Abstract

In this paper, the role of pseudo-disordered moth-eye structures on the optical features for application to thin-film solar cells is investigated to realize the superior light management for the full-spectrum solar energy utilization, compared with some ordered structures. Without loss of generality, the c-Si thin film solar cell is taken as the example. The results demonstrate that the fluctuations introduced into the geometry parameters of moth-eye elements can lead to the remarkable absorption enhancement in the wavelength region of 0.3-1.1 μm and high transmission in the wavelength range of 1.1-2.5 μm. Two mechanisms including the increasing spectral density of modes and the intensive forescattering intensity are identified to be responsible for the absorption enhancement. In addition, the optical characteristics of the moth-eye surface with both disordered height and disordered diameter are insensitive to the incident angle.

© 2017 Optical Society of America

Full Article  |  PDF Article

Corrections

Xiaojun Liu, Yun Da, and Yimin Xuan, "Full-spectrum light management by pseudo-disordered moth-eye structures for thin film solar cells: erratum," Opt. Express 25, A870-A870 (2017)
https://www.osapublishing.org/oe/abstract.cfm?uri=oe-25-20-A870

OSA Recommended Articles
Disordered photonic structures for light harvesting in solar cells

Filippo Pratesi, Matteo Burresi, Francesco Riboli, Kevin Vynck, and Diederik S. Wiersma
Opt. Express 21(S3) A460-A468 (2013)

Disordered nanophotonic surfaces for enhanced light collection in semiconductor solar cells

Chelsea Carlson and Stephen Hughes
J. Opt. Soc. Am. B 35(5) 1093-1104 (2018)

Nanopyramids and rear-located Ag nanoparticles for broad spectrum absorption enhancement in thin-film solar cells

Yanpeng Shi, Xiaodong Wang, Wen Liu, Tianshu Yang, Jing Ma, and Fuhua Yang
Opt. Express 22(17) 20473-20480 (2014)

References

  • View by:
  • |
  • |
  • |

  1. M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (Version 45),” Prog. Photovolt. Res. Appl. 23(1), 1–9 (2015).
    [Crossref]
  2. A. A. Miskevich and V. A. Loiko, “Solar cells based on particulate structure of active layer: Investigation of light absorption by an ordered system of spherical submicron silicon particles,” J. Quant. Spectrosc. Radiat. Transf. 167, 23–39 (2015).
    [Crossref]
  3. S. Hajimirza and J. R. Howell, “Computational and experimental study of a multi-layer absorptivity enhanced thin film silicon solar cell,” J. Quant. Spectrosc. Radiat. Transf. 143, 56–62 (2014).
    [Crossref]
  4. X. Meng, E. Drouard, G. Gomard, R. Peretti, A. Fave, and C. Seassal, “Combined front and back diffraction gratings for broad band light trapping in thin film solar cell,” Opt. Express 20(105), A560–A571 (2012).
    [Crossref] [PubMed]
  5. X. Fang, C. Y. Zhao, and H. Bao, “Radiative behaviors of crystalline silicon nanowire and nanohole arrays for photovoltaic applications,” J. Quant. Spectrosc. Radiat. Transf. 133, 579–588 (2014).
    [Crossref]
  6. D. Zhou and R. Biswas, “Photonic crystal enhanced light-trapping in thin film solar cells,” J. Appl. Phys. 103(9), 093102 (2008).
    [Crossref]
  7. L. Zeng, Y. Yi, C. Hong, J. Liu, N. Feng, X. Duan, L. C. Kimerling, and B. A. Alamariu, “Efficiency enhancement in Si solar cells by textured photonic crystal back reflector,” Appl. Phys. Lett. 89(11), 111111 (2006).
    [Crossref]
  8. Y. Zhang, B. Jia, and M. Gu, “Biomimetic and plasmonic hybrid light trapping for highly efficient ultrathin crystalline silicon solar cells,” Opt. Express 24(6), A506–A514 (2016).
    [Crossref] [PubMed]
  9. Y. M. Song, S. J. Jang, J. S. Yu, and Y. T. Lee, “Bioinspired parabola subwavelength structures for improved broadband antireflection,” Small 6(9), 984–987 (2010).
    [Crossref] [PubMed]
  10. S. Ji, K. Song, T. B. Nguyen, N. Kim, and H. Lim, “Optimal moth eye nanostructure array on transparent glass towards broadband antireflection,” ACS Appl. Mater. Interfaces 5(21), 10731–10737 (2013).
    [Crossref] [PubMed]
  11. S. Y. Chuang, H. L. Chen, J. Shieh, C. H. Lin, C. C. Cheng, H. W. Liu, and C. C. Yu, “Nanoscale of biomimetic moth eye structures exhibiting inverse polarization phenomena at the Brewster angle,” Nanoscale 2(5), 799–805 (2010).
    [Crossref] [PubMed]
  12. L. Yang, Q. Feng, B. Ng, X. Luo, and M. Hong, “Hybrid moth-eye structures for enhanced broadband antireflection characteristics,” Appl. Phys. Express 3(10), 102602 (2010).
    [Crossref]
  13. J. W. Leem, X. Y. Guan, M. Choi, and J. S. Yu, “Broadband and omnidirectional highly-transparent coverglasses coated with biomimetic moth-eye nanopatterned polymer films for solar photovoltaic system applications,” Sol. Energy Mater. Sol. Cells 134, 45–53 (2015).
    [Crossref]
  14. S. H. Zaidi, D. S. Ruby, and J. M. Gee, “Characterization of random reactive ion etched-textured silicon solar cells,” IEEE Trans. Electron Dev. 48(6), 1200–1206 (2001).
    [Crossref]
  15. J. H. Noh, S. H. Im, J. H. Heo, T. N. Mandal, and S. I. Seok, “Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells,” Nano Lett. 13(4), 1764–1769 (2013).
    [Crossref] [PubMed]
  16. U. W. Paetzold, M. Smeets, M. Meier, K. Bittkau, T. Merdzhanova, V. Smirnov, D. Michaelis, C. Waechter, R. Carius, and U. Rau, “Disorder improves nanophotonic light trapping in thin-film solar cells,” Appl. Phys. Lett. 104(13), 131102 (2014).
    [Crossref]
  17. X. Liu, P. R. Coxon, M. Peters, B. Hoex, J. M. Cole, and D. J. Fray, “Black silicon: fabrication methods, properties and solar energy applications,” Energy Environ. Sci. 7(10), 3223–3263 (2014).
    [Crossref]
  18. A. J. Bett, J. Eisenlohr, O. Höhn, P. Repo, H. Savin, B. Bläsi, and J. C. Goldschmidt, “Wave optical simulation of the light trapping properties of black silicon surface textures,” Opt. Express 24(6), A434–A445 (2016).
    [Crossref] [PubMed]
  19. G. Kristensson, “Coherent scattering by a collection of randomly located obstacles – an alternative integral equation formulation,” J. Quant. Spectrosc. Radiat. Transf. 164, 97–108 (2015).
    [Crossref]
  20. S. Xie, Z. Ouyang, B. Jia, and M. Gu, “Large-size, high-uniformity, random silver nanowire networks as transparent electrodes for crystalline silicon wafer solar cells,” Opt. Express 21(103), A355–A362 (2013).
    [Crossref] [PubMed]
  21. F. Pratesi, M. Burresi, F. Riboli, K. Vynck, and D. S. Wiersma, “Disordered photonic structures for light harvesting in solar cells,” Opt. Express 21(103), A460–A468 (2013).
    [Crossref] [PubMed]
  22. L. Lalouat, H. Ding, B. Gonzalez-Acevedo, A. Harouri, R. Orobtchouk, V. Depauw, E. Drouard, and C. Seassal, “Pseudo-disordered structures for light trapping improvement in mono-crystalline Si thin-films,” Sol. Energy Mater. Sol. Cells 4, 031 (2016).
  23. E. R. Martins, J. Li, Y. Liu, V. Depauw, Z. Chen, J. Zhou, and T. F. Krauss, “Deterministic quasi-random nanostructures for photon control,” Nat. Commun. 4, 2665 (2013).
    [Crossref] [PubMed]
  24. H. Ding, L. Lalouat, B. Gonzalez-Acevedo, R. Orobtchouk, C. Seassal, and E. Drouard, “Design rules for net absorption enhancement in pseudo-disordered photonic crystal for thin film solar cells,” Opt. Express 24(6), A650–A666 (2016).
    [Crossref] [PubMed]
  25. C. A. Gueymard, D. Myers, and K. Emery, “Proposed reference irradiance spectra for solar energy systems testing,” Sol. Energy 73(6), 443–467 (2002).
    [Crossref]
  26. X. Ju, Z. Wang, G. Flamant, P. Li, and W. Zhao, “Numerical analysis and optimization of a spectrum splitting concentration photovoltaic–thermoelectric hybrid system,” Sol. Energy 86(6), 1941–1954 (2012).
    [Crossref]
  27. D. Li, Y. Xuan, Q. Li, and H. Hong, “Exergy and energy analysis of photovoltaic-thermoelectric hybrid systems,” Energy 126, 343–351 (2017).
    [Crossref]
  28. W. G. J. H. M. van Sark, “Feasibility of photovoltaic–thermoelectric hybrid modules,” Appl. Energy 88(8), 2785–2790 (2011).
    [Crossref]
  29. Y. Wang, S. Su, T. Liu, G. Su, and J. Chen, “Performance evaluation and parametric optimum design of an updated thermionic-thermoelectric generator hybrid system,” Energy 90, 1575–1583 (2015).
    [Crossref]
  30. O. Beeri, O. Rotem, E. Hazan, E. A. Katz, A. Braun, and Y. Gelbstein, “Hybrid photovoltaic-thermoelectric system for concentrated solar energy conversion: Experimental realization and modeling,” J. Appl. Phys. 118(11), 115104 (2015).
    [Crossref]
  31. Y. Zhang and Y. Xuan, “Biomimetic omnidirectional broadband structured surface for photon management in photovoltaic-thermoelectric hybrid systems,” Sol. Energy Mater. Sol. Cells 144, 68–77 (2016).
    [Crossref]
  32. R. Fan, L. Zhu, R. Peng, X. Huang, D. Qi, X. Ren, Q. Hu, and M. Wang, “Broadband antireflection and light-trapping enhancement of plasmonic solar cells,” Phys. Rev. B 87(19), 195444 (2013).
    [Crossref]
  33. Y. H. Ko and J. S. Yu, “Design of hemi-urchin shaped ZnO nanostructures for broadband and wide-angle antireflection coatings,” Opt. Express 19(1), 297–305 (2011).
    [Crossref] [PubMed]
  34. X. Fang, M. Lou, H. Bao, and C. Y. Zhao, “Thin films with disordered nanohole patterns for solar radiation absorbers,” J. Quant. Spectrosc. Radiat. Transf. 158, 145–153 (2015).
    [Crossref]
  35. FDTD Solutions 8.12 (Lumerical, 2014).
  36. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1998).
  37. Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun. 4, 1527 (2013).
    [Crossref] [PubMed]
  38. W. C. Hsu, J. K. Tong, M. S. Branham, Y. Huang, S. Yerci, S. V. Boriskina, and G. Chen, “Mismatched front and back gratings for optimum light trapping in ultra-thin crystalline silicon solar cells,” Opt. Commun. 377, 52–58 (2016).
    [Crossref]
  39. R. Peretti, G. Gomard, L. Lalouat, C. Seassal, and E. Drouard, “Absorption control in pseudodisordered photonic-crystal thin films,” Phys. Rev. A 88(5), 053835 (2013).
    [Crossref]
  40. D. Duché, L. Escoubas, J. J. Simon, P. Torchio, W. Vervisch, and F. Flory, “Slow Bloch modes for enhancing the absorption of light in thin films for photovoltaic cells,” Appl. Phys. Lett. 92(19), 193310 (2008).
    [Crossref]
  41. M. Agrawal and P. Peumans, “Broadband optical absorption enhancement through coherent light trapping in thin-film photovoltaic cells,” Opt. Express 16(8), 5385–5396 (2008).
    [Crossref] [PubMed]
  42. Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. U.S.A. 107(41), 17491–17496 (2010).
    [Crossref] [PubMed]
  43. C. Trompoukis, O. E. Daif, V. Depauw, I. Gordon, and J. Poortmans, “Photonic assisted light trapping integrated in ultrathin crystalline silicon solar cells by nanoimprint lithography,” Appl. Phys. Lett. 101(10), 103901 (2012).
    [Crossref]

2017 (1)

D. Li, Y. Xuan, Q. Li, and H. Hong, “Exergy and energy analysis of photovoltaic-thermoelectric hybrid systems,” Energy 126, 343–351 (2017).
[Crossref]

2016 (5)

2015 (7)

G. Kristensson, “Coherent scattering by a collection of randomly located obstacles – an alternative integral equation formulation,” J. Quant. Spectrosc. Radiat. Transf. 164, 97–108 (2015).
[Crossref]

J. W. Leem, X. Y. Guan, M. Choi, and J. S. Yu, “Broadband and omnidirectional highly-transparent coverglasses coated with biomimetic moth-eye nanopatterned polymer films for solar photovoltaic system applications,” Sol. Energy Mater. Sol. Cells 134, 45–53 (2015).
[Crossref]

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (Version 45),” Prog. Photovolt. Res. Appl. 23(1), 1–9 (2015).
[Crossref]

A. A. Miskevich and V. A. Loiko, “Solar cells based on particulate structure of active layer: Investigation of light absorption by an ordered system of spherical submicron silicon particles,” J. Quant. Spectrosc. Radiat. Transf. 167, 23–39 (2015).
[Crossref]

Y. Wang, S. Su, T. Liu, G. Su, and J. Chen, “Performance evaluation and parametric optimum design of an updated thermionic-thermoelectric generator hybrid system,” Energy 90, 1575–1583 (2015).
[Crossref]

O. Beeri, O. Rotem, E. Hazan, E. A. Katz, A. Braun, and Y. Gelbstein, “Hybrid photovoltaic-thermoelectric system for concentrated solar energy conversion: Experimental realization and modeling,” J. Appl. Phys. 118(11), 115104 (2015).
[Crossref]

X. Fang, M. Lou, H. Bao, and C. Y. Zhao, “Thin films with disordered nanohole patterns for solar radiation absorbers,” J. Quant. Spectrosc. Radiat. Transf. 158, 145–153 (2015).
[Crossref]

2014 (4)

U. W. Paetzold, M. Smeets, M. Meier, K. Bittkau, T. Merdzhanova, V. Smirnov, D. Michaelis, C. Waechter, R. Carius, and U. Rau, “Disorder improves nanophotonic light trapping in thin-film solar cells,” Appl. Phys. Lett. 104(13), 131102 (2014).
[Crossref]

X. Liu, P. R. Coxon, M. Peters, B. Hoex, J. M. Cole, and D. J. Fray, “Black silicon: fabrication methods, properties and solar energy applications,” Energy Environ. Sci. 7(10), 3223–3263 (2014).
[Crossref]

S. Hajimirza and J. R. Howell, “Computational and experimental study of a multi-layer absorptivity enhanced thin film silicon solar cell,” J. Quant. Spectrosc. Radiat. Transf. 143, 56–62 (2014).
[Crossref]

X. Fang, C. Y. Zhao, and H. Bao, “Radiative behaviors of crystalline silicon nanowire and nanohole arrays for photovoltaic applications,” J. Quant. Spectrosc. Radiat. Transf. 133, 579–588 (2014).
[Crossref]

2013 (8)

S. Ji, K. Song, T. B. Nguyen, N. Kim, and H. Lim, “Optimal moth eye nanostructure array on transparent glass towards broadband antireflection,” ACS Appl. Mater. Interfaces 5(21), 10731–10737 (2013).
[Crossref] [PubMed]

S. Xie, Z. Ouyang, B. Jia, and M. Gu, “Large-size, high-uniformity, random silver nanowire networks as transparent electrodes for crystalline silicon wafer solar cells,” Opt. Express 21(103), A355–A362 (2013).
[Crossref] [PubMed]

F. Pratesi, M. Burresi, F. Riboli, K. Vynck, and D. S. Wiersma, “Disordered photonic structures for light harvesting in solar cells,” Opt. Express 21(103), A460–A468 (2013).
[Crossref] [PubMed]

E. R. Martins, J. Li, Y. Liu, V. Depauw, Z. Chen, J. Zhou, and T. F. Krauss, “Deterministic quasi-random nanostructures for photon control,” Nat. Commun. 4, 2665 (2013).
[Crossref] [PubMed]

J. H. Noh, S. H. Im, J. H. Heo, T. N. Mandal, and S. I. Seok, “Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells,” Nano Lett. 13(4), 1764–1769 (2013).
[Crossref] [PubMed]

R. Fan, L. Zhu, R. Peng, X. Huang, D. Qi, X. Ren, Q. Hu, and M. Wang, “Broadband antireflection and light-trapping enhancement of plasmonic solar cells,” Phys. Rev. B 87(19), 195444 (2013).
[Crossref]

R. Peretti, G. Gomard, L. Lalouat, C. Seassal, and E. Drouard, “Absorption control in pseudodisordered photonic-crystal thin films,” Phys. Rev. A 88(5), 053835 (2013).
[Crossref]

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun. 4, 1527 (2013).
[Crossref] [PubMed]

2012 (3)

C. Trompoukis, O. E. Daif, V. Depauw, I. Gordon, and J. Poortmans, “Photonic assisted light trapping integrated in ultrathin crystalline silicon solar cells by nanoimprint lithography,” Appl. Phys. Lett. 101(10), 103901 (2012).
[Crossref]

X. Ju, Z. Wang, G. Flamant, P. Li, and W. Zhao, “Numerical analysis and optimization of a spectrum splitting concentration photovoltaic–thermoelectric hybrid system,” Sol. Energy 86(6), 1941–1954 (2012).
[Crossref]

X. Meng, E. Drouard, G. Gomard, R. Peretti, A. Fave, and C. Seassal, “Combined front and back diffraction gratings for broad band light trapping in thin film solar cell,” Opt. Express 20(105), A560–A571 (2012).
[Crossref] [PubMed]

2011 (2)

W. G. J. H. M. van Sark, “Feasibility of photovoltaic–thermoelectric hybrid modules,” Appl. Energy 88(8), 2785–2790 (2011).
[Crossref]

Y. H. Ko and J. S. Yu, “Design of hemi-urchin shaped ZnO nanostructures for broadband and wide-angle antireflection coatings,” Opt. Express 19(1), 297–305 (2011).
[Crossref] [PubMed]

2010 (4)

Y. M. Song, S. J. Jang, J. S. Yu, and Y. T. Lee, “Bioinspired parabola subwavelength structures for improved broadband antireflection,” Small 6(9), 984–987 (2010).
[Crossref] [PubMed]

S. Y. Chuang, H. L. Chen, J. Shieh, C. H. Lin, C. C. Cheng, H. W. Liu, and C. C. Yu, “Nanoscale of biomimetic moth eye structures exhibiting inverse polarization phenomena at the Brewster angle,” Nanoscale 2(5), 799–805 (2010).
[Crossref] [PubMed]

L. Yang, Q. Feng, B. Ng, X. Luo, and M. Hong, “Hybrid moth-eye structures for enhanced broadband antireflection characteristics,” Appl. Phys. Express 3(10), 102602 (2010).
[Crossref]

Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. U.S.A. 107(41), 17491–17496 (2010).
[Crossref] [PubMed]

2008 (3)

D. Zhou and R. Biswas, “Photonic crystal enhanced light-trapping in thin film solar cells,” J. Appl. Phys. 103(9), 093102 (2008).
[Crossref]

D. Duché, L. Escoubas, J. J. Simon, P. Torchio, W. Vervisch, and F. Flory, “Slow Bloch modes for enhancing the absorption of light in thin films for photovoltaic cells,” Appl. Phys. Lett. 92(19), 193310 (2008).
[Crossref]

M. Agrawal and P. Peumans, “Broadband optical absorption enhancement through coherent light trapping in thin-film photovoltaic cells,” Opt. Express 16(8), 5385–5396 (2008).
[Crossref] [PubMed]

2006 (1)

L. Zeng, Y. Yi, C. Hong, J. Liu, N. Feng, X. Duan, L. C. Kimerling, and B. A. Alamariu, “Efficiency enhancement in Si solar cells by textured photonic crystal back reflector,” Appl. Phys. Lett. 89(11), 111111 (2006).
[Crossref]

2002 (1)

C. A. Gueymard, D. Myers, and K. Emery, “Proposed reference irradiance spectra for solar energy systems testing,” Sol. Energy 73(6), 443–467 (2002).
[Crossref]

2001 (1)

S. H. Zaidi, D. S. Ruby, and J. M. Gee, “Characterization of random reactive ion etched-textured silicon solar cells,” IEEE Trans. Electron Dev. 48(6), 1200–1206 (2001).
[Crossref]

Agrawal, M.

Alamariu, B. A.

L. Zeng, Y. Yi, C. Hong, J. Liu, N. Feng, X. Duan, L. C. Kimerling, and B. A. Alamariu, “Efficiency enhancement in Si solar cells by textured photonic crystal back reflector,” Appl. Phys. Lett. 89(11), 111111 (2006).
[Crossref]

Bao, H.

X. Fang, M. Lou, H. Bao, and C. Y. Zhao, “Thin films with disordered nanohole patterns for solar radiation absorbers,” J. Quant. Spectrosc. Radiat. Transf. 158, 145–153 (2015).
[Crossref]

X. Fang, C. Y. Zhao, and H. Bao, “Radiative behaviors of crystalline silicon nanowire and nanohole arrays for photovoltaic applications,” J. Quant. Spectrosc. Radiat. Transf. 133, 579–588 (2014).
[Crossref]

Beeri, O.

O. Beeri, O. Rotem, E. Hazan, E. A. Katz, A. Braun, and Y. Gelbstein, “Hybrid photovoltaic-thermoelectric system for concentrated solar energy conversion: Experimental realization and modeling,” J. Appl. Phys. 118(11), 115104 (2015).
[Crossref]

Bett, A. J.

Biswas, R.

D. Zhou and R. Biswas, “Photonic crystal enhanced light-trapping in thin film solar cells,” J. Appl. Phys. 103(9), 093102 (2008).
[Crossref]

Bittkau, K.

U. W. Paetzold, M. Smeets, M. Meier, K. Bittkau, T. Merdzhanova, V. Smirnov, D. Michaelis, C. Waechter, R. Carius, and U. Rau, “Disorder improves nanophotonic light trapping in thin-film solar cells,” Appl. Phys. Lett. 104(13), 131102 (2014).
[Crossref]

Bläsi, B.

Boriskina, S. V.

W. C. Hsu, J. K. Tong, M. S. Branham, Y. Huang, S. Yerci, S. V. Boriskina, and G. Chen, “Mismatched front and back gratings for optimum light trapping in ultra-thin crystalline silicon solar cells,” Opt. Commun. 377, 52–58 (2016).
[Crossref]

Branham, M. S.

W. C. Hsu, J. K. Tong, M. S. Branham, Y. Huang, S. Yerci, S. V. Boriskina, and G. Chen, “Mismatched front and back gratings for optimum light trapping in ultra-thin crystalline silicon solar cells,” Opt. Commun. 377, 52–58 (2016).
[Crossref]

Braun, A.

O. Beeri, O. Rotem, E. Hazan, E. A. Katz, A. Braun, and Y. Gelbstein, “Hybrid photovoltaic-thermoelectric system for concentrated solar energy conversion: Experimental realization and modeling,” J. Appl. Phys. 118(11), 115104 (2015).
[Crossref]

Burresi, M.

Carius, R.

U. W. Paetzold, M. Smeets, M. Meier, K. Bittkau, T. Merdzhanova, V. Smirnov, D. Michaelis, C. Waechter, R. Carius, and U. Rau, “Disorder improves nanophotonic light trapping in thin-film solar cells,” Appl. Phys. Lett. 104(13), 131102 (2014).
[Crossref]

Chen, G.

W. C. Hsu, J. K. Tong, M. S. Branham, Y. Huang, S. Yerci, S. V. Boriskina, and G. Chen, “Mismatched front and back gratings for optimum light trapping in ultra-thin crystalline silicon solar cells,” Opt. Commun. 377, 52–58 (2016).
[Crossref]

Chen, H. L.

S. Y. Chuang, H. L. Chen, J. Shieh, C. H. Lin, C. C. Cheng, H. W. Liu, and C. C. Yu, “Nanoscale of biomimetic moth eye structures exhibiting inverse polarization phenomena at the Brewster angle,” Nanoscale 2(5), 799–805 (2010).
[Crossref] [PubMed]

Chen, J.

Y. Wang, S. Su, T. Liu, G. Su, and J. Chen, “Performance evaluation and parametric optimum design of an updated thermionic-thermoelectric generator hybrid system,” Energy 90, 1575–1583 (2015).
[Crossref]

Chen, Z.

E. R. Martins, J. Li, Y. Liu, V. Depauw, Z. Chen, J. Zhou, and T. F. Krauss, “Deterministic quasi-random nanostructures for photon control,” Nat. Commun. 4, 2665 (2013).
[Crossref] [PubMed]

Cheng, C. C.

S. Y. Chuang, H. L. Chen, J. Shieh, C. H. Lin, C. C. Cheng, H. W. Liu, and C. C. Yu, “Nanoscale of biomimetic moth eye structures exhibiting inverse polarization phenomena at the Brewster angle,” Nanoscale 2(5), 799–805 (2010).
[Crossref] [PubMed]

Choi, M.

J. W. Leem, X. Y. Guan, M. Choi, and J. S. Yu, “Broadband and omnidirectional highly-transparent coverglasses coated with biomimetic moth-eye nanopatterned polymer films for solar photovoltaic system applications,” Sol. Energy Mater. Sol. Cells 134, 45–53 (2015).
[Crossref]

Chuang, S. Y.

S. Y. Chuang, H. L. Chen, J. Shieh, C. H. Lin, C. C. Cheng, H. W. Liu, and C. C. Yu, “Nanoscale of biomimetic moth eye structures exhibiting inverse polarization phenomena at the Brewster angle,” Nanoscale 2(5), 799–805 (2010).
[Crossref] [PubMed]

Cole, J. M.

X. Liu, P. R. Coxon, M. Peters, B. Hoex, J. M. Cole, and D. J. Fray, “Black silicon: fabrication methods, properties and solar energy applications,” Energy Environ. Sci. 7(10), 3223–3263 (2014).
[Crossref]

Coxon, P. R.

X. Liu, P. R. Coxon, M. Peters, B. Hoex, J. M. Cole, and D. J. Fray, “Black silicon: fabrication methods, properties and solar energy applications,” Energy Environ. Sci. 7(10), 3223–3263 (2014).
[Crossref]

Daif, O. E.

C. Trompoukis, O. E. Daif, V. Depauw, I. Gordon, and J. Poortmans, “Photonic assisted light trapping integrated in ultrathin crystalline silicon solar cells by nanoimprint lithography,” Appl. Phys. Lett. 101(10), 103901 (2012).
[Crossref]

Depauw, V.

E. R. Martins, J. Li, Y. Liu, V. Depauw, Z. Chen, J. Zhou, and T. F. Krauss, “Deterministic quasi-random nanostructures for photon control,” Nat. Commun. 4, 2665 (2013).
[Crossref] [PubMed]

C. Trompoukis, O. E. Daif, V. Depauw, I. Gordon, and J. Poortmans, “Photonic assisted light trapping integrated in ultrathin crystalline silicon solar cells by nanoimprint lithography,” Appl. Phys. Lett. 101(10), 103901 (2012).
[Crossref]

Ding, H.

Drouard, E.

Duan, X.

L. Zeng, Y. Yi, C. Hong, J. Liu, N. Feng, X. Duan, L. C. Kimerling, and B. A. Alamariu, “Efficiency enhancement in Si solar cells by textured photonic crystal back reflector,” Appl. Phys. Lett. 89(11), 111111 (2006).
[Crossref]

Duché, D.

D. Duché, L. Escoubas, J. J. Simon, P. Torchio, W. Vervisch, and F. Flory, “Slow Bloch modes for enhancing the absorption of light in thin films for photovoltaic cells,” Appl. Phys. Lett. 92(19), 193310 (2008).
[Crossref]

Dunlop, E. D.

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (Version 45),” Prog. Photovolt. Res. Appl. 23(1), 1–9 (2015).
[Crossref]

Eisenlohr, J.

Emery, K.

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (Version 45),” Prog. Photovolt. Res. Appl. 23(1), 1–9 (2015).
[Crossref]

C. A. Gueymard, D. Myers, and K. Emery, “Proposed reference irradiance spectra for solar energy systems testing,” Sol. Energy 73(6), 443–467 (2002).
[Crossref]

Escoubas, L.

D. Duché, L. Escoubas, J. J. Simon, P. Torchio, W. Vervisch, and F. Flory, “Slow Bloch modes for enhancing the absorption of light in thin films for photovoltaic cells,” Appl. Phys. Lett. 92(19), 193310 (2008).
[Crossref]

Fan, R.

R. Fan, L. Zhu, R. Peng, X. Huang, D. Qi, X. Ren, Q. Hu, and M. Wang, “Broadband antireflection and light-trapping enhancement of plasmonic solar cells,” Phys. Rev. B 87(19), 195444 (2013).
[Crossref]

Fan, S.

Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. U.S.A. 107(41), 17491–17496 (2010).
[Crossref] [PubMed]

Fang, X.

X. Fang, M. Lou, H. Bao, and C. Y. Zhao, “Thin films with disordered nanohole patterns for solar radiation absorbers,” J. Quant. Spectrosc. Radiat. Transf. 158, 145–153 (2015).
[Crossref]

X. Fang, C. Y. Zhao, and H. Bao, “Radiative behaviors of crystalline silicon nanowire and nanohole arrays for photovoltaic applications,” J. Quant. Spectrosc. Radiat. Transf. 133, 579–588 (2014).
[Crossref]

Fave, A.

Feng, N.

L. Zeng, Y. Yi, C. Hong, J. Liu, N. Feng, X. Duan, L. C. Kimerling, and B. A. Alamariu, “Efficiency enhancement in Si solar cells by textured photonic crystal back reflector,” Appl. Phys. Lett. 89(11), 111111 (2006).
[Crossref]

Feng, Q.

L. Yang, Q. Feng, B. Ng, X. Luo, and M. Hong, “Hybrid moth-eye structures for enhanced broadband antireflection characteristics,” Appl. Phys. Express 3(10), 102602 (2010).
[Crossref]

Flamant, G.

X. Ju, Z. Wang, G. Flamant, P. Li, and W. Zhao, “Numerical analysis and optimization of a spectrum splitting concentration photovoltaic–thermoelectric hybrid system,” Sol. Energy 86(6), 1941–1954 (2012).
[Crossref]

Flory, F.

D. Duché, L. Escoubas, J. J. Simon, P. Torchio, W. Vervisch, and F. Flory, “Slow Bloch modes for enhancing the absorption of light in thin films for photovoltaic cells,” Appl. Phys. Lett. 92(19), 193310 (2008).
[Crossref]

Fray, D. J.

X. Liu, P. R. Coxon, M. Peters, B. Hoex, J. M. Cole, and D. J. Fray, “Black silicon: fabrication methods, properties and solar energy applications,” Energy Environ. Sci. 7(10), 3223–3263 (2014).
[Crossref]

Fu, Y. H.

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun. 4, 1527 (2013).
[Crossref] [PubMed]

Gee, J. M.

S. H. Zaidi, D. S. Ruby, and J. M. Gee, “Characterization of random reactive ion etched-textured silicon solar cells,” IEEE Trans. Electron Dev. 48(6), 1200–1206 (2001).
[Crossref]

Gelbstein, Y.

O. Beeri, O. Rotem, E. Hazan, E. A. Katz, A. Braun, and Y. Gelbstein, “Hybrid photovoltaic-thermoelectric system for concentrated solar energy conversion: Experimental realization and modeling,” J. Appl. Phys. 118(11), 115104 (2015).
[Crossref]

Goldschmidt, J. C.

Gomard, G.

R. Peretti, G. Gomard, L. Lalouat, C. Seassal, and E. Drouard, “Absorption control in pseudodisordered photonic-crystal thin films,” Phys. Rev. A 88(5), 053835 (2013).
[Crossref]

X. Meng, E. Drouard, G. Gomard, R. Peretti, A. Fave, and C. Seassal, “Combined front and back diffraction gratings for broad band light trapping in thin film solar cell,” Opt. Express 20(105), A560–A571 (2012).
[Crossref] [PubMed]

Gonzalez-Acevedo, B.

Gordon, I.

C. Trompoukis, O. E. Daif, V. Depauw, I. Gordon, and J. Poortmans, “Photonic assisted light trapping integrated in ultrathin crystalline silicon solar cells by nanoimprint lithography,” Appl. Phys. Lett. 101(10), 103901 (2012).
[Crossref]

Green, M. A.

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (Version 45),” Prog. Photovolt. Res. Appl. 23(1), 1–9 (2015).
[Crossref]

Gu, M.

Guan, X. Y.

J. W. Leem, X. Y. Guan, M. Choi, and J. S. Yu, “Broadband and omnidirectional highly-transparent coverglasses coated with biomimetic moth-eye nanopatterned polymer films for solar photovoltaic system applications,” Sol. Energy Mater. Sol. Cells 134, 45–53 (2015).
[Crossref]

Gueymard, C. A.

C. A. Gueymard, D. Myers, and K. Emery, “Proposed reference irradiance spectra for solar energy systems testing,” Sol. Energy 73(6), 443–467 (2002).
[Crossref]

Hajimirza, S.

S. Hajimirza and J. R. Howell, “Computational and experimental study of a multi-layer absorptivity enhanced thin film silicon solar cell,” J. Quant. Spectrosc. Radiat. Transf. 143, 56–62 (2014).
[Crossref]

Hazan, E.

O. Beeri, O. Rotem, E. Hazan, E. A. Katz, A. Braun, and Y. Gelbstein, “Hybrid photovoltaic-thermoelectric system for concentrated solar energy conversion: Experimental realization and modeling,” J. Appl. Phys. 118(11), 115104 (2015).
[Crossref]

Heo, J. H.

J. H. Noh, S. H. Im, J. H. Heo, T. N. Mandal, and S. I. Seok, “Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells,” Nano Lett. 13(4), 1764–1769 (2013).
[Crossref] [PubMed]

Hishikawa, Y.

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (Version 45),” Prog. Photovolt. Res. Appl. 23(1), 1–9 (2015).
[Crossref]

Hoex, B.

X. Liu, P. R. Coxon, M. Peters, B. Hoex, J. M. Cole, and D. J. Fray, “Black silicon: fabrication methods, properties and solar energy applications,” Energy Environ. Sci. 7(10), 3223–3263 (2014).
[Crossref]

Höhn, O.

Hong, C.

L. Zeng, Y. Yi, C. Hong, J. Liu, N. Feng, X. Duan, L. C. Kimerling, and B. A. Alamariu, “Efficiency enhancement in Si solar cells by textured photonic crystal back reflector,” Appl. Phys. Lett. 89(11), 111111 (2006).
[Crossref]

Hong, H.

D. Li, Y. Xuan, Q. Li, and H. Hong, “Exergy and energy analysis of photovoltaic-thermoelectric hybrid systems,” Energy 126, 343–351 (2017).
[Crossref]

Hong, M.

L. Yang, Q. Feng, B. Ng, X. Luo, and M. Hong, “Hybrid moth-eye structures for enhanced broadband antireflection characteristics,” Appl. Phys. Express 3(10), 102602 (2010).
[Crossref]

Howell, J. R.

S. Hajimirza and J. R. Howell, “Computational and experimental study of a multi-layer absorptivity enhanced thin film silicon solar cell,” J. Quant. Spectrosc. Radiat. Transf. 143, 56–62 (2014).
[Crossref]

Hsu, W. C.

W. C. Hsu, J. K. Tong, M. S. Branham, Y. Huang, S. Yerci, S. V. Boriskina, and G. Chen, “Mismatched front and back gratings for optimum light trapping in ultra-thin crystalline silicon solar cells,” Opt. Commun. 377, 52–58 (2016).
[Crossref]

Hu, Q.

R. Fan, L. Zhu, R. Peng, X. Huang, D. Qi, X. Ren, Q. Hu, and M. Wang, “Broadband antireflection and light-trapping enhancement of plasmonic solar cells,” Phys. Rev. B 87(19), 195444 (2013).
[Crossref]

Huang, X.

R. Fan, L. Zhu, R. Peng, X. Huang, D. Qi, X. Ren, Q. Hu, and M. Wang, “Broadband antireflection and light-trapping enhancement of plasmonic solar cells,” Phys. Rev. B 87(19), 195444 (2013).
[Crossref]

Huang, Y.

W. C. Hsu, J. K. Tong, M. S. Branham, Y. Huang, S. Yerci, S. V. Boriskina, and G. Chen, “Mismatched front and back gratings for optimum light trapping in ultra-thin crystalline silicon solar cells,” Opt. Commun. 377, 52–58 (2016).
[Crossref]

Im, S. H.

J. H. Noh, S. H. Im, J. H. Heo, T. N. Mandal, and S. I. Seok, “Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells,” Nano Lett. 13(4), 1764–1769 (2013).
[Crossref] [PubMed]

Jang, S. J.

Y. M. Song, S. J. Jang, J. S. Yu, and Y. T. Lee, “Bioinspired parabola subwavelength structures for improved broadband antireflection,” Small 6(9), 984–987 (2010).
[Crossref] [PubMed]

Ji, S.

S. Ji, K. Song, T. B. Nguyen, N. Kim, and H. Lim, “Optimal moth eye nanostructure array on transparent glass towards broadband antireflection,” ACS Appl. Mater. Interfaces 5(21), 10731–10737 (2013).
[Crossref] [PubMed]

Jia, B.

Ju, X.

X. Ju, Z. Wang, G. Flamant, P. Li, and W. Zhao, “Numerical analysis and optimization of a spectrum splitting concentration photovoltaic–thermoelectric hybrid system,” Sol. Energy 86(6), 1941–1954 (2012).
[Crossref]

Katz, E. A.

O. Beeri, O. Rotem, E. Hazan, E. A. Katz, A. Braun, and Y. Gelbstein, “Hybrid photovoltaic-thermoelectric system for concentrated solar energy conversion: Experimental realization and modeling,” J. Appl. Phys. 118(11), 115104 (2015).
[Crossref]

Kim, N.

S. Ji, K. Song, T. B. Nguyen, N. Kim, and H. Lim, “Optimal moth eye nanostructure array on transparent glass towards broadband antireflection,” ACS Appl. Mater. Interfaces 5(21), 10731–10737 (2013).
[Crossref] [PubMed]

Kimerling, L. C.

L. Zeng, Y. Yi, C. Hong, J. Liu, N. Feng, X. Duan, L. C. Kimerling, and B. A. Alamariu, “Efficiency enhancement in Si solar cells by textured photonic crystal back reflector,” Appl. Phys. Lett. 89(11), 111111 (2006).
[Crossref]

Ko, Y. H.

Krauss, T. F.

E. R. Martins, J. Li, Y. Liu, V. Depauw, Z. Chen, J. Zhou, and T. F. Krauss, “Deterministic quasi-random nanostructures for photon control,” Nat. Commun. 4, 2665 (2013).
[Crossref] [PubMed]

Kristensson, G.

G. Kristensson, “Coherent scattering by a collection of randomly located obstacles – an alternative integral equation formulation,” J. Quant. Spectrosc. Radiat. Transf. 164, 97–108 (2015).
[Crossref]

Kuznetsov, A. I.

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun. 4, 1527 (2013).
[Crossref] [PubMed]

Lalouat, L.

Lee, Y. T.

Y. M. Song, S. J. Jang, J. S. Yu, and Y. T. Lee, “Bioinspired parabola subwavelength structures for improved broadband antireflection,” Small 6(9), 984–987 (2010).
[Crossref] [PubMed]

Leem, J. W.

J. W. Leem, X. Y. Guan, M. Choi, and J. S. Yu, “Broadband and omnidirectional highly-transparent coverglasses coated with biomimetic moth-eye nanopatterned polymer films for solar photovoltaic system applications,” Sol. Energy Mater. Sol. Cells 134, 45–53 (2015).
[Crossref]

Li, D.

D. Li, Y. Xuan, Q. Li, and H. Hong, “Exergy and energy analysis of photovoltaic-thermoelectric hybrid systems,” Energy 126, 343–351 (2017).
[Crossref]

Li, J.

E. R. Martins, J. Li, Y. Liu, V. Depauw, Z. Chen, J. Zhou, and T. F. Krauss, “Deterministic quasi-random nanostructures for photon control,” Nat. Commun. 4, 2665 (2013).
[Crossref] [PubMed]

Li, P.

X. Ju, Z. Wang, G. Flamant, P. Li, and W. Zhao, “Numerical analysis and optimization of a spectrum splitting concentration photovoltaic–thermoelectric hybrid system,” Sol. Energy 86(6), 1941–1954 (2012).
[Crossref]

Li, Q.

D. Li, Y. Xuan, Q. Li, and H. Hong, “Exergy and energy analysis of photovoltaic-thermoelectric hybrid systems,” Energy 126, 343–351 (2017).
[Crossref]

Lim, H.

S. Ji, K. Song, T. B. Nguyen, N. Kim, and H. Lim, “Optimal moth eye nanostructure array on transparent glass towards broadband antireflection,” ACS Appl. Mater. Interfaces 5(21), 10731–10737 (2013).
[Crossref] [PubMed]

Lin, C. H.

S. Y. Chuang, H. L. Chen, J. Shieh, C. H. Lin, C. C. Cheng, H. W. Liu, and C. C. Yu, “Nanoscale of biomimetic moth eye structures exhibiting inverse polarization phenomena at the Brewster angle,” Nanoscale 2(5), 799–805 (2010).
[Crossref] [PubMed]

Liu, H. W.

S. Y. Chuang, H. L. Chen, J. Shieh, C. H. Lin, C. C. Cheng, H. W. Liu, and C. C. Yu, “Nanoscale of biomimetic moth eye structures exhibiting inverse polarization phenomena at the Brewster angle,” Nanoscale 2(5), 799–805 (2010).
[Crossref] [PubMed]

Liu, J.

L. Zeng, Y. Yi, C. Hong, J. Liu, N. Feng, X. Duan, L. C. Kimerling, and B. A. Alamariu, “Efficiency enhancement in Si solar cells by textured photonic crystal back reflector,” Appl. Phys. Lett. 89(11), 111111 (2006).
[Crossref]

Liu, T.

Y. Wang, S. Su, T. Liu, G. Su, and J. Chen, “Performance evaluation and parametric optimum design of an updated thermionic-thermoelectric generator hybrid system,” Energy 90, 1575–1583 (2015).
[Crossref]

Liu, X.

X. Liu, P. R. Coxon, M. Peters, B. Hoex, J. M. Cole, and D. J. Fray, “Black silicon: fabrication methods, properties and solar energy applications,” Energy Environ. Sci. 7(10), 3223–3263 (2014).
[Crossref]

Liu, Y.

E. R. Martins, J. Li, Y. Liu, V. Depauw, Z. Chen, J. Zhou, and T. F. Krauss, “Deterministic quasi-random nanostructures for photon control,” Nat. Commun. 4, 2665 (2013).
[Crossref] [PubMed]

Loiko, V. A.

A. A. Miskevich and V. A. Loiko, “Solar cells based on particulate structure of active layer: Investigation of light absorption by an ordered system of spherical submicron silicon particles,” J. Quant. Spectrosc. Radiat. Transf. 167, 23–39 (2015).
[Crossref]

Lou, M.

X. Fang, M. Lou, H. Bao, and C. Y. Zhao, “Thin films with disordered nanohole patterns for solar radiation absorbers,” J. Quant. Spectrosc. Radiat. Transf. 158, 145–153 (2015).
[Crossref]

Luk’yanchuk, B.

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun. 4, 1527 (2013).
[Crossref] [PubMed]

Luo, X.

L. Yang, Q. Feng, B. Ng, X. Luo, and M. Hong, “Hybrid moth-eye structures for enhanced broadband antireflection characteristics,” Appl. Phys. Express 3(10), 102602 (2010).
[Crossref]

Mandal, T. N.

J. H. Noh, S. H. Im, J. H. Heo, T. N. Mandal, and S. I. Seok, “Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells,” Nano Lett. 13(4), 1764–1769 (2013).
[Crossref] [PubMed]

Martins, E. R.

E. R. Martins, J. Li, Y. Liu, V. Depauw, Z. Chen, J. Zhou, and T. F. Krauss, “Deterministic quasi-random nanostructures for photon control,” Nat. Commun. 4, 2665 (2013).
[Crossref] [PubMed]

Meier, M.

U. W. Paetzold, M. Smeets, M. Meier, K. Bittkau, T. Merdzhanova, V. Smirnov, D. Michaelis, C. Waechter, R. Carius, and U. Rau, “Disorder improves nanophotonic light trapping in thin-film solar cells,” Appl. Phys. Lett. 104(13), 131102 (2014).
[Crossref]

Meng, X.

Merdzhanova, T.

U. W. Paetzold, M. Smeets, M. Meier, K. Bittkau, T. Merdzhanova, V. Smirnov, D. Michaelis, C. Waechter, R. Carius, and U. Rau, “Disorder improves nanophotonic light trapping in thin-film solar cells,” Appl. Phys. Lett. 104(13), 131102 (2014).
[Crossref]

Michaelis, D.

U. W. Paetzold, M. Smeets, M. Meier, K. Bittkau, T. Merdzhanova, V. Smirnov, D. Michaelis, C. Waechter, R. Carius, and U. Rau, “Disorder improves nanophotonic light trapping in thin-film solar cells,” Appl. Phys. Lett. 104(13), 131102 (2014).
[Crossref]

Miroshnichenko, A. E.

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun. 4, 1527 (2013).
[Crossref] [PubMed]

Miskevich, A. A.

A. A. Miskevich and V. A. Loiko, “Solar cells based on particulate structure of active layer: Investigation of light absorption by an ordered system of spherical submicron silicon particles,” J. Quant. Spectrosc. Radiat. Transf. 167, 23–39 (2015).
[Crossref]

Myers, D.

C. A. Gueymard, D. Myers, and K. Emery, “Proposed reference irradiance spectra for solar energy systems testing,” Sol. Energy 73(6), 443–467 (2002).
[Crossref]

Ng, B.

L. Yang, Q. Feng, B. Ng, X. Luo, and M. Hong, “Hybrid moth-eye structures for enhanced broadband antireflection characteristics,” Appl. Phys. Express 3(10), 102602 (2010).
[Crossref]

Nguyen, T. B.

S. Ji, K. Song, T. B. Nguyen, N. Kim, and H. Lim, “Optimal moth eye nanostructure array on transparent glass towards broadband antireflection,” ACS Appl. Mater. Interfaces 5(21), 10731–10737 (2013).
[Crossref] [PubMed]

Noh, J. H.

J. H. Noh, S. H. Im, J. H. Heo, T. N. Mandal, and S. I. Seok, “Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells,” Nano Lett. 13(4), 1764–1769 (2013).
[Crossref] [PubMed]

Orobtchouk, R.

Ouyang, Z.

Paetzold, U. W.

U. W. Paetzold, M. Smeets, M. Meier, K. Bittkau, T. Merdzhanova, V. Smirnov, D. Michaelis, C. Waechter, R. Carius, and U. Rau, “Disorder improves nanophotonic light trapping in thin-film solar cells,” Appl. Phys. Lett. 104(13), 131102 (2014).
[Crossref]

Peng, R.

R. Fan, L. Zhu, R. Peng, X. Huang, D. Qi, X. Ren, Q. Hu, and M. Wang, “Broadband antireflection and light-trapping enhancement of plasmonic solar cells,” Phys. Rev. B 87(19), 195444 (2013).
[Crossref]

Peretti, R.

R. Peretti, G. Gomard, L. Lalouat, C. Seassal, and E. Drouard, “Absorption control in pseudodisordered photonic-crystal thin films,” Phys. Rev. A 88(5), 053835 (2013).
[Crossref]

X. Meng, E. Drouard, G. Gomard, R. Peretti, A. Fave, and C. Seassal, “Combined front and back diffraction gratings for broad band light trapping in thin film solar cell,” Opt. Express 20(105), A560–A571 (2012).
[Crossref] [PubMed]

Peters, M.

X. Liu, P. R. Coxon, M. Peters, B. Hoex, J. M. Cole, and D. J. Fray, “Black silicon: fabrication methods, properties and solar energy applications,” Energy Environ. Sci. 7(10), 3223–3263 (2014).
[Crossref]

Peumans, P.

Poortmans, J.

C. Trompoukis, O. E. Daif, V. Depauw, I. Gordon, and J. Poortmans, “Photonic assisted light trapping integrated in ultrathin crystalline silicon solar cells by nanoimprint lithography,” Appl. Phys. Lett. 101(10), 103901 (2012).
[Crossref]

Pratesi, F.

Qi, D.

R. Fan, L. Zhu, R. Peng, X. Huang, D. Qi, X. Ren, Q. Hu, and M. Wang, “Broadband antireflection and light-trapping enhancement of plasmonic solar cells,” Phys. Rev. B 87(19), 195444 (2013).
[Crossref]

Raman, A.

Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. U.S.A. 107(41), 17491–17496 (2010).
[Crossref] [PubMed]

Rau, U.

U. W. Paetzold, M. Smeets, M. Meier, K. Bittkau, T. Merdzhanova, V. Smirnov, D. Michaelis, C. Waechter, R. Carius, and U. Rau, “Disorder improves nanophotonic light trapping in thin-film solar cells,” Appl. Phys. Lett. 104(13), 131102 (2014).
[Crossref]

Ren, X.

R. Fan, L. Zhu, R. Peng, X. Huang, D. Qi, X. Ren, Q. Hu, and M. Wang, “Broadband antireflection and light-trapping enhancement of plasmonic solar cells,” Phys. Rev. B 87(19), 195444 (2013).
[Crossref]

Repo, P.

Riboli, F.

Rotem, O.

O. Beeri, O. Rotem, E. Hazan, E. A. Katz, A. Braun, and Y. Gelbstein, “Hybrid photovoltaic-thermoelectric system for concentrated solar energy conversion: Experimental realization and modeling,” J. Appl. Phys. 118(11), 115104 (2015).
[Crossref]

Ruby, D. S.

S. H. Zaidi, D. S. Ruby, and J. M. Gee, “Characterization of random reactive ion etched-textured silicon solar cells,” IEEE Trans. Electron Dev. 48(6), 1200–1206 (2001).
[Crossref]

Savin, H.

Seassal, C.

Seok, S. I.

J. H. Noh, S. H. Im, J. H. Heo, T. N. Mandal, and S. I. Seok, “Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells,” Nano Lett. 13(4), 1764–1769 (2013).
[Crossref] [PubMed]

Shieh, J.

S. Y. Chuang, H. L. Chen, J. Shieh, C. H. Lin, C. C. Cheng, H. W. Liu, and C. C. Yu, “Nanoscale of biomimetic moth eye structures exhibiting inverse polarization phenomena at the Brewster angle,” Nanoscale 2(5), 799–805 (2010).
[Crossref] [PubMed]

Simon, J. J.

D. Duché, L. Escoubas, J. J. Simon, P. Torchio, W. Vervisch, and F. Flory, “Slow Bloch modes for enhancing the absorption of light in thin films for photovoltaic cells,” Appl. Phys. Lett. 92(19), 193310 (2008).
[Crossref]

Smeets, M.

U. W. Paetzold, M. Smeets, M. Meier, K. Bittkau, T. Merdzhanova, V. Smirnov, D. Michaelis, C. Waechter, R. Carius, and U. Rau, “Disorder improves nanophotonic light trapping in thin-film solar cells,” Appl. Phys. Lett. 104(13), 131102 (2014).
[Crossref]

Smirnov, V.

U. W. Paetzold, M. Smeets, M. Meier, K. Bittkau, T. Merdzhanova, V. Smirnov, D. Michaelis, C. Waechter, R. Carius, and U. Rau, “Disorder improves nanophotonic light trapping in thin-film solar cells,” Appl. Phys. Lett. 104(13), 131102 (2014).
[Crossref]

Song, K.

S. Ji, K. Song, T. B. Nguyen, N. Kim, and H. Lim, “Optimal moth eye nanostructure array on transparent glass towards broadband antireflection,” ACS Appl. Mater. Interfaces 5(21), 10731–10737 (2013).
[Crossref] [PubMed]

Song, Y. M.

Y. M. Song, S. J. Jang, J. S. Yu, and Y. T. Lee, “Bioinspired parabola subwavelength structures for improved broadband antireflection,” Small 6(9), 984–987 (2010).
[Crossref] [PubMed]

Su, G.

Y. Wang, S. Su, T. Liu, G. Su, and J. Chen, “Performance evaluation and parametric optimum design of an updated thermionic-thermoelectric generator hybrid system,” Energy 90, 1575–1583 (2015).
[Crossref]

Su, S.

Y. Wang, S. Su, T. Liu, G. Su, and J. Chen, “Performance evaluation and parametric optimum design of an updated thermionic-thermoelectric generator hybrid system,” Energy 90, 1575–1583 (2015).
[Crossref]

Tong, J. K.

W. C. Hsu, J. K. Tong, M. S. Branham, Y. Huang, S. Yerci, S. V. Boriskina, and G. Chen, “Mismatched front and back gratings for optimum light trapping in ultra-thin crystalline silicon solar cells,” Opt. Commun. 377, 52–58 (2016).
[Crossref]

Torchio, P.

D. Duché, L. Escoubas, J. J. Simon, P. Torchio, W. Vervisch, and F. Flory, “Slow Bloch modes for enhancing the absorption of light in thin films for photovoltaic cells,” Appl. Phys. Lett. 92(19), 193310 (2008).
[Crossref]

Trompoukis, C.

C. Trompoukis, O. E. Daif, V. Depauw, I. Gordon, and J. Poortmans, “Photonic assisted light trapping integrated in ultrathin crystalline silicon solar cells by nanoimprint lithography,” Appl. Phys. Lett. 101(10), 103901 (2012).
[Crossref]

van Sark, W. G. J. H. M.

W. G. J. H. M. van Sark, “Feasibility of photovoltaic–thermoelectric hybrid modules,” Appl. Energy 88(8), 2785–2790 (2011).
[Crossref]

Vervisch, W.

D. Duché, L. Escoubas, J. J. Simon, P. Torchio, W. Vervisch, and F. Flory, “Slow Bloch modes for enhancing the absorption of light in thin films for photovoltaic cells,” Appl. Phys. Lett. 92(19), 193310 (2008).
[Crossref]

Vynck, K.

Waechter, C.

U. W. Paetzold, M. Smeets, M. Meier, K. Bittkau, T. Merdzhanova, V. Smirnov, D. Michaelis, C. Waechter, R. Carius, and U. Rau, “Disorder improves nanophotonic light trapping in thin-film solar cells,” Appl. Phys. Lett. 104(13), 131102 (2014).
[Crossref]

Wang, M.

R. Fan, L. Zhu, R. Peng, X. Huang, D. Qi, X. Ren, Q. Hu, and M. Wang, “Broadband antireflection and light-trapping enhancement of plasmonic solar cells,” Phys. Rev. B 87(19), 195444 (2013).
[Crossref]

Wang, Y.

Y. Wang, S. Su, T. Liu, G. Su, and J. Chen, “Performance evaluation and parametric optimum design of an updated thermionic-thermoelectric generator hybrid system,” Energy 90, 1575–1583 (2015).
[Crossref]

Wang, Z.

X. Ju, Z. Wang, G. Flamant, P. Li, and W. Zhao, “Numerical analysis and optimization of a spectrum splitting concentration photovoltaic–thermoelectric hybrid system,” Sol. Energy 86(6), 1941–1954 (2012).
[Crossref]

Warta, W.

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (Version 45),” Prog. Photovolt. Res. Appl. 23(1), 1–9 (2015).
[Crossref]

Wiersma, D. S.

Xie, S.

Xuan, Y.

D. Li, Y. Xuan, Q. Li, and H. Hong, “Exergy and energy analysis of photovoltaic-thermoelectric hybrid systems,” Energy 126, 343–351 (2017).
[Crossref]

Y. Zhang and Y. Xuan, “Biomimetic omnidirectional broadband structured surface for photon management in photovoltaic-thermoelectric hybrid systems,” Sol. Energy Mater. Sol. Cells 144, 68–77 (2016).
[Crossref]

Yang, L.

L. Yang, Q. Feng, B. Ng, X. Luo, and M. Hong, “Hybrid moth-eye structures for enhanced broadband antireflection characteristics,” Appl. Phys. Express 3(10), 102602 (2010).
[Crossref]

Yerci, S.

W. C. Hsu, J. K. Tong, M. S. Branham, Y. Huang, S. Yerci, S. V. Boriskina, and G. Chen, “Mismatched front and back gratings for optimum light trapping in ultra-thin crystalline silicon solar cells,” Opt. Commun. 377, 52–58 (2016).
[Crossref]

Yi, Y.

L. Zeng, Y. Yi, C. Hong, J. Liu, N. Feng, X. Duan, L. C. Kimerling, and B. A. Alamariu, “Efficiency enhancement in Si solar cells by textured photonic crystal back reflector,” Appl. Phys. Lett. 89(11), 111111 (2006).
[Crossref]

Yu, C. C.

S. Y. Chuang, H. L. Chen, J. Shieh, C. H. Lin, C. C. Cheng, H. W. Liu, and C. C. Yu, “Nanoscale of biomimetic moth eye structures exhibiting inverse polarization phenomena at the Brewster angle,” Nanoscale 2(5), 799–805 (2010).
[Crossref] [PubMed]

Yu, J. S.

J. W. Leem, X. Y. Guan, M. Choi, and J. S. Yu, “Broadband and omnidirectional highly-transparent coverglasses coated with biomimetic moth-eye nanopatterned polymer films for solar photovoltaic system applications,” Sol. Energy Mater. Sol. Cells 134, 45–53 (2015).
[Crossref]

Y. H. Ko and J. S. Yu, “Design of hemi-urchin shaped ZnO nanostructures for broadband and wide-angle antireflection coatings,” Opt. Express 19(1), 297–305 (2011).
[Crossref] [PubMed]

Y. M. Song, S. J. Jang, J. S. Yu, and Y. T. Lee, “Bioinspired parabola subwavelength structures for improved broadband antireflection,” Small 6(9), 984–987 (2010).
[Crossref] [PubMed]

Yu, Y. F.

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun. 4, 1527 (2013).
[Crossref] [PubMed]

Yu, Z.

Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. U.S.A. 107(41), 17491–17496 (2010).
[Crossref] [PubMed]

Zaidi, S. H.

S. H. Zaidi, D. S. Ruby, and J. M. Gee, “Characterization of random reactive ion etched-textured silicon solar cells,” IEEE Trans. Electron Dev. 48(6), 1200–1206 (2001).
[Crossref]

Zeng, L.

L. Zeng, Y. Yi, C. Hong, J. Liu, N. Feng, X. Duan, L. C. Kimerling, and B. A. Alamariu, “Efficiency enhancement in Si solar cells by textured photonic crystal back reflector,” Appl. Phys. Lett. 89(11), 111111 (2006).
[Crossref]

Zhang, Y.

Y. Zhang and Y. Xuan, “Biomimetic omnidirectional broadband structured surface for photon management in photovoltaic-thermoelectric hybrid systems,” Sol. Energy Mater. Sol. Cells 144, 68–77 (2016).
[Crossref]

Y. Zhang, B. Jia, and M. Gu, “Biomimetic and plasmonic hybrid light trapping for highly efficient ultrathin crystalline silicon solar cells,” Opt. Express 24(6), A506–A514 (2016).
[Crossref] [PubMed]

Zhao, C. Y.

X. Fang, M. Lou, H. Bao, and C. Y. Zhao, “Thin films with disordered nanohole patterns for solar radiation absorbers,” J. Quant. Spectrosc. Radiat. Transf. 158, 145–153 (2015).
[Crossref]

X. Fang, C. Y. Zhao, and H. Bao, “Radiative behaviors of crystalline silicon nanowire and nanohole arrays for photovoltaic applications,” J. Quant. Spectrosc. Radiat. Transf. 133, 579–588 (2014).
[Crossref]

Zhao, W.

X. Ju, Z. Wang, G. Flamant, P. Li, and W. Zhao, “Numerical analysis and optimization of a spectrum splitting concentration photovoltaic–thermoelectric hybrid system,” Sol. Energy 86(6), 1941–1954 (2012).
[Crossref]

Zhou, D.

D. Zhou and R. Biswas, “Photonic crystal enhanced light-trapping in thin film solar cells,” J. Appl. Phys. 103(9), 093102 (2008).
[Crossref]

Zhou, J.

E. R. Martins, J. Li, Y. Liu, V. Depauw, Z. Chen, J. Zhou, and T. F. Krauss, “Deterministic quasi-random nanostructures for photon control,” Nat. Commun. 4, 2665 (2013).
[Crossref] [PubMed]

Zhu, L.

R. Fan, L. Zhu, R. Peng, X. Huang, D. Qi, X. Ren, Q. Hu, and M. Wang, “Broadband antireflection and light-trapping enhancement of plasmonic solar cells,” Phys. Rev. B 87(19), 195444 (2013).
[Crossref]

ACS Appl. Mater. Interfaces (1)

S. Ji, K. Song, T. B. Nguyen, N. Kim, and H. Lim, “Optimal moth eye nanostructure array on transparent glass towards broadband antireflection,” ACS Appl. Mater. Interfaces 5(21), 10731–10737 (2013).
[Crossref] [PubMed]

Appl. Energy (1)

W. G. J. H. M. van Sark, “Feasibility of photovoltaic–thermoelectric hybrid modules,” Appl. Energy 88(8), 2785–2790 (2011).
[Crossref]

Appl. Phys. Express (1)

L. Yang, Q. Feng, B. Ng, X. Luo, and M. Hong, “Hybrid moth-eye structures for enhanced broadband antireflection characteristics,” Appl. Phys. Express 3(10), 102602 (2010).
[Crossref]

Appl. Phys. Lett. (4)

U. W. Paetzold, M. Smeets, M. Meier, K. Bittkau, T. Merdzhanova, V. Smirnov, D. Michaelis, C. Waechter, R. Carius, and U. Rau, “Disorder improves nanophotonic light trapping in thin-film solar cells,” Appl. Phys. Lett. 104(13), 131102 (2014).
[Crossref]

L. Zeng, Y. Yi, C. Hong, J. Liu, N. Feng, X. Duan, L. C. Kimerling, and B. A. Alamariu, “Efficiency enhancement in Si solar cells by textured photonic crystal back reflector,” Appl. Phys. Lett. 89(11), 111111 (2006).
[Crossref]

D. Duché, L. Escoubas, J. J. Simon, P. Torchio, W. Vervisch, and F. Flory, “Slow Bloch modes for enhancing the absorption of light in thin films for photovoltaic cells,” Appl. Phys. Lett. 92(19), 193310 (2008).
[Crossref]

C. Trompoukis, O. E. Daif, V. Depauw, I. Gordon, and J. Poortmans, “Photonic assisted light trapping integrated in ultrathin crystalline silicon solar cells by nanoimprint lithography,” Appl. Phys. Lett. 101(10), 103901 (2012).
[Crossref]

Energy (2)

Y. Wang, S. Su, T. Liu, G. Su, and J. Chen, “Performance evaluation and parametric optimum design of an updated thermionic-thermoelectric generator hybrid system,” Energy 90, 1575–1583 (2015).
[Crossref]

D. Li, Y. Xuan, Q. Li, and H. Hong, “Exergy and energy analysis of photovoltaic-thermoelectric hybrid systems,” Energy 126, 343–351 (2017).
[Crossref]

Energy Environ. Sci. (1)

X. Liu, P. R. Coxon, M. Peters, B. Hoex, J. M. Cole, and D. J. Fray, “Black silicon: fabrication methods, properties and solar energy applications,” Energy Environ. Sci. 7(10), 3223–3263 (2014).
[Crossref]

IEEE Trans. Electron Dev. (1)

S. H. Zaidi, D. S. Ruby, and J. M. Gee, “Characterization of random reactive ion etched-textured silicon solar cells,” IEEE Trans. Electron Dev. 48(6), 1200–1206 (2001).
[Crossref]

J. Appl. Phys. (2)

D. Zhou and R. Biswas, “Photonic crystal enhanced light-trapping in thin film solar cells,” J. Appl. Phys. 103(9), 093102 (2008).
[Crossref]

O. Beeri, O. Rotem, E. Hazan, E. A. Katz, A. Braun, and Y. Gelbstein, “Hybrid photovoltaic-thermoelectric system for concentrated solar energy conversion: Experimental realization and modeling,” J. Appl. Phys. 118(11), 115104 (2015).
[Crossref]

J. Quant. Spectrosc. Radiat. Transf. (5)

X. Fang, M. Lou, H. Bao, and C. Y. Zhao, “Thin films with disordered nanohole patterns for solar radiation absorbers,” J. Quant. Spectrosc. Radiat. Transf. 158, 145–153 (2015).
[Crossref]

A. A. Miskevich and V. A. Loiko, “Solar cells based on particulate structure of active layer: Investigation of light absorption by an ordered system of spherical submicron silicon particles,” J. Quant. Spectrosc. Radiat. Transf. 167, 23–39 (2015).
[Crossref]

S. Hajimirza and J. R. Howell, “Computational and experimental study of a multi-layer absorptivity enhanced thin film silicon solar cell,” J. Quant. Spectrosc. Radiat. Transf. 143, 56–62 (2014).
[Crossref]

X. Fang, C. Y. Zhao, and H. Bao, “Radiative behaviors of crystalline silicon nanowire and nanohole arrays for photovoltaic applications,” J. Quant. Spectrosc. Radiat. Transf. 133, 579–588 (2014).
[Crossref]

G. Kristensson, “Coherent scattering by a collection of randomly located obstacles – an alternative integral equation formulation,” J. Quant. Spectrosc. Radiat. Transf. 164, 97–108 (2015).
[Crossref]

Nano Lett. (1)

J. H. Noh, S. H. Im, J. H. Heo, T. N. Mandal, and S. I. Seok, “Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells,” Nano Lett. 13(4), 1764–1769 (2013).
[Crossref] [PubMed]

Nanoscale (1)

S. Y. Chuang, H. L. Chen, J. Shieh, C. H. Lin, C. C. Cheng, H. W. Liu, and C. C. Yu, “Nanoscale of biomimetic moth eye structures exhibiting inverse polarization phenomena at the Brewster angle,” Nanoscale 2(5), 799–805 (2010).
[Crossref] [PubMed]

Nat. Commun. (2)

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun. 4, 1527 (2013).
[Crossref] [PubMed]

E. R. Martins, J. Li, Y. Liu, V. Depauw, Z. Chen, J. Zhou, and T. F. Krauss, “Deterministic quasi-random nanostructures for photon control,” Nat. Commun. 4, 2665 (2013).
[Crossref] [PubMed]

Opt. Commun. (1)

W. C. Hsu, J. K. Tong, M. S. Branham, Y. Huang, S. Yerci, S. V. Boriskina, and G. Chen, “Mismatched front and back gratings for optimum light trapping in ultra-thin crystalline silicon solar cells,” Opt. Commun. 377, 52–58 (2016).
[Crossref]

Opt. Express (8)

Y. Zhang, B. Jia, and M. Gu, “Biomimetic and plasmonic hybrid light trapping for highly efficient ultrathin crystalline silicon solar cells,” Opt. Express 24(6), A506–A514 (2016).
[Crossref] [PubMed]

F. Pratesi, M. Burresi, F. Riboli, K. Vynck, and D. S. Wiersma, “Disordered photonic structures for light harvesting in solar cells,” Opt. Express 21(103), A460–A468 (2013).
[Crossref] [PubMed]

X. Meng, E. Drouard, G. Gomard, R. Peretti, A. Fave, and C. Seassal, “Combined front and back diffraction gratings for broad band light trapping in thin film solar cell,” Opt. Express 20(105), A560–A571 (2012).
[Crossref] [PubMed]

Y. H. Ko and J. S. Yu, “Design of hemi-urchin shaped ZnO nanostructures for broadband and wide-angle antireflection coatings,” Opt. Express 19(1), 297–305 (2011).
[Crossref] [PubMed]

H. Ding, L. Lalouat, B. Gonzalez-Acevedo, R. Orobtchouk, C. Seassal, and E. Drouard, “Design rules for net absorption enhancement in pseudo-disordered photonic crystal for thin film solar cells,” Opt. Express 24(6), A650–A666 (2016).
[Crossref] [PubMed]

S. Xie, Z. Ouyang, B. Jia, and M. Gu, “Large-size, high-uniformity, random silver nanowire networks as transparent electrodes for crystalline silicon wafer solar cells,” Opt. Express 21(103), A355–A362 (2013).
[Crossref] [PubMed]

A. J. Bett, J. Eisenlohr, O. Höhn, P. Repo, H. Savin, B. Bläsi, and J. C. Goldschmidt, “Wave optical simulation of the light trapping properties of black silicon surface textures,” Opt. Express 24(6), A434–A445 (2016).
[Crossref] [PubMed]

M. Agrawal and P. Peumans, “Broadband optical absorption enhancement through coherent light trapping in thin-film photovoltaic cells,” Opt. Express 16(8), 5385–5396 (2008).
[Crossref] [PubMed]

Phys. Rev. A (1)

R. Peretti, G. Gomard, L. Lalouat, C. Seassal, and E. Drouard, “Absorption control in pseudodisordered photonic-crystal thin films,” Phys. Rev. A 88(5), 053835 (2013).
[Crossref]

Phys. Rev. B (1)

R. Fan, L. Zhu, R. Peng, X. Huang, D. Qi, X. Ren, Q. Hu, and M. Wang, “Broadband antireflection and light-trapping enhancement of plasmonic solar cells,” Phys. Rev. B 87(19), 195444 (2013).
[Crossref]

Proc. Natl. Acad. Sci. U.S.A. (1)

Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. U.S.A. 107(41), 17491–17496 (2010).
[Crossref] [PubMed]

Prog. Photovolt. Res. Appl. (1)

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (Version 45),” Prog. Photovolt. Res. Appl. 23(1), 1–9 (2015).
[Crossref]

Small (1)

Y. M. Song, S. J. Jang, J. S. Yu, and Y. T. Lee, “Bioinspired parabola subwavelength structures for improved broadband antireflection,” Small 6(9), 984–987 (2010).
[Crossref] [PubMed]

Sol. Energy (2)

C. A. Gueymard, D. Myers, and K. Emery, “Proposed reference irradiance spectra for solar energy systems testing,” Sol. Energy 73(6), 443–467 (2002).
[Crossref]

X. Ju, Z. Wang, G. Flamant, P. Li, and W. Zhao, “Numerical analysis and optimization of a spectrum splitting concentration photovoltaic–thermoelectric hybrid system,” Sol. Energy 86(6), 1941–1954 (2012).
[Crossref]

Sol. Energy Mater. Sol. Cells (2)

Y. Zhang and Y. Xuan, “Biomimetic omnidirectional broadband structured surface for photon management in photovoltaic-thermoelectric hybrid systems,” Sol. Energy Mater. Sol. Cells 144, 68–77 (2016).
[Crossref]

J. W. Leem, X. Y. Guan, M. Choi, and J. S. Yu, “Broadband and omnidirectional highly-transparent coverglasses coated with biomimetic moth-eye nanopatterned polymer films for solar photovoltaic system applications,” Sol. Energy Mater. Sol. Cells 134, 45–53 (2015).
[Crossref]

Other (3)

L. Lalouat, H. Ding, B. Gonzalez-Acevedo, A. Harouri, R. Orobtchouk, V. Depauw, E. Drouard, and C. Seassal, “Pseudo-disordered structures for light trapping improvement in mono-crystalline Si thin-films,” Sol. Energy Mater. Sol. Cells 4, 031 (2016).

FDTD Solutions 8.12 (Lumerical, 2014).

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1998).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 (a) Schematic diagram of the simplified PV-TE hybrid system; (b) the structure of the Si cell within a unit cell; (c) top view of the supercell with (left) disordered geometry parameters and (right) ordered geometry parameters.
Fig. 2
Fig. 2 (a) Integral transmission in 1.1-2.5 μm and absorption in 0.3-1.1 μm of moth-eye surfaces with different period; (b) integral transmission in 1.1-2.5 μm and absorption in 0.3-1.1 μm of moth-eye surfaces with different diameter; (c) integral transmission in 1.1-2.5 μm and absorption in 0.3-1.1 μm of moth-eye surfaces with different height; (d) absorption spectra of the flat Si and the optimized moth-eye structure with D=0.3μmand Λ=0.4μm.
Fig. 3
Fig. 3 Electric field distribution of ordered moth-eye structures at different wavelengths with the period of 0.5 μm. (a) At 0.57 μm. (b) At 1.03 μm. (c) At 1.75 μm.
Fig. 4
Fig. 4 Average (a) reflection spectra and (b) absorption spectra of diameter-disordered Si based moth-eye structures with the fluctuation range of 0 μm, 0.05 μm and 0.1 μm. (c) Histogram of the average integral reflection, transmission and absorption in 0.3-1.1 μm and 1.1-2.5 μm.
Fig. 5
Fig. 5 Histogram of the average reflection, transmission and absorption of the height-disordered Si based moth-eye structures in 0.3-1.1 μm and 1.1-2.5 μm.
Fig. 6
Fig. 6 Average (a) forescattering efficiency spectra and (b) absorption spectra of the ordered moth-eye structure and the optimized height-disordered structure. (c) Histogram of the average reflection, transmission and absorption in 0.3-1.1 μm and 1.1-2.5 μm.
Fig. 7
Fig. 7 Optical performance comparison between three pseudo-disordered moth-eye structures with disordered height (case 1: Λ=0.3 μm, Δh=0.3μm), disordered diameter (case 2: Λ=0.4 μm, Δd=0.1μm), and two disordered parameters (case 3: Δd=0.1μm,Δh=0.3μm, Λ=0.4μm).
Fig. 8
Fig. 8 Average reflection, transmission and absorption of position-disordered moth-eye structures and position-ordered structures with Λ=0.4 μm, D=0.3 μm and h ref =0.8μm. (a) Δh=0; (b) Δh=0.3μm.
Fig. 9
Fig. 9 Bandstructure, mode density, and absorption spectra of (a) ordered moth-eye structures with Λ=D=0.3μm and (b) height-disordered moth-eye structures with Δh=0.3μm (one case of eight times). Red triangle: the bandstructure; black line: the absorption spectra; red column: the number of modes; blue short dot: corresponding absorption spectra of ordered structures. The inset sketches the rectangular Brillouin zones in reciprocal space with high symmetry points.
Fig. 10
Fig. 10 Bandstructure, mode density, and and absorption spectra of (a) ordered moth-eye structures with Λ=0.4 μm, D=0.3μm , h 1 =0.8μm, (b) diameter-disordered moth-eye structures with Δd=0.1μm (one case of eight times) and (c) position-disordered moth-eye structures with Λ=0.4 μm, D=0.3μm , h 1 =0.8μm (one case of eight times). Red triangle: the bandstructure at the Γ point; black line: the absorption spectra, red column: the number of modes; blue short dot: corresponding absorption spectra of ordered structures.
Fig. 11
Fig. 11 Effect of incident angle on the optical characteristics. Average (a) absorption and (b) transmission of ordered moth-eye structures with d=0.3μm and pseudo-disordered structures with Δd=0.1μm and Δh=0.3μm at the wavelengths of 0.6 μm, 1.2 μm and 1.8 μm, respectively.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

D z /D= ( h 1 z)/ h 1 , and x 2 + y 2 = D z 2 /4 (0z h 1 )
R int = λ I(λ)R(λ)dλ λ I(λ)dλ
T int = λ I(λ)T(λ)dλ λ I(λ)dλ
A int = λ I(λ)A(λ)dλ λ I(λ)dλ
R(λ)= 1 2 W source S r Re( P r ) d S
T(λ)= 1 2 W source S t Re( P t ) d S
A(λ)=1R(λ)T(λ)
W fscatt (λ)= 1 2 S f Re( P f ) d S
η fscatt (λ)= W fscatt (λ) I source (λ) σ geometric
2 n 2 ωL c + ϕ 1 + ϕ 2 =2mπ(m=1,2)
D= D ref +ΔdX(X~U(0,1))
h 1 = h ref ΔhX(X~U(0,1))

Metrics