β R /2)sin( θ T + β T /2) + 1 cot( θ T + β T /2)cos( β R /2)sin( β R /2) ],
t min = r c [ 1 cos( θ T β T /2)+tan( β R /2)sin( θ T β T /2) + 1 cot( θ T β T /2)cos( β R /2)+sin( β R /2) ].
T d = r c [ F 1 ( θ T , β R )+ F 2 ( θ T , β R ) ],
F 1 ( θ T , β R )= 1 cos( θ T + β T /2)tan( β R /2)sin( θ T + β T /2) 1 cos( θ T β T /2)+tan( β R /2)sin( θ T β T /2) ,
F 2 ( θ T , β R )= 1 cot( θ T + β T /2)cos( β R /2)sin( β R /2) 1 cot( θ T β T /2)cos( β R /2)+sin( β R /2) .
F 1 ( θ T , β R )= 2tan β R 2 sin θ T cos 2 θ T tan 2 β R 2 sin 2 θ T ,
F 2 ( θ T , β R )= 2sin β R 2 cos 2 θ T cos 2 β R 2 sin 2 β R 2 .
f(t,β,α)= P 0 β α Γ(α) t α1 e βx ,t>0,
E(t)= 1 H i τ [ H i τ( t min +iτ) ] ,
Var(t)= 1 H i τ [ H i τ ( t min +iτE(t)) 2 ] .
p(t)= 1 2 e (t+λ)/2 ( x λ ) k/41/2 I k/21 ( λt ),
B c =a T d b ,
B c =a [ r c ( F 1 ( θ T , β R )+ F 2 ( θ T , β R )) ] b ,
MSER= 1 num( B c ) [ m( B c ) B c B c ] 2 ,
SNR= j=0 P k (j/ λ s ) j ( ζAe ) 2 +(2 k e T o / R L ) T p ,
L 1 β R (12+ β R 2 sin θ T ) .
1 β R (N)[12+ β R 2 (N)sin θ T ] = N 2 β R (1)[12+ β R 2 (1)sin θ T ] .
β R (N)= β R (1) N 2 .

Metrics