Abstract

In this paper, a novel quasi-fan Solc structure filter based on elliptical-core spun fiber for twist sensing has been experimentally investigated and theoretically analyzed. The discrete model of spun fiber has been built to analyze the transmission characteristics of proposed sensor. Both experimental and simulated results indicate that the extinction ratio of the comb spectrum based on quasi-fan Solc birefringent fiber filter varies with twist angle and agrees well with each other. Based on the intensity modulation, the proposed twist sensor exhibits a high sensitivity of 0.02219 dB/(°/m). Moreover, thanks to the invariability of the fiber birefringence and the state of polarization of the input light, the proposed twist sensor has a very low temperature and strain sensitivity, which can avoid the cross-sensitivity problem existing in most twist sensors.

© 2017 Optical Society of America

Full Article  |  PDF Article

Corrections

9 August 2017: A typographical correction was made to the author affiliations.


OSA Recommended Articles
Low-cost temperature- and strain-insensitive twist sensor based on a hybrid fiber grating structure

Xi Guo, Zhikun Xing, Huabao Qin, Qizhen Sun, Hushan Wang, Deming Liu, Lin Zhang, and Zhijun Yan
Appl. Opt. 58(16) 4479-4483 (2019)

Intensity modulated torsion sensor based on optical fiber reflective Lyot filter

Bo Huang, Xuewen Shu, and Yueqing Du
Opt. Express 25(5) 5081-5090 (2017)

Strain independent twist sensor based on uneven platinum coated hollow core fiber structure

Dejun Liu, Qiang Wu, Wei Han, Fangfang Wei, Fengzi Ling, Rahul Kumar, Arun Kumar Mallik, Ke Tian, Changyu Shen, Gerald Farrell, Yuliya Semenova, and Pengfei Wang
Opt. Express 27(14) 19726-19736 (2019)

References

  • View by:
  • |
  • |
  • |

  1. A. Bieńkowski, R. Szewczyk, and J. Salach, “Industrial application of magnetoelastic force and torque sensors,” Acta Phys. Pol. A 118(5), 1008–1009 (2010).
    [Crossref]
  2. D. Tsetserukou, R. Tadakuma, H. Kajimoto, and S. Tachi, “Optical torque sensors for implementation of local impedance control of the arm of humanoid robot,” in Proceedings 2006 IEEE International Conference on Robotics and Automation (IEEE, 2006), pp. 1674–1679.
    [Crossref]
  3. V. Lemarquand, “Synthesis study of magnetic torque sensors,” IEEE Trans. Magn. 35(6), 4503–4510 (1999).
    [Crossref]
  4. D. Vischer and O. Khatib, “Design and development of high-performance torque controlled joints,” IEEE Trans. Robot. Autom. 11(4), 537–544 (1995).
    [Crossref]
  5. P. L. Fulmek, F. Wandling, W. Zdiarsky, G. Brasseur, and S. P. Cermak, “Capacitive sensor for relative angle measurement,” IEEE Trans. Instrum. Meas. 51(6), 1145–1149 (2002).
    [Crossref]
  6. W. Yiping, M. Wang, and X. Huang, “In fiber Bragg grating twist sensor based on analysis of polarization dependent loss,” Opt. Express 21(10), 11913–11920 (2013).
    [Crossref] [PubMed]
  7. J. Wo, M. Jiang, M. Malnou, Q. Sun, J. Zhang, P. P. Shum, and D. Liu, “Twist sensor based on axial strain insensitive distributed Bragg reflector fiber laser,” Opt. Express 20(3), 2844–2850 (2012).
    [Crossref] [PubMed]
  8. C.-Y. Lin, L. A. Wang, and G.-W. Chern, “Corrugated long-period fiber gratings as strain, torsion, and bending sensors,” J. Lightwave Technol. 19(8), 1159–1168 (2001).
    [Crossref]
  9. D. Ceballos-Herrera, I. Torres-Gómez, A. Martinez-Rios, L. García, and J. Sanchez-Mondragon, “Torsion sensing characteristics of mechanically induced long-period holey fiber gratings,” IEEE Sens. J. 10(7), 1200–1205 (2010).
    [Crossref]
  10. R. Gao, Y. Jiang, and L. Jiang, “Multi-phase-shifted helical long period fiber grating based temperature-insensitive optical twist sensor,” Opt. Express 22(13), 15697–15709 (2014).
    [Crossref] [PubMed]
  11. X. Chen, K. Zhou, L. Zhang, and I. Bennion, “In-fiber twist sensor based on a fiber Bragg grating with 81° tilted structure,” IEEE Photonics Technol. Lett. 18(24), 2596–2598 (2006).
    [Crossref]
  12. C. Shen, Y. Zhang, W. Zhou, and J. Albert, “Au-coated tilted fiber Bragg grating twist sensor based on surface plasmon resonance,” Appl. Phys. Lett. 104(7), 071106 (2014).
    [Crossref]
  13. B. Yin, H. Li, S. Feng, Y. Bai, Z. Liu, W. Peng, S. Liu, and S. Jian, “Temperature-independent and strain-independent twist sensor based on structured PM-CFBG,” IEEE Photonics Technol. Lett. 26(15), 1565–1568 (2014).
    [Crossref]
  14. B. Song, H. Zhang, Y. Miao, W. Lin, J. Wu, H. Liu, D. Yan, and B. Liu, “Highly sensitive twist sensor employing Sagnac interferometer based on PM-elliptical core fibers,” Opt. Express 23(12), 15372–15379 (2015).
    [Crossref] [PubMed]
  15. W. Chen, S. Lou, L. Wang, H. Zou, W. Lu, and S. Jian, “Highly sensitive torsion sensor based on Sagnac interferometer using side-leakage photonic crystal fiber,” IEEE Photonics Technol. Lett. 23(21), 1639–1641 (2011).
    [Crossref]
  16. P. Zu, C. C. Chan, Y. Jin, T. Gong, Y. Zhang, L. H. Chen, and X. Dong, “A temperature-insensitive twist sensor by using low-birefringence photonic-crystal-fiber-based Sagnac interferometer,” IEEE Photonics Technol. Lett. 23(13), 920–922 (2011).
    [Crossref]
  17. O. Frazão, S. O. Silva, J. M. Baptista, J. L. Santos, G. Statkiewicz-Barabach, W. Urbanczyk, and J. Wojcik, “Simultaneous measurement of multiparameters using a Sagnac interferometer with polarization maintaining side-hole fiber,” Appl. Opt. 47(27), 4841–4848 (2008).
    [Crossref] [PubMed]
  18. O. Frazão, R. M. Silva, J. Kobelke, and K. Schuster, “Temperature- and strain-independent torsion sensor using a fiber loop mirror based on suspended twin-core fiber,” Opt. Lett. 35(16), 2777–2779 (2010).
    [Crossref] [PubMed]
  19. B. Song, Y. Miao, W. Lin, H. Zhang, J. Wu, and B. Liu, “Multi-mode interferometer-based twist sensor with low temperature sensitivity employing square coreless fibers,” Opt. Express 21(22), 26806–26811 (2013).
    [Crossref] [PubMed]
  20. L. Chen, W.-G. Zhang, L. Wang, H. Zhang, J. Sieg, Q. Zhou, L.-Y. Zhang, B. Wang, and T.-Y. Yan, “In-fiber torsion sensor based on dual polarized Mach-Zehnder interference,” Opt. Express 22(26), 31654–31664 (2014).
    [Crossref] [PubMed]
  21. L. A. Fernandes, J. R. Grenier, J. S. Aitchison, and P. R. Herman, “Fiber optic stress-independent helical torsion sensor,” Opt. Lett. 40(4), 657–660 (2015).
    [Crossref] [PubMed]
  22. Y. Dong, C. Sun, H. Xiao, C. Dong, and S. Jian, “Twist and temperature characteristics of the PD-NSN fiber structure based on in-line Mach-Zehnder interferometer,” Opt. Fiber Technol. 33, 39–44 (2017).
    [Crossref]
  23. V. Budinski and D. Donlagic, “Fiber-optic sensors for measurements of torsion, twist and rotation: a review,” Sensors (Basel) 17(3), 443 (2017).
    [Crossref] [PubMed]
  24. J. W. Evans, “The birefringent filter; a correction,” J. Opt. Soc. Am. 39(5), 412 (1949).
    [Crossref] [PubMed]
  25. I. Solc, “Birefringent chain filters,” J. Opt. Soc. Am. 55(6), 621–625 (1965).
    [Crossref]
  26. J. H. Osório and C. M. Cordeiro, “Optical sensor based on two in-series birefringent optical fibers,” Appl. Opt. 52(20), 4915–4921 (2013).
    [Crossref] [PubMed]
  27. K. Okamoto, J. Noda, and H. Miyazawa, “Fibre-optic Solc filter for use in Raman amplification of light,” Electron. Lett. 21(3), 90–91 (1985).
    [Crossref]
  28. M. Johnson, “Single-mode-fiber birefringent filters,” Opt. Lett. 5(4), 142–144 (1980).
    [Crossref] [PubMed]
  29. S. Li, K. Chiang, and W. Gambling, “Gain flattening of an erbium-doped fiber amplifier using a high-birefringence fiber loop mirror,” IEEE Photonics Technol. Lett. 13(9), 942–944 (2001).
    [Crossref]
  30. Y. Liu, B. Liu, X. Feng, W. Zhang, G. Zhou, S. Yuan, G. Kai, and X. Dong, “High-birefringence fiber loop mirrors and their applications as sensors,” Appl. Opt. 44(12), 2382–2390 (2005).
    [Crossref] [PubMed]
  31. D. Feng and J. Sun, “Optical single sideband modulation based on a high-order birefringent filter using cascaded Solc-Sagnac and Lyot-Sagnac loops,” Opt. Lett. 41(15), 3659–3662 (2016).
    [Crossref] [PubMed]
  32. W. Zhang, G. Kai, X. Dong, S. Yuan, and Q. Zhao, “Temperature-independent FBG-type torsion sensor based on combinatorial torsion beam,” IEEE Photonics Technol. Lett. 14(8), 1154–1156 (2002).
    [Crossref]
  33. C. Sun, S. Ye, and S. Jian, “Solc-Like Tunable Birefringent Fiber Filter Based on Elliptical-Core Spun Fiber,” IEEE Photonics Technol. Lett. 29(12), 1031–1034 (2017).
    [Crossref]
  34. P. Yeh, A. Yariv, and C.-S. Hong, “Electromagnetic propagation in periodic stratified media. I. General theory,” J. Opt. Soc. Am. 67(4), 423–438 (1977).
    [Crossref]
  35. B. Ibarra-Escamilla, E. Kuzin, F. Gutierrez-Zainos, R. Tellez-Garcia, J. Haus, R. Rojas-Laguna, and J. Estudillo-Ayala, “Measurement of beat length in short low-birefringence fibers using the fiber optical loop mirror,” Opt. Commun. 217(1), 211–219 (2003).
    [Crossref]
  36. P. McIntyre and A. W. Snyder, “Light propagation in twisted anisotropic media: application to photoreceptors,” J. Opt. Soc. Am. 68(2), 149–157 (1978).
    [Crossref] [PubMed]
  37. R. Ulrich and A. Simon, “Polarization optics of twisted single-mode fibers,” Appl. Opt. 18(13), 2241–2251 (1979).
    [Crossref] [PubMed]

2017 (3)

Y. Dong, C. Sun, H. Xiao, C. Dong, and S. Jian, “Twist and temperature characteristics of the PD-NSN fiber structure based on in-line Mach-Zehnder interferometer,” Opt. Fiber Technol. 33, 39–44 (2017).
[Crossref]

V. Budinski and D. Donlagic, “Fiber-optic sensors for measurements of torsion, twist and rotation: a review,” Sensors (Basel) 17(3), 443 (2017).
[Crossref] [PubMed]

C. Sun, S. Ye, and S. Jian, “Solc-Like Tunable Birefringent Fiber Filter Based on Elliptical-Core Spun Fiber,” IEEE Photonics Technol. Lett. 29(12), 1031–1034 (2017).
[Crossref]

2016 (1)

2015 (2)

2014 (4)

C. Shen, Y. Zhang, W. Zhou, and J. Albert, “Au-coated tilted fiber Bragg grating twist sensor based on surface plasmon resonance,” Appl. Phys. Lett. 104(7), 071106 (2014).
[Crossref]

B. Yin, H. Li, S. Feng, Y. Bai, Z. Liu, W. Peng, S. Liu, and S. Jian, “Temperature-independent and strain-independent twist sensor based on structured PM-CFBG,” IEEE Photonics Technol. Lett. 26(15), 1565–1568 (2014).
[Crossref]

R. Gao, Y. Jiang, and L. Jiang, “Multi-phase-shifted helical long period fiber grating based temperature-insensitive optical twist sensor,” Opt. Express 22(13), 15697–15709 (2014).
[Crossref] [PubMed]

L. Chen, W.-G. Zhang, L. Wang, H. Zhang, J. Sieg, Q. Zhou, L.-Y. Zhang, B. Wang, and T.-Y. Yan, “In-fiber torsion sensor based on dual polarized Mach-Zehnder interference,” Opt. Express 22(26), 31654–31664 (2014).
[Crossref] [PubMed]

2013 (3)

2012 (1)

2011 (2)

W. Chen, S. Lou, L. Wang, H. Zou, W. Lu, and S. Jian, “Highly sensitive torsion sensor based on Sagnac interferometer using side-leakage photonic crystal fiber,” IEEE Photonics Technol. Lett. 23(21), 1639–1641 (2011).
[Crossref]

P. Zu, C. C. Chan, Y. Jin, T. Gong, Y. Zhang, L. H. Chen, and X. Dong, “A temperature-insensitive twist sensor by using low-birefringence photonic-crystal-fiber-based Sagnac interferometer,” IEEE Photonics Technol. Lett. 23(13), 920–922 (2011).
[Crossref]

2010 (3)

O. Frazão, R. M. Silva, J. Kobelke, and K. Schuster, “Temperature- and strain-independent torsion sensor using a fiber loop mirror based on suspended twin-core fiber,” Opt. Lett. 35(16), 2777–2779 (2010).
[Crossref] [PubMed]

A. Bieńkowski, R. Szewczyk, and J. Salach, “Industrial application of magnetoelastic force and torque sensors,” Acta Phys. Pol. A 118(5), 1008–1009 (2010).
[Crossref]

D. Ceballos-Herrera, I. Torres-Gómez, A. Martinez-Rios, L. García, and J. Sanchez-Mondragon, “Torsion sensing characteristics of mechanically induced long-period holey fiber gratings,” IEEE Sens. J. 10(7), 1200–1205 (2010).
[Crossref]

2008 (1)

2006 (1)

X. Chen, K. Zhou, L. Zhang, and I. Bennion, “In-fiber twist sensor based on a fiber Bragg grating with 81° tilted structure,” IEEE Photonics Technol. Lett. 18(24), 2596–2598 (2006).
[Crossref]

2005 (1)

2003 (1)

B. Ibarra-Escamilla, E. Kuzin, F. Gutierrez-Zainos, R. Tellez-Garcia, J. Haus, R. Rojas-Laguna, and J. Estudillo-Ayala, “Measurement of beat length in short low-birefringence fibers using the fiber optical loop mirror,” Opt. Commun. 217(1), 211–219 (2003).
[Crossref]

2002 (2)

W. Zhang, G. Kai, X. Dong, S. Yuan, and Q. Zhao, “Temperature-independent FBG-type torsion sensor based on combinatorial torsion beam,” IEEE Photonics Technol. Lett. 14(8), 1154–1156 (2002).
[Crossref]

P. L. Fulmek, F. Wandling, W. Zdiarsky, G. Brasseur, and S. P. Cermak, “Capacitive sensor for relative angle measurement,” IEEE Trans. Instrum. Meas. 51(6), 1145–1149 (2002).
[Crossref]

2001 (2)

C.-Y. Lin, L. A. Wang, and G.-W. Chern, “Corrugated long-period fiber gratings as strain, torsion, and bending sensors,” J. Lightwave Technol. 19(8), 1159–1168 (2001).
[Crossref]

S. Li, K. Chiang, and W. Gambling, “Gain flattening of an erbium-doped fiber amplifier using a high-birefringence fiber loop mirror,” IEEE Photonics Technol. Lett. 13(9), 942–944 (2001).
[Crossref]

1999 (1)

V. Lemarquand, “Synthesis study of magnetic torque sensors,” IEEE Trans. Magn. 35(6), 4503–4510 (1999).
[Crossref]

1995 (1)

D. Vischer and O. Khatib, “Design and development of high-performance torque controlled joints,” IEEE Trans. Robot. Autom. 11(4), 537–544 (1995).
[Crossref]

1985 (1)

K. Okamoto, J. Noda, and H. Miyazawa, “Fibre-optic Solc filter for use in Raman amplification of light,” Electron. Lett. 21(3), 90–91 (1985).
[Crossref]

1980 (1)

1979 (1)

1978 (1)

1977 (1)

1965 (1)

1949 (1)

Aitchison, J. S.

Albert, J.

C. Shen, Y. Zhang, W. Zhou, and J. Albert, “Au-coated tilted fiber Bragg grating twist sensor based on surface plasmon resonance,” Appl. Phys. Lett. 104(7), 071106 (2014).
[Crossref]

Bai, Y.

B. Yin, H. Li, S. Feng, Y. Bai, Z. Liu, W. Peng, S. Liu, and S. Jian, “Temperature-independent and strain-independent twist sensor based on structured PM-CFBG,” IEEE Photonics Technol. Lett. 26(15), 1565–1568 (2014).
[Crossref]

Baptista, J. M.

Bennion, I.

X. Chen, K. Zhou, L. Zhang, and I. Bennion, “In-fiber twist sensor based on a fiber Bragg grating with 81° tilted structure,” IEEE Photonics Technol. Lett. 18(24), 2596–2598 (2006).
[Crossref]

Bienkowski, A.

A. Bieńkowski, R. Szewczyk, and J. Salach, “Industrial application of magnetoelastic force and torque sensors,” Acta Phys. Pol. A 118(5), 1008–1009 (2010).
[Crossref]

Brasseur, G.

P. L. Fulmek, F. Wandling, W. Zdiarsky, G. Brasseur, and S. P. Cermak, “Capacitive sensor for relative angle measurement,” IEEE Trans. Instrum. Meas. 51(6), 1145–1149 (2002).
[Crossref]

Budinski, V.

V. Budinski and D. Donlagic, “Fiber-optic sensors for measurements of torsion, twist and rotation: a review,” Sensors (Basel) 17(3), 443 (2017).
[Crossref] [PubMed]

Ceballos-Herrera, D.

D. Ceballos-Herrera, I. Torres-Gómez, A. Martinez-Rios, L. García, and J. Sanchez-Mondragon, “Torsion sensing characteristics of mechanically induced long-period holey fiber gratings,” IEEE Sens. J. 10(7), 1200–1205 (2010).
[Crossref]

Cermak, S. P.

P. L. Fulmek, F. Wandling, W. Zdiarsky, G. Brasseur, and S. P. Cermak, “Capacitive sensor for relative angle measurement,” IEEE Trans. Instrum. Meas. 51(6), 1145–1149 (2002).
[Crossref]

Chan, C. C.

P. Zu, C. C. Chan, Y. Jin, T. Gong, Y. Zhang, L. H. Chen, and X. Dong, “A temperature-insensitive twist sensor by using low-birefringence photonic-crystal-fiber-based Sagnac interferometer,” IEEE Photonics Technol. Lett. 23(13), 920–922 (2011).
[Crossref]

Chen, L.

Chen, L. H.

P. Zu, C. C. Chan, Y. Jin, T. Gong, Y. Zhang, L. H. Chen, and X. Dong, “A temperature-insensitive twist sensor by using low-birefringence photonic-crystal-fiber-based Sagnac interferometer,” IEEE Photonics Technol. Lett. 23(13), 920–922 (2011).
[Crossref]

Chen, W.

W. Chen, S. Lou, L. Wang, H. Zou, W. Lu, and S. Jian, “Highly sensitive torsion sensor based on Sagnac interferometer using side-leakage photonic crystal fiber,” IEEE Photonics Technol. Lett. 23(21), 1639–1641 (2011).
[Crossref]

Chen, X.

X. Chen, K. Zhou, L. Zhang, and I. Bennion, “In-fiber twist sensor based on a fiber Bragg grating with 81° tilted structure,” IEEE Photonics Technol. Lett. 18(24), 2596–2598 (2006).
[Crossref]

Chern, G.-W.

Chiang, K.

S. Li, K. Chiang, and W. Gambling, “Gain flattening of an erbium-doped fiber amplifier using a high-birefringence fiber loop mirror,” IEEE Photonics Technol. Lett. 13(9), 942–944 (2001).
[Crossref]

Cordeiro, C. M.

Dong, C.

Y. Dong, C. Sun, H. Xiao, C. Dong, and S. Jian, “Twist and temperature characteristics of the PD-NSN fiber structure based on in-line Mach-Zehnder interferometer,” Opt. Fiber Technol. 33, 39–44 (2017).
[Crossref]

Dong, X.

P. Zu, C. C. Chan, Y. Jin, T. Gong, Y. Zhang, L. H. Chen, and X. Dong, “A temperature-insensitive twist sensor by using low-birefringence photonic-crystal-fiber-based Sagnac interferometer,” IEEE Photonics Technol. Lett. 23(13), 920–922 (2011).
[Crossref]

Y. Liu, B. Liu, X. Feng, W. Zhang, G. Zhou, S. Yuan, G. Kai, and X. Dong, “High-birefringence fiber loop mirrors and their applications as sensors,” Appl. Opt. 44(12), 2382–2390 (2005).
[Crossref] [PubMed]

W. Zhang, G. Kai, X. Dong, S. Yuan, and Q. Zhao, “Temperature-independent FBG-type torsion sensor based on combinatorial torsion beam,” IEEE Photonics Technol. Lett. 14(8), 1154–1156 (2002).
[Crossref]

Dong, Y.

Y. Dong, C. Sun, H. Xiao, C. Dong, and S. Jian, “Twist and temperature characteristics of the PD-NSN fiber structure based on in-line Mach-Zehnder interferometer,” Opt. Fiber Technol. 33, 39–44 (2017).
[Crossref]

Donlagic, D.

V. Budinski and D. Donlagic, “Fiber-optic sensors for measurements of torsion, twist and rotation: a review,” Sensors (Basel) 17(3), 443 (2017).
[Crossref] [PubMed]

Estudillo-Ayala, J.

B. Ibarra-Escamilla, E. Kuzin, F. Gutierrez-Zainos, R. Tellez-Garcia, J. Haus, R. Rojas-Laguna, and J. Estudillo-Ayala, “Measurement of beat length in short low-birefringence fibers using the fiber optical loop mirror,” Opt. Commun. 217(1), 211–219 (2003).
[Crossref]

Evans, J. W.

Feng, D.

Feng, S.

B. Yin, H. Li, S. Feng, Y. Bai, Z. Liu, W. Peng, S. Liu, and S. Jian, “Temperature-independent and strain-independent twist sensor based on structured PM-CFBG,” IEEE Photonics Technol. Lett. 26(15), 1565–1568 (2014).
[Crossref]

Feng, X.

Fernandes, L. A.

Frazão, O.

Fulmek, P. L.

P. L. Fulmek, F. Wandling, W. Zdiarsky, G. Brasseur, and S. P. Cermak, “Capacitive sensor for relative angle measurement,” IEEE Trans. Instrum. Meas. 51(6), 1145–1149 (2002).
[Crossref]

Gambling, W.

S. Li, K. Chiang, and W. Gambling, “Gain flattening of an erbium-doped fiber amplifier using a high-birefringence fiber loop mirror,” IEEE Photonics Technol. Lett. 13(9), 942–944 (2001).
[Crossref]

Gao, R.

García, L.

D. Ceballos-Herrera, I. Torres-Gómez, A. Martinez-Rios, L. García, and J. Sanchez-Mondragon, “Torsion sensing characteristics of mechanically induced long-period holey fiber gratings,” IEEE Sens. J. 10(7), 1200–1205 (2010).
[Crossref]

Gong, T.

P. Zu, C. C. Chan, Y. Jin, T. Gong, Y. Zhang, L. H. Chen, and X. Dong, “A temperature-insensitive twist sensor by using low-birefringence photonic-crystal-fiber-based Sagnac interferometer,” IEEE Photonics Technol. Lett. 23(13), 920–922 (2011).
[Crossref]

Grenier, J. R.

Gutierrez-Zainos, F.

B. Ibarra-Escamilla, E. Kuzin, F. Gutierrez-Zainos, R. Tellez-Garcia, J. Haus, R. Rojas-Laguna, and J. Estudillo-Ayala, “Measurement of beat length in short low-birefringence fibers using the fiber optical loop mirror,” Opt. Commun. 217(1), 211–219 (2003).
[Crossref]

Haus, J.

B. Ibarra-Escamilla, E. Kuzin, F. Gutierrez-Zainos, R. Tellez-Garcia, J. Haus, R. Rojas-Laguna, and J. Estudillo-Ayala, “Measurement of beat length in short low-birefringence fibers using the fiber optical loop mirror,” Opt. Commun. 217(1), 211–219 (2003).
[Crossref]

Herman, P. R.

Hong, C.-S.

Huang, X.

Ibarra-Escamilla, B.

B. Ibarra-Escamilla, E. Kuzin, F. Gutierrez-Zainos, R. Tellez-Garcia, J. Haus, R. Rojas-Laguna, and J. Estudillo-Ayala, “Measurement of beat length in short low-birefringence fibers using the fiber optical loop mirror,” Opt. Commun. 217(1), 211–219 (2003).
[Crossref]

Jian, S.

C. Sun, S. Ye, and S. Jian, “Solc-Like Tunable Birefringent Fiber Filter Based on Elliptical-Core Spun Fiber,” IEEE Photonics Technol. Lett. 29(12), 1031–1034 (2017).
[Crossref]

Y. Dong, C. Sun, H. Xiao, C. Dong, and S. Jian, “Twist and temperature characteristics of the PD-NSN fiber structure based on in-line Mach-Zehnder interferometer,” Opt. Fiber Technol. 33, 39–44 (2017).
[Crossref]

B. Yin, H. Li, S. Feng, Y. Bai, Z. Liu, W. Peng, S. Liu, and S. Jian, “Temperature-independent and strain-independent twist sensor based on structured PM-CFBG,” IEEE Photonics Technol. Lett. 26(15), 1565–1568 (2014).
[Crossref]

W. Chen, S. Lou, L. Wang, H. Zou, W. Lu, and S. Jian, “Highly sensitive torsion sensor based on Sagnac interferometer using side-leakage photonic crystal fiber,” IEEE Photonics Technol. Lett. 23(21), 1639–1641 (2011).
[Crossref]

Jiang, L.

Jiang, M.

Jiang, Y.

Jin, Y.

P. Zu, C. C. Chan, Y. Jin, T. Gong, Y. Zhang, L. H. Chen, and X. Dong, “A temperature-insensitive twist sensor by using low-birefringence photonic-crystal-fiber-based Sagnac interferometer,” IEEE Photonics Technol. Lett. 23(13), 920–922 (2011).
[Crossref]

Johnson, M.

Kai, G.

Y. Liu, B. Liu, X. Feng, W. Zhang, G. Zhou, S. Yuan, G. Kai, and X. Dong, “High-birefringence fiber loop mirrors and their applications as sensors,” Appl. Opt. 44(12), 2382–2390 (2005).
[Crossref] [PubMed]

W. Zhang, G. Kai, X. Dong, S. Yuan, and Q. Zhao, “Temperature-independent FBG-type torsion sensor based on combinatorial torsion beam,” IEEE Photonics Technol. Lett. 14(8), 1154–1156 (2002).
[Crossref]

Kajimoto, H.

D. Tsetserukou, R. Tadakuma, H. Kajimoto, and S. Tachi, “Optical torque sensors for implementation of local impedance control of the arm of humanoid robot,” in Proceedings 2006 IEEE International Conference on Robotics and Automation (IEEE, 2006), pp. 1674–1679.
[Crossref]

Khatib, O.

D. Vischer and O. Khatib, “Design and development of high-performance torque controlled joints,” IEEE Trans. Robot. Autom. 11(4), 537–544 (1995).
[Crossref]

Kobelke, J.

Kuzin, E.

B. Ibarra-Escamilla, E. Kuzin, F. Gutierrez-Zainos, R. Tellez-Garcia, J. Haus, R. Rojas-Laguna, and J. Estudillo-Ayala, “Measurement of beat length in short low-birefringence fibers using the fiber optical loop mirror,” Opt. Commun. 217(1), 211–219 (2003).
[Crossref]

Lemarquand, V.

V. Lemarquand, “Synthesis study of magnetic torque sensors,” IEEE Trans. Magn. 35(6), 4503–4510 (1999).
[Crossref]

Li, H.

B. Yin, H. Li, S. Feng, Y. Bai, Z. Liu, W. Peng, S. Liu, and S. Jian, “Temperature-independent and strain-independent twist sensor based on structured PM-CFBG,” IEEE Photonics Technol. Lett. 26(15), 1565–1568 (2014).
[Crossref]

Li, S.

S. Li, K. Chiang, and W. Gambling, “Gain flattening of an erbium-doped fiber amplifier using a high-birefringence fiber loop mirror,” IEEE Photonics Technol. Lett. 13(9), 942–944 (2001).
[Crossref]

Lin, C.-Y.

Lin, W.

Liu, B.

Liu, D.

Liu, H.

Liu, S.

B. Yin, H. Li, S. Feng, Y. Bai, Z. Liu, W. Peng, S. Liu, and S. Jian, “Temperature-independent and strain-independent twist sensor based on structured PM-CFBG,” IEEE Photonics Technol. Lett. 26(15), 1565–1568 (2014).
[Crossref]

Liu, Y.

Liu, Z.

B. Yin, H. Li, S. Feng, Y. Bai, Z. Liu, W. Peng, S. Liu, and S. Jian, “Temperature-independent and strain-independent twist sensor based on structured PM-CFBG,” IEEE Photonics Technol. Lett. 26(15), 1565–1568 (2014).
[Crossref]

Lou, S.

W. Chen, S. Lou, L. Wang, H. Zou, W. Lu, and S. Jian, “Highly sensitive torsion sensor based on Sagnac interferometer using side-leakage photonic crystal fiber,” IEEE Photonics Technol. Lett. 23(21), 1639–1641 (2011).
[Crossref]

Lu, W.

W. Chen, S. Lou, L. Wang, H. Zou, W. Lu, and S. Jian, “Highly sensitive torsion sensor based on Sagnac interferometer using side-leakage photonic crystal fiber,” IEEE Photonics Technol. Lett. 23(21), 1639–1641 (2011).
[Crossref]

Malnou, M.

Martinez-Rios, A.

D. Ceballos-Herrera, I. Torres-Gómez, A. Martinez-Rios, L. García, and J. Sanchez-Mondragon, “Torsion sensing characteristics of mechanically induced long-period holey fiber gratings,” IEEE Sens. J. 10(7), 1200–1205 (2010).
[Crossref]

McIntyre, P.

Miao, Y.

Miyazawa, H.

K. Okamoto, J. Noda, and H. Miyazawa, “Fibre-optic Solc filter for use in Raman amplification of light,” Electron. Lett. 21(3), 90–91 (1985).
[Crossref]

Noda, J.

K. Okamoto, J. Noda, and H. Miyazawa, “Fibre-optic Solc filter for use in Raman amplification of light,” Electron. Lett. 21(3), 90–91 (1985).
[Crossref]

Okamoto, K.

K. Okamoto, J. Noda, and H. Miyazawa, “Fibre-optic Solc filter for use in Raman amplification of light,” Electron. Lett. 21(3), 90–91 (1985).
[Crossref]

Osório, J. H.

Peng, W.

B. Yin, H. Li, S. Feng, Y. Bai, Z. Liu, W. Peng, S. Liu, and S. Jian, “Temperature-independent and strain-independent twist sensor based on structured PM-CFBG,” IEEE Photonics Technol. Lett. 26(15), 1565–1568 (2014).
[Crossref]

Rojas-Laguna, R.

B. Ibarra-Escamilla, E. Kuzin, F. Gutierrez-Zainos, R. Tellez-Garcia, J. Haus, R. Rojas-Laguna, and J. Estudillo-Ayala, “Measurement of beat length in short low-birefringence fibers using the fiber optical loop mirror,” Opt. Commun. 217(1), 211–219 (2003).
[Crossref]

Salach, J.

A. Bieńkowski, R. Szewczyk, and J. Salach, “Industrial application of magnetoelastic force and torque sensors,” Acta Phys. Pol. A 118(5), 1008–1009 (2010).
[Crossref]

Sanchez-Mondragon, J.

D. Ceballos-Herrera, I. Torres-Gómez, A. Martinez-Rios, L. García, and J. Sanchez-Mondragon, “Torsion sensing characteristics of mechanically induced long-period holey fiber gratings,” IEEE Sens. J. 10(7), 1200–1205 (2010).
[Crossref]

Santos, J. L.

Schuster, K.

Shen, C.

C. Shen, Y. Zhang, W. Zhou, and J. Albert, “Au-coated tilted fiber Bragg grating twist sensor based on surface plasmon resonance,” Appl. Phys. Lett. 104(7), 071106 (2014).
[Crossref]

Shum, P. P.

Sieg, J.

Silva, R. M.

Silva, S. O.

Simon, A.

Snyder, A. W.

Solc, I.

Song, B.

Statkiewicz-Barabach, G.

Sun, C.

Y. Dong, C. Sun, H. Xiao, C. Dong, and S. Jian, “Twist and temperature characteristics of the PD-NSN fiber structure based on in-line Mach-Zehnder interferometer,” Opt. Fiber Technol. 33, 39–44 (2017).
[Crossref]

C. Sun, S. Ye, and S. Jian, “Solc-Like Tunable Birefringent Fiber Filter Based on Elliptical-Core Spun Fiber,” IEEE Photonics Technol. Lett. 29(12), 1031–1034 (2017).
[Crossref]

Sun, J.

Sun, Q.

Szewczyk, R.

A. Bieńkowski, R. Szewczyk, and J. Salach, “Industrial application of magnetoelastic force and torque sensors,” Acta Phys. Pol. A 118(5), 1008–1009 (2010).
[Crossref]

Tachi, S.

D. Tsetserukou, R. Tadakuma, H. Kajimoto, and S. Tachi, “Optical torque sensors for implementation of local impedance control of the arm of humanoid robot,” in Proceedings 2006 IEEE International Conference on Robotics and Automation (IEEE, 2006), pp. 1674–1679.
[Crossref]

Tadakuma, R.

D. Tsetserukou, R. Tadakuma, H. Kajimoto, and S. Tachi, “Optical torque sensors for implementation of local impedance control of the arm of humanoid robot,” in Proceedings 2006 IEEE International Conference on Robotics and Automation (IEEE, 2006), pp. 1674–1679.
[Crossref]

Tellez-Garcia, R.

B. Ibarra-Escamilla, E. Kuzin, F. Gutierrez-Zainos, R. Tellez-Garcia, J. Haus, R. Rojas-Laguna, and J. Estudillo-Ayala, “Measurement of beat length in short low-birefringence fibers using the fiber optical loop mirror,” Opt. Commun. 217(1), 211–219 (2003).
[Crossref]

Torres-Gómez, I.

D. Ceballos-Herrera, I. Torres-Gómez, A. Martinez-Rios, L. García, and J. Sanchez-Mondragon, “Torsion sensing characteristics of mechanically induced long-period holey fiber gratings,” IEEE Sens. J. 10(7), 1200–1205 (2010).
[Crossref]

Tsetserukou, D.

D. Tsetserukou, R. Tadakuma, H. Kajimoto, and S. Tachi, “Optical torque sensors for implementation of local impedance control of the arm of humanoid robot,” in Proceedings 2006 IEEE International Conference on Robotics and Automation (IEEE, 2006), pp. 1674–1679.
[Crossref]

Ulrich, R.

Urbanczyk, W.

Vischer, D.

D. Vischer and O. Khatib, “Design and development of high-performance torque controlled joints,” IEEE Trans. Robot. Autom. 11(4), 537–544 (1995).
[Crossref]

Wandling, F.

P. L. Fulmek, F. Wandling, W. Zdiarsky, G. Brasseur, and S. P. Cermak, “Capacitive sensor for relative angle measurement,” IEEE Trans. Instrum. Meas. 51(6), 1145–1149 (2002).
[Crossref]

Wang, B.

Wang, L.

L. Chen, W.-G. Zhang, L. Wang, H. Zhang, J. Sieg, Q. Zhou, L.-Y. Zhang, B. Wang, and T.-Y. Yan, “In-fiber torsion sensor based on dual polarized Mach-Zehnder interference,” Opt. Express 22(26), 31654–31664 (2014).
[Crossref] [PubMed]

W. Chen, S. Lou, L. Wang, H. Zou, W. Lu, and S. Jian, “Highly sensitive torsion sensor based on Sagnac interferometer using side-leakage photonic crystal fiber,” IEEE Photonics Technol. Lett. 23(21), 1639–1641 (2011).
[Crossref]

Wang, L. A.

Wang, M.

Wo, J.

Wojcik, J.

Wu, J.

Xiao, H.

Y. Dong, C. Sun, H. Xiao, C. Dong, and S. Jian, “Twist and temperature characteristics of the PD-NSN fiber structure based on in-line Mach-Zehnder interferometer,” Opt. Fiber Technol. 33, 39–44 (2017).
[Crossref]

Yan, D.

Yan, T.-Y.

Yariv, A.

Ye, S.

C. Sun, S. Ye, and S. Jian, “Solc-Like Tunable Birefringent Fiber Filter Based on Elliptical-Core Spun Fiber,” IEEE Photonics Technol. Lett. 29(12), 1031–1034 (2017).
[Crossref]

Yeh, P.

Yin, B.

B. Yin, H. Li, S. Feng, Y. Bai, Z. Liu, W. Peng, S. Liu, and S. Jian, “Temperature-independent and strain-independent twist sensor based on structured PM-CFBG,” IEEE Photonics Technol. Lett. 26(15), 1565–1568 (2014).
[Crossref]

Yiping, W.

Yuan, S.

Y. Liu, B. Liu, X. Feng, W. Zhang, G. Zhou, S. Yuan, G. Kai, and X. Dong, “High-birefringence fiber loop mirrors and their applications as sensors,” Appl. Opt. 44(12), 2382–2390 (2005).
[Crossref] [PubMed]

W. Zhang, G. Kai, X. Dong, S. Yuan, and Q. Zhao, “Temperature-independent FBG-type torsion sensor based on combinatorial torsion beam,” IEEE Photonics Technol. Lett. 14(8), 1154–1156 (2002).
[Crossref]

Zdiarsky, W.

P. L. Fulmek, F. Wandling, W. Zdiarsky, G. Brasseur, and S. P. Cermak, “Capacitive sensor for relative angle measurement,” IEEE Trans. Instrum. Meas. 51(6), 1145–1149 (2002).
[Crossref]

Zhang, H.

Zhang, J.

Zhang, L.

X. Chen, K. Zhou, L. Zhang, and I. Bennion, “In-fiber twist sensor based on a fiber Bragg grating with 81° tilted structure,” IEEE Photonics Technol. Lett. 18(24), 2596–2598 (2006).
[Crossref]

Zhang, L.-Y.

Zhang, W.

Y. Liu, B. Liu, X. Feng, W. Zhang, G. Zhou, S. Yuan, G. Kai, and X. Dong, “High-birefringence fiber loop mirrors and their applications as sensors,” Appl. Opt. 44(12), 2382–2390 (2005).
[Crossref] [PubMed]

W. Zhang, G. Kai, X. Dong, S. Yuan, and Q. Zhao, “Temperature-independent FBG-type torsion sensor based on combinatorial torsion beam,” IEEE Photonics Technol. Lett. 14(8), 1154–1156 (2002).
[Crossref]

Zhang, W.-G.

Zhang, Y.

C. Shen, Y. Zhang, W. Zhou, and J. Albert, “Au-coated tilted fiber Bragg grating twist sensor based on surface plasmon resonance,” Appl. Phys. Lett. 104(7), 071106 (2014).
[Crossref]

P. Zu, C. C. Chan, Y. Jin, T. Gong, Y. Zhang, L. H. Chen, and X. Dong, “A temperature-insensitive twist sensor by using low-birefringence photonic-crystal-fiber-based Sagnac interferometer,” IEEE Photonics Technol. Lett. 23(13), 920–922 (2011).
[Crossref]

Zhao, Q.

W. Zhang, G. Kai, X. Dong, S. Yuan, and Q. Zhao, “Temperature-independent FBG-type torsion sensor based on combinatorial torsion beam,” IEEE Photonics Technol. Lett. 14(8), 1154–1156 (2002).
[Crossref]

Zhou, G.

Zhou, K.

X. Chen, K. Zhou, L. Zhang, and I. Bennion, “In-fiber twist sensor based on a fiber Bragg grating with 81° tilted structure,” IEEE Photonics Technol. Lett. 18(24), 2596–2598 (2006).
[Crossref]

Zhou, Q.

Zhou, W.

C. Shen, Y. Zhang, W. Zhou, and J. Albert, “Au-coated tilted fiber Bragg grating twist sensor based on surface plasmon resonance,” Appl. Phys. Lett. 104(7), 071106 (2014).
[Crossref]

Zou, H.

W. Chen, S. Lou, L. Wang, H. Zou, W. Lu, and S. Jian, “Highly sensitive torsion sensor based on Sagnac interferometer using side-leakage photonic crystal fiber,” IEEE Photonics Technol. Lett. 23(21), 1639–1641 (2011).
[Crossref]

Zu, P.

P. Zu, C. C. Chan, Y. Jin, T. Gong, Y. Zhang, L. H. Chen, and X. Dong, “A temperature-insensitive twist sensor by using low-birefringence photonic-crystal-fiber-based Sagnac interferometer,” IEEE Photonics Technol. Lett. 23(13), 920–922 (2011).
[Crossref]

Acta Phys. Pol. A (1)

A. Bieńkowski, R. Szewczyk, and J. Salach, “Industrial application of magnetoelastic force and torque sensors,” Acta Phys. Pol. A 118(5), 1008–1009 (2010).
[Crossref]

Appl. Opt. (4)

Appl. Phys. Lett. (1)

C. Shen, Y. Zhang, W. Zhou, and J. Albert, “Au-coated tilted fiber Bragg grating twist sensor based on surface plasmon resonance,” Appl. Phys. Lett. 104(7), 071106 (2014).
[Crossref]

Electron. Lett. (1)

K. Okamoto, J. Noda, and H. Miyazawa, “Fibre-optic Solc filter for use in Raman amplification of light,” Electron. Lett. 21(3), 90–91 (1985).
[Crossref]

IEEE Photonics Technol. Lett. (7)

S. Li, K. Chiang, and W. Gambling, “Gain flattening of an erbium-doped fiber amplifier using a high-birefringence fiber loop mirror,” IEEE Photonics Technol. Lett. 13(9), 942–944 (2001).
[Crossref]

W. Zhang, G. Kai, X. Dong, S. Yuan, and Q. Zhao, “Temperature-independent FBG-type torsion sensor based on combinatorial torsion beam,” IEEE Photonics Technol. Lett. 14(8), 1154–1156 (2002).
[Crossref]

C. Sun, S. Ye, and S. Jian, “Solc-Like Tunable Birefringent Fiber Filter Based on Elliptical-Core Spun Fiber,” IEEE Photonics Technol. Lett. 29(12), 1031–1034 (2017).
[Crossref]

B. Yin, H. Li, S. Feng, Y. Bai, Z. Liu, W. Peng, S. Liu, and S. Jian, “Temperature-independent and strain-independent twist sensor based on structured PM-CFBG,” IEEE Photonics Technol. Lett. 26(15), 1565–1568 (2014).
[Crossref]

W. Chen, S. Lou, L. Wang, H. Zou, W. Lu, and S. Jian, “Highly sensitive torsion sensor based on Sagnac interferometer using side-leakage photonic crystal fiber,” IEEE Photonics Technol. Lett. 23(21), 1639–1641 (2011).
[Crossref]

P. Zu, C. C. Chan, Y. Jin, T. Gong, Y. Zhang, L. H. Chen, and X. Dong, “A temperature-insensitive twist sensor by using low-birefringence photonic-crystal-fiber-based Sagnac interferometer,” IEEE Photonics Technol. Lett. 23(13), 920–922 (2011).
[Crossref]

X. Chen, K. Zhou, L. Zhang, and I. Bennion, “In-fiber twist sensor based on a fiber Bragg grating with 81° tilted structure,” IEEE Photonics Technol. Lett. 18(24), 2596–2598 (2006).
[Crossref]

IEEE Sens. J. (1)

D. Ceballos-Herrera, I. Torres-Gómez, A. Martinez-Rios, L. García, and J. Sanchez-Mondragon, “Torsion sensing characteristics of mechanically induced long-period holey fiber gratings,” IEEE Sens. J. 10(7), 1200–1205 (2010).
[Crossref]

IEEE Trans. Instrum. Meas. (1)

P. L. Fulmek, F. Wandling, W. Zdiarsky, G. Brasseur, and S. P. Cermak, “Capacitive sensor for relative angle measurement,” IEEE Trans. Instrum. Meas. 51(6), 1145–1149 (2002).
[Crossref]

IEEE Trans. Magn. (1)

V. Lemarquand, “Synthesis study of magnetic torque sensors,” IEEE Trans. Magn. 35(6), 4503–4510 (1999).
[Crossref]

IEEE Trans. Robot. Autom. (1)

D. Vischer and O. Khatib, “Design and development of high-performance torque controlled joints,” IEEE Trans. Robot. Autom. 11(4), 537–544 (1995).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. (4)

Opt. Commun. (1)

B. Ibarra-Escamilla, E. Kuzin, F. Gutierrez-Zainos, R. Tellez-Garcia, J. Haus, R. Rojas-Laguna, and J. Estudillo-Ayala, “Measurement of beat length in short low-birefringence fibers using the fiber optical loop mirror,” Opt. Commun. 217(1), 211–219 (2003).
[Crossref]

Opt. Express (6)

Opt. Fiber Technol. (1)

Y. Dong, C. Sun, H. Xiao, C. Dong, and S. Jian, “Twist and temperature characteristics of the PD-NSN fiber structure based on in-line Mach-Zehnder interferometer,” Opt. Fiber Technol. 33, 39–44 (2017).
[Crossref]

Opt. Lett. (4)

Sensors (Basel) (1)

V. Budinski and D. Donlagic, “Fiber-optic sensors for measurements of torsion, twist and rotation: a review,” Sensors (Basel) 17(3), 443 (2017).
[Crossref] [PubMed]

Other (1)

D. Tsetserukou, R. Tadakuma, H. Kajimoto, and S. Tachi, “Optical torque sensors for implementation of local impedance control of the arm of humanoid robot,” in Proceedings 2006 IEEE International Conference on Robotics and Automation (IEEE, 2006), pp. 1674–1679.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Experimental setup of proposed filter for twist sensing.
Fig. 2
Fig. 2 Measured optical spectra of the quasi-Solc filter without twist and the light source at 20 °C.
Fig. 3
Fig. 3 (a) Transmission spectra evolution of proposed twist sensor in clockwise direction from 20° to 120° with step of 20°. (b) The measured intensity of the selected dip (Dip R) under the corresponding torsion rate from −1200 (° /m) to 1200 (° /m)
Fig. 4
Fig. 4 (a) The relationship between intensity of Dip R and the axial strain from 0 to 600 με with step of 66.7 με. (b) The relationship between intensity of Dip R and the temperature from 20 to 80 °C with step of 10 °C.
Fig. 5
Fig. 5 Schematic configuration and the model of quasi-fan Solc structure filter with ECSF.
Fig. 6
Fig. 6 The polarization characteristics in the proposed configuration of quasi-fan Solc birefringent fiber filter.
Fig. 7
Fig. 7 Comparison of the simulated and measured transmission interference spectra with same ECSF parameters (LECSF = 96m, p = 3 mm and Β = 1.6375 × 10−4).
Fig. 8
Fig. 8 Simulation of the intensity of minimum transmittance versus twist angle with different direction angles (α1, α2). (a) α1 increases from 0° to 80° while α2 maintains 90°. (b) α1 keeps same value while α2 enhances from 0° to150°.
Fig. 9
Fig. 9 Comparison of the simulated result and measured intensity of Dip R in linear scale when α1 = 10°and α2 = 72°.

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

W ( Γ ) = [ exp ( i Γ / 2 ) 0 0 exp ( i Γ / 2 ) ]
Γ = 2 π L E C S F B λ N
ψ = ψ n = 2 π L E C S F p N , n = 1 , 2 , 3... N
R ( ψ n ) = [ cos ψ n sin ψ n sin ψ n cos ψ n ] , n = 1 , 2 , 3...... N
U P C = [ e i ξ cos β e i σ sin β e i σ sin β e i ξ cos β ]
J f i l t e r = M 2 J E C S F U P C M 1 = M 2 W ( Γ ) R ( ψ n 1 ) W ( Γ ) ... R ( ψ 2 ) W ( Γ ) R ( ψ 1 ) W ( Γ ) U P C M 1 = M 2 R ( ψ ) [ R ( ψ ) W ( Γ ) ] N U P C M 1
M 1 = [ cos 2 α 1 sin α 1 cos α 1 cos η 1 sin α 1 sin 2 α 1 ]
M 2 = [ cos 2 α 2 sin α 2 cos α 2 cos α 2 sin α 2 sin 2 α 2 ]
[ R ( ψ ) W ( Γ ) ] N = [ e Γ i / 2 cos ψ sin N χ sin ( N 1 ) χ sin χ e Γ i / 2 sin ψ sin N χ sin χ e Γ i / 2 sin ψ sin N χ sin χ e Γ i / 2 cos ψ sin N χ sin ( N 1 ) χ sin χ ]
E T = M 2 J E C S F U P C M 1 E i n = J f i l t e r E i n
T = I T I i n = ( J f i l t e r * E i n * ) T J f i l t e r E i n E i n * E i n
F L = [ cos η i δ L 2 sin η η δ C 2 sin η η δ C 2 sin η η cos η + i δ L 2 sin η η ]
J S M F = [ cos δ C sin δ C sin δ C cos δ C ] = [ cos ( 0.92 τ ) sin ( 0.92 τ ) sin ( 0.92 τ ) cos ( 0.92 τ ) ]
Δ φ = 2 π L E C S F B λ = ( 2 m + 1 ) π ( m = 0 , 1 , 2... )
Γ ' = ( 2 m + 1 ) π N ( m = 0 , 1 , 2... )
E T = M 2 J S M F J E C S F U P C M 1 E i n = J f i l t e r E i n
T min = I T I i n = ( E T * ) T E T E i n * E i n

Metrics