Abstract

In this paper we provide the design details of self-equalizing photodetectors which enable higher data rate transmission by improving the overall bandwidth of the bandwidth limited transmission link, through a hybrid electro-optical solution. Two different self-equalizing photodiodes, one having fixed equalization and the other being programmable are presented as proof of concept.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High responsivity coherent photonic receiver integrating an SOA, a 90° hybrid, and high speed UTC photodiodes

Guillaume Santini, Christophe Caillaud, Jean-François Paret, Frederic Pommereau, Karim Mekhazni, Cosimo Calo, and Mohand Achouche
Opt. Express 25(21) 25719-25724 (2017)

High speed single-wavelength modulation and transmission at 2 μm under bandwidth-constrained condition

Ke Xu, Qiong Wu, Yongqiang Xie, Ming Tang, Songnian Fu, and Deming Liu
Opt. Express 25(4) 4528-4534 (2017)

High speed photodiodes in standard nanometer scale CMOS technology: a comparative study

Behrooz Nakhkoob, Sagar Ray, and Mona M. Hella
Opt. Express 20(10) 11256-11270 (2012)

References

  • View by:
  • |
  • |
  • |

  1. T. S. Rappaport, Wireless communications: principles and practice, Vol. 2, (Prentice Hall PTR, 1996).
  2. K. Azadet, E. F. Haratsch, H. Kim, F. Saibi, J. H. Saunders, M. Shaffer, L. Song, and M. L. Yu, “Equalization and FEC techniques for optical transceivers,” IEEE J. Solid-State Circuits 37(3), 317–327 (2002).
    [Crossref]
  3. S. Gondi and B. Razavi, “Equalization and Clock and Data Recovery Techniques for 10-Gb/s CMOS Serial-Link Receivers,” IEEE J. Solid-State Circuits 42(9), 1999–2011 (2007).
    [Crossref]
  4. A. H. Gnauck, C. R. Doerr, P. J. Winzer, and T. Kawanishi, “Optical Equalization of 42.7-Gbaud Bandlimited RZ-DQPSK Signals,” IEEE Photonics Technol. Lett. 19(19), 1442–1444 (2007).
    [Crossref]
  5. C. R. Doerr, S. Chandrasekhar, P. J. Winzer, A. R. Chraplyvy, A. H. Gnauck, L. W. Stulz, R. Pafchek, and E. Burrows, “Simple multichannel optical equalizer mitigating intersymbol interference for 40-Gb/s nonreturn-to-zero signals,” J. Lightwave Technol. 22(1), 249–256 (2004).
    [Crossref]
  6. C. R. Doerr, A. H. Gnauck, L. W. Stulz, and D. M. Gill, “Using an optical equalizer to transmit a 43-Gb/s signal with an 8-GHz bandwidth modulator,” IEEE Photonics Technol. Lett. 15(11), 1624–1626 (2003).
    [Crossref]
  7. H. Yun, W. Shi, Y. Wang, L. Chrostowski, and N. A. Jaeger, “2×2 adiabatic 3-dB coupler on silicon-on-insulator rib waveguides,” Proc. SPIE 8915, 89150V (2013).
  8. S. Chen, Y. Shi, S. He, and D. Dai, “Low-loss and broadband 2 × 2 silicon thermo-optic Mach-Zehnder switch with bent directional couplers,” Opt. Lett. 41(4), 836–839 (2016).
    [Crossref] [PubMed]
  9. B. Abiri, F. Aflatouni, and A. Hajimiri, “A self-equalizing photo detector,” in IEEE Photonics Conference, San Diego, CA (2014), pp. 196–197.
  10. B. Abiri, A. Zhou, F. Aflatouni, and A. Hajimiri, “An Adjustable Self-Equalizing Photo Detector,” in Optical Fiber Communication Conference, OSA Technical Digest (2015), paper W3A.3.
    [Crossref]
  11. M. Streshinsky, R. Ding, Y. Liu, A. Novack, C. Galland, A. J. Lim, P. G. Lo, T. Baehr-Jones, and M. Hochberg, “The Road to Affordable, Large-Scale Silicon Photonics,” Opt. Photonics News 24(9), 32–39 (2013).
    [Crossref]
  12. A. Novack, M. Gould, Y. Yang, Z. Xuan, M. Streshinsky, Y. Liu, G. Capellini, A. E. Lim, G. Q. Lo, T. Baehr-Jones, and M. Hochberg, “Germanium photodetector with 60 GHz bandwidth using inductive gain peaking,” Opt. Express 21(23), 28387–28393 (2013).
    [Crossref] [PubMed]
  13. T. T. Aalto, M. Kapulainen, S. Yliniemi, P. Heimala, and M. J. Leppihalme, “Fast thermo-optical switch based on SOI waveguides,” Proc. SPIE 4987, 149 (2003).
    [Crossref]
  14. H. Chen, P. Verheyen, P. De Heyn, G. Lepage, J. De Coster, S. Balakrishnan, P. Absil, W. Yao, L. Shen, G. Roelkens, and J. Van Campenhout, “−1 V bias 67 GHz bandwidth Si-contacted germanium waveguide p-i-n photodetector for optical links at 56 Gbps and beyond,” Opt. Express 24(5), 4622–4631 (2016).
    [Crossref]

2016 (2)

2013 (3)

H. Yun, W. Shi, Y. Wang, L. Chrostowski, and N. A. Jaeger, “2×2 adiabatic 3-dB coupler on silicon-on-insulator rib waveguides,” Proc. SPIE 8915, 89150V (2013).

M. Streshinsky, R. Ding, Y. Liu, A. Novack, C. Galland, A. J. Lim, P. G. Lo, T. Baehr-Jones, and M. Hochberg, “The Road to Affordable, Large-Scale Silicon Photonics,” Opt. Photonics News 24(9), 32–39 (2013).
[Crossref]

A. Novack, M. Gould, Y. Yang, Z. Xuan, M. Streshinsky, Y. Liu, G. Capellini, A. E. Lim, G. Q. Lo, T. Baehr-Jones, and M. Hochberg, “Germanium photodetector with 60 GHz bandwidth using inductive gain peaking,” Opt. Express 21(23), 28387–28393 (2013).
[Crossref] [PubMed]

2007 (2)

S. Gondi and B. Razavi, “Equalization and Clock and Data Recovery Techniques for 10-Gb/s CMOS Serial-Link Receivers,” IEEE J. Solid-State Circuits 42(9), 1999–2011 (2007).
[Crossref]

A. H. Gnauck, C. R. Doerr, P. J. Winzer, and T. Kawanishi, “Optical Equalization of 42.7-Gbaud Bandlimited RZ-DQPSK Signals,” IEEE Photonics Technol. Lett. 19(19), 1442–1444 (2007).
[Crossref]

2004 (1)

2003 (2)

C. R. Doerr, A. H. Gnauck, L. W. Stulz, and D. M. Gill, “Using an optical equalizer to transmit a 43-Gb/s signal with an 8-GHz bandwidth modulator,” IEEE Photonics Technol. Lett. 15(11), 1624–1626 (2003).
[Crossref]

T. T. Aalto, M. Kapulainen, S. Yliniemi, P. Heimala, and M. J. Leppihalme, “Fast thermo-optical switch based on SOI waveguides,” Proc. SPIE 4987, 149 (2003).
[Crossref]

2002 (1)

K. Azadet, E. F. Haratsch, H. Kim, F. Saibi, J. H. Saunders, M. Shaffer, L. Song, and M. L. Yu, “Equalization and FEC techniques for optical transceivers,” IEEE J. Solid-State Circuits 37(3), 317–327 (2002).
[Crossref]

Aalto, T. T.

T. T. Aalto, M. Kapulainen, S. Yliniemi, P. Heimala, and M. J. Leppihalme, “Fast thermo-optical switch based on SOI waveguides,” Proc. SPIE 4987, 149 (2003).
[Crossref]

Abiri, B.

B. Abiri, F. Aflatouni, and A. Hajimiri, “A self-equalizing photo detector,” in IEEE Photonics Conference, San Diego, CA (2014), pp. 196–197.

Absil, P.

Aflatouni, F.

B. Abiri, F. Aflatouni, and A. Hajimiri, “A self-equalizing photo detector,” in IEEE Photonics Conference, San Diego, CA (2014), pp. 196–197.

Azadet, K.

K. Azadet, E. F. Haratsch, H. Kim, F. Saibi, J. H. Saunders, M. Shaffer, L. Song, and M. L. Yu, “Equalization and FEC techniques for optical transceivers,” IEEE J. Solid-State Circuits 37(3), 317–327 (2002).
[Crossref]

Baehr-Jones, T.

M. Streshinsky, R. Ding, Y. Liu, A. Novack, C. Galland, A. J. Lim, P. G. Lo, T. Baehr-Jones, and M. Hochberg, “The Road to Affordable, Large-Scale Silicon Photonics,” Opt. Photonics News 24(9), 32–39 (2013).
[Crossref]

A. Novack, M. Gould, Y. Yang, Z. Xuan, M. Streshinsky, Y. Liu, G. Capellini, A. E. Lim, G. Q. Lo, T. Baehr-Jones, and M. Hochberg, “Germanium photodetector with 60 GHz bandwidth using inductive gain peaking,” Opt. Express 21(23), 28387–28393 (2013).
[Crossref] [PubMed]

Balakrishnan, S.

Burrows, E.

Capellini, G.

Chandrasekhar, S.

Chen, H.

Chen, S.

Chraplyvy, A. R.

Chrostowski, L.

H. Yun, W. Shi, Y. Wang, L. Chrostowski, and N. A. Jaeger, “2×2 adiabatic 3-dB coupler on silicon-on-insulator rib waveguides,” Proc. SPIE 8915, 89150V (2013).

Dai, D.

De Coster, J.

De Heyn, P.

Ding, R.

M. Streshinsky, R. Ding, Y. Liu, A. Novack, C. Galland, A. J. Lim, P. G. Lo, T. Baehr-Jones, and M. Hochberg, “The Road to Affordable, Large-Scale Silicon Photonics,” Opt. Photonics News 24(9), 32–39 (2013).
[Crossref]

Doerr, C. R.

A. H. Gnauck, C. R. Doerr, P. J. Winzer, and T. Kawanishi, “Optical Equalization of 42.7-Gbaud Bandlimited RZ-DQPSK Signals,” IEEE Photonics Technol. Lett. 19(19), 1442–1444 (2007).
[Crossref]

C. R. Doerr, S. Chandrasekhar, P. J. Winzer, A. R. Chraplyvy, A. H. Gnauck, L. W. Stulz, R. Pafchek, and E. Burrows, “Simple multichannel optical equalizer mitigating intersymbol interference for 40-Gb/s nonreturn-to-zero signals,” J. Lightwave Technol. 22(1), 249–256 (2004).
[Crossref]

C. R. Doerr, A. H. Gnauck, L. W. Stulz, and D. M. Gill, “Using an optical equalizer to transmit a 43-Gb/s signal with an 8-GHz bandwidth modulator,” IEEE Photonics Technol. Lett. 15(11), 1624–1626 (2003).
[Crossref]

Galland, C.

M. Streshinsky, R. Ding, Y. Liu, A. Novack, C. Galland, A. J. Lim, P. G. Lo, T. Baehr-Jones, and M. Hochberg, “The Road to Affordable, Large-Scale Silicon Photonics,” Opt. Photonics News 24(9), 32–39 (2013).
[Crossref]

Gill, D. M.

C. R. Doerr, A. H. Gnauck, L. W. Stulz, and D. M. Gill, “Using an optical equalizer to transmit a 43-Gb/s signal with an 8-GHz bandwidth modulator,” IEEE Photonics Technol. Lett. 15(11), 1624–1626 (2003).
[Crossref]

Gnauck, A. H.

A. H. Gnauck, C. R. Doerr, P. J. Winzer, and T. Kawanishi, “Optical Equalization of 42.7-Gbaud Bandlimited RZ-DQPSK Signals,” IEEE Photonics Technol. Lett. 19(19), 1442–1444 (2007).
[Crossref]

C. R. Doerr, S. Chandrasekhar, P. J. Winzer, A. R. Chraplyvy, A. H. Gnauck, L. W. Stulz, R. Pafchek, and E. Burrows, “Simple multichannel optical equalizer mitigating intersymbol interference for 40-Gb/s nonreturn-to-zero signals,” J. Lightwave Technol. 22(1), 249–256 (2004).
[Crossref]

C. R. Doerr, A. H. Gnauck, L. W. Stulz, and D. M. Gill, “Using an optical equalizer to transmit a 43-Gb/s signal with an 8-GHz bandwidth modulator,” IEEE Photonics Technol. Lett. 15(11), 1624–1626 (2003).
[Crossref]

Gondi, S.

S. Gondi and B. Razavi, “Equalization and Clock and Data Recovery Techniques for 10-Gb/s CMOS Serial-Link Receivers,” IEEE J. Solid-State Circuits 42(9), 1999–2011 (2007).
[Crossref]

Gould, M.

Hajimiri, A.

B. Abiri, F. Aflatouni, and A. Hajimiri, “A self-equalizing photo detector,” in IEEE Photonics Conference, San Diego, CA (2014), pp. 196–197.

Haratsch, E. F.

K. Azadet, E. F. Haratsch, H. Kim, F. Saibi, J. H. Saunders, M. Shaffer, L. Song, and M. L. Yu, “Equalization and FEC techniques for optical transceivers,” IEEE J. Solid-State Circuits 37(3), 317–327 (2002).
[Crossref]

He, S.

Heimala, P.

T. T. Aalto, M. Kapulainen, S. Yliniemi, P. Heimala, and M. J. Leppihalme, “Fast thermo-optical switch based on SOI waveguides,” Proc. SPIE 4987, 149 (2003).
[Crossref]

Hochberg, M.

M. Streshinsky, R. Ding, Y. Liu, A. Novack, C. Galland, A. J. Lim, P. G. Lo, T. Baehr-Jones, and M. Hochberg, “The Road to Affordable, Large-Scale Silicon Photonics,” Opt. Photonics News 24(9), 32–39 (2013).
[Crossref]

A. Novack, M. Gould, Y. Yang, Z. Xuan, M. Streshinsky, Y. Liu, G. Capellini, A. E. Lim, G. Q. Lo, T. Baehr-Jones, and M. Hochberg, “Germanium photodetector with 60 GHz bandwidth using inductive gain peaking,” Opt. Express 21(23), 28387–28393 (2013).
[Crossref] [PubMed]

Jaeger, N. A.

H. Yun, W. Shi, Y. Wang, L. Chrostowski, and N. A. Jaeger, “2×2 adiabatic 3-dB coupler on silicon-on-insulator rib waveguides,” Proc. SPIE 8915, 89150V (2013).

Kapulainen, M.

T. T. Aalto, M. Kapulainen, S. Yliniemi, P. Heimala, and M. J. Leppihalme, “Fast thermo-optical switch based on SOI waveguides,” Proc. SPIE 4987, 149 (2003).
[Crossref]

Kawanishi, T.

A. H. Gnauck, C. R. Doerr, P. J. Winzer, and T. Kawanishi, “Optical Equalization of 42.7-Gbaud Bandlimited RZ-DQPSK Signals,” IEEE Photonics Technol. Lett. 19(19), 1442–1444 (2007).
[Crossref]

Kim, H.

K. Azadet, E. F. Haratsch, H. Kim, F. Saibi, J. H. Saunders, M. Shaffer, L. Song, and M. L. Yu, “Equalization and FEC techniques for optical transceivers,” IEEE J. Solid-State Circuits 37(3), 317–327 (2002).
[Crossref]

Lepage, G.

Leppihalme, M. J.

T. T. Aalto, M. Kapulainen, S. Yliniemi, P. Heimala, and M. J. Leppihalme, “Fast thermo-optical switch based on SOI waveguides,” Proc. SPIE 4987, 149 (2003).
[Crossref]

Lim, A. E.

Lim, A. J.

M. Streshinsky, R. Ding, Y. Liu, A. Novack, C. Galland, A. J. Lim, P. G. Lo, T. Baehr-Jones, and M. Hochberg, “The Road to Affordable, Large-Scale Silicon Photonics,” Opt. Photonics News 24(9), 32–39 (2013).
[Crossref]

Liu, Y.

M. Streshinsky, R. Ding, Y. Liu, A. Novack, C. Galland, A. J. Lim, P. G. Lo, T. Baehr-Jones, and M. Hochberg, “The Road to Affordable, Large-Scale Silicon Photonics,” Opt. Photonics News 24(9), 32–39 (2013).
[Crossref]

A. Novack, M. Gould, Y. Yang, Z. Xuan, M. Streshinsky, Y. Liu, G. Capellini, A. E. Lim, G. Q. Lo, T. Baehr-Jones, and M. Hochberg, “Germanium photodetector with 60 GHz bandwidth using inductive gain peaking,” Opt. Express 21(23), 28387–28393 (2013).
[Crossref] [PubMed]

Lo, G. Q.

Lo, P. G.

M. Streshinsky, R. Ding, Y. Liu, A. Novack, C. Galland, A. J. Lim, P. G. Lo, T. Baehr-Jones, and M. Hochberg, “The Road to Affordable, Large-Scale Silicon Photonics,” Opt. Photonics News 24(9), 32–39 (2013).
[Crossref]

Novack, A.

A. Novack, M. Gould, Y. Yang, Z. Xuan, M. Streshinsky, Y. Liu, G. Capellini, A. E. Lim, G. Q. Lo, T. Baehr-Jones, and M. Hochberg, “Germanium photodetector with 60 GHz bandwidth using inductive gain peaking,” Opt. Express 21(23), 28387–28393 (2013).
[Crossref] [PubMed]

M. Streshinsky, R. Ding, Y. Liu, A. Novack, C. Galland, A. J. Lim, P. G. Lo, T. Baehr-Jones, and M. Hochberg, “The Road to Affordable, Large-Scale Silicon Photonics,” Opt. Photonics News 24(9), 32–39 (2013).
[Crossref]

Pafchek, R.

Razavi, B.

S. Gondi and B. Razavi, “Equalization and Clock and Data Recovery Techniques for 10-Gb/s CMOS Serial-Link Receivers,” IEEE J. Solid-State Circuits 42(9), 1999–2011 (2007).
[Crossref]

Roelkens, G.

Saibi, F.

K. Azadet, E. F. Haratsch, H. Kim, F. Saibi, J. H. Saunders, M. Shaffer, L. Song, and M. L. Yu, “Equalization and FEC techniques for optical transceivers,” IEEE J. Solid-State Circuits 37(3), 317–327 (2002).
[Crossref]

Saunders, J. H.

K. Azadet, E. F. Haratsch, H. Kim, F. Saibi, J. H. Saunders, M. Shaffer, L. Song, and M. L. Yu, “Equalization and FEC techniques for optical transceivers,” IEEE J. Solid-State Circuits 37(3), 317–327 (2002).
[Crossref]

Shaffer, M.

K. Azadet, E. F. Haratsch, H. Kim, F. Saibi, J. H. Saunders, M. Shaffer, L. Song, and M. L. Yu, “Equalization and FEC techniques for optical transceivers,” IEEE J. Solid-State Circuits 37(3), 317–327 (2002).
[Crossref]

Shen, L.

Shi, W.

H. Yun, W. Shi, Y. Wang, L. Chrostowski, and N. A. Jaeger, “2×2 adiabatic 3-dB coupler on silicon-on-insulator rib waveguides,” Proc. SPIE 8915, 89150V (2013).

Shi, Y.

Song, L.

K. Azadet, E. F. Haratsch, H. Kim, F. Saibi, J. H. Saunders, M. Shaffer, L. Song, and M. L. Yu, “Equalization and FEC techniques for optical transceivers,” IEEE J. Solid-State Circuits 37(3), 317–327 (2002).
[Crossref]

Streshinsky, M.

M. Streshinsky, R. Ding, Y. Liu, A. Novack, C. Galland, A. J. Lim, P. G. Lo, T. Baehr-Jones, and M. Hochberg, “The Road to Affordable, Large-Scale Silicon Photonics,” Opt. Photonics News 24(9), 32–39 (2013).
[Crossref]

A. Novack, M. Gould, Y. Yang, Z. Xuan, M. Streshinsky, Y. Liu, G. Capellini, A. E. Lim, G. Q. Lo, T. Baehr-Jones, and M. Hochberg, “Germanium photodetector with 60 GHz bandwidth using inductive gain peaking,” Opt. Express 21(23), 28387–28393 (2013).
[Crossref] [PubMed]

Stulz, L. W.

C. R. Doerr, S. Chandrasekhar, P. J. Winzer, A. R. Chraplyvy, A. H. Gnauck, L. W. Stulz, R. Pafchek, and E. Burrows, “Simple multichannel optical equalizer mitigating intersymbol interference for 40-Gb/s nonreturn-to-zero signals,” J. Lightwave Technol. 22(1), 249–256 (2004).
[Crossref]

C. R. Doerr, A. H. Gnauck, L. W. Stulz, and D. M. Gill, “Using an optical equalizer to transmit a 43-Gb/s signal with an 8-GHz bandwidth modulator,” IEEE Photonics Technol. Lett. 15(11), 1624–1626 (2003).
[Crossref]

Van Campenhout, J.

Verheyen, P.

Wang, Y.

H. Yun, W. Shi, Y. Wang, L. Chrostowski, and N. A. Jaeger, “2×2 adiabatic 3-dB coupler on silicon-on-insulator rib waveguides,” Proc. SPIE 8915, 89150V (2013).

Winzer, P. J.

Xuan, Z.

Yang, Y.

Yao, W.

Yliniemi, S.

T. T. Aalto, M. Kapulainen, S. Yliniemi, P. Heimala, and M. J. Leppihalme, “Fast thermo-optical switch based on SOI waveguides,” Proc. SPIE 4987, 149 (2003).
[Crossref]

Yu, M. L.

K. Azadet, E. F. Haratsch, H. Kim, F. Saibi, J. H. Saunders, M. Shaffer, L. Song, and M. L. Yu, “Equalization and FEC techniques for optical transceivers,” IEEE J. Solid-State Circuits 37(3), 317–327 (2002).
[Crossref]

Yun, H.

H. Yun, W. Shi, Y. Wang, L. Chrostowski, and N. A. Jaeger, “2×2 adiabatic 3-dB coupler on silicon-on-insulator rib waveguides,” Proc. SPIE 8915, 89150V (2013).

IEEE J. Solid-State Circuits (2)

K. Azadet, E. F. Haratsch, H. Kim, F. Saibi, J. H. Saunders, M. Shaffer, L. Song, and M. L. Yu, “Equalization and FEC techniques for optical transceivers,” IEEE J. Solid-State Circuits 37(3), 317–327 (2002).
[Crossref]

S. Gondi and B. Razavi, “Equalization and Clock and Data Recovery Techniques for 10-Gb/s CMOS Serial-Link Receivers,” IEEE J. Solid-State Circuits 42(9), 1999–2011 (2007).
[Crossref]

IEEE Photonics Technol. Lett. (2)

A. H. Gnauck, C. R. Doerr, P. J. Winzer, and T. Kawanishi, “Optical Equalization of 42.7-Gbaud Bandlimited RZ-DQPSK Signals,” IEEE Photonics Technol. Lett. 19(19), 1442–1444 (2007).
[Crossref]

C. R. Doerr, A. H. Gnauck, L. W. Stulz, and D. M. Gill, “Using an optical equalizer to transmit a 43-Gb/s signal with an 8-GHz bandwidth modulator,” IEEE Photonics Technol. Lett. 15(11), 1624–1626 (2003).
[Crossref]

J. Lightwave Technol. (1)

Opt. Express (2)

Opt. Lett. (1)

Opt. Photonics News (1)

M. Streshinsky, R. Ding, Y. Liu, A. Novack, C. Galland, A. J. Lim, P. G. Lo, T. Baehr-Jones, and M. Hochberg, “The Road to Affordable, Large-Scale Silicon Photonics,” Opt. Photonics News 24(9), 32–39 (2013).
[Crossref]

Proc. SPIE (2)

H. Yun, W. Shi, Y. Wang, L. Chrostowski, and N. A. Jaeger, “2×2 adiabatic 3-dB coupler on silicon-on-insulator rib waveguides,” Proc. SPIE 8915, 89150V (2013).

T. T. Aalto, M. Kapulainen, S. Yliniemi, P. Heimala, and M. J. Leppihalme, “Fast thermo-optical switch based on SOI waveguides,” Proc. SPIE 4987, 149 (2003).
[Crossref]

Other (3)

T. S. Rappaport, Wireless communications: principles and practice, Vol. 2, (Prentice Hall PTR, 1996).

B. Abiri, F. Aflatouni, and A. Hajimiri, “A self-equalizing photo detector,” in IEEE Photonics Conference, San Diego, CA (2014), pp. 196–197.

B. Abiri, A. Zhou, F. Aflatouni, and A. Hajimiri, “An Adjustable Self-Equalizing Photo Detector,” in Optical Fiber Communication Conference, OSA Technical Digest (2015), paper W3A.3.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 Effect of bandwidth limited electrical and electro-optical components on the transmitted data. A simple threshold based data recovery is not possible after removing the high frequency content of the signal.
Fig. 2
Fig. 2 (a) Example of equalizers implemented in electrical domain [3]. (b) Typical transfer function of electrical equalizers. Due to parasitic capacitances, such equalizers are band-limited.
Fig. 3
Fig. 3 (a) An example of optical equalizer implementation [6]. (b) Measured optical spectra of the modulated signal without (solid line) and with (dotted line) equalization. The sinusoidal line shows the transmissivity through the equalizer. (c) Equalizer sensitivity vs. laser frequency deviation [6].
Fig. 4
Fig. 4 (a) Example of an FIR optical equalizer implementation. (b) Block diagram of the desired filter. (c) An example of desired response. (d) Undesired response of same implementation due to laser wavelength drift.
Fig. 5
Fig. 5 (a) Optical phase independent subtraction by using photodiodes. (b) A carrier wavelength insensitive hybrid electro-optical equalizer.
Fig. 6
Fig. 6 Implemented 2-tap self-equalizing photodetector. (a) The block diagram. (b) Equivalent signal flow diagram. (c) Die photo of the implemented IC.
Fig. 7
Fig. 7 (a) Dual input photodiode and (b) its symbol. Optical power of two signal is summed and converted to electrical current within one junction.
Fig. 8
Fig. 8 Dynamic tap coefficient adjustment with a thermally controlled MZI. (a) Schematic diagram of the MZI and (b) the corresponding layout. Heaters are implemented by doping the slab section of the waveguide and passing current through them.
Fig. 9
Fig. 9 (a) The block diagram of implemented adjustable self-equalizing PD (ASEPD) and (b) its signal flow diagram, (c) the die photo of the ASEPD
Fig. 10
Fig. 10 Measurement results showing bandwidth enhancement in a bandwidth limited optical link. (a) Measurement setup for measuring the electro-optical bandwidth using a 35GHz PD and SEPD. (b) Comparison of the two measured frequency responses showing 7dB of enhancement. (c) Comparison of 12.5Gbps eye-diagrams of the received data without and with SEPD.
Fig. 11
Fig. 11 Demonstration of frequency response adjustment capability in ASEPD.
Fig. 12
Fig. 12 (a) Demonstration of eye opening capability of the ASEPD at 25Gbps. (b) Demonstration of improvement in receiver sensitivity before and after utilization of ASEPD for a bandwidth limited channel at 12.5Gbps.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

I out =R[ ( 1 κ 2 ) 2 P(t)+ κ 4 P( tT )+2 κ 2 ( 1 κ 2 ) P( t )P( tT ) cos( ϕ ) ]
I out =R[ ( 1 κ 2 )P( t ) κ 2 P( tT ) ]
I out = C 1 C 2 e jωT C 3 e 2jωT
I out =RP[ C 0 C 1 e jωT ± C 2 e j2ωT ± C 3 e j3ωT ± C 4 e j4ωT ]

Metrics