Abstract

Electrical frequency synthesizers have been in existence for several decades and are an integral part of almost every communication and sensing system. In the optical domain, however, despite promising bench-top demonstration of frequency synthesizers, large size, high-power consumption, and high-cost have significantly limited their large deployment compared to their electrical counterparts. Here we report an integrated electro-optical phase locked loop (EOPLL) as the core of an optical synthesizer where photonic and electronic devices are integrated in a standard silicon-on-insulator (SOI) process. A sophisticated integrated electronic-photonic architecture is proposed enabling reliable, low-cost, and high resolution optical synthesis. The small on-chip optical delay and electronically assisted frequency detection and acquisition provide tunable phase and frequency locking. The integrated EOPLL consumes 28.5 mW with total chip area of 2.4 mm2 making it comparable with electrical synthesizers enabling large-scale deployment in applications such as low-cost optical spectroscopy, detection, sensing, and optical communication.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Towards chip-scale optical frequency synthesis based on optical heterodyne phase-locked loop

Shamsul Arafin, Arda Simsek, Seong-Kyun Kim, Sarvagya Dwivedi, Wei Liang, Danny Eliyahu, Jonathan Klamkin, Andrey Matsko, Leif Johansson, Lute Maleki, Mark Rodwell, and Larry Coldren
Opt. Express 25(2) 681-695 (2017)

Low-delay, high-bandwidth frequency-locking loop of resonator integrated optic gyro with triangular phase modulation

Yinzhou Zhi, Lishuang Feng, Ming Lei, and Kunbo Wang
Appl. Opt. 52(33) 8024-8031 (2013)

References

  • View by:
  • |
  • |
  • |

  1. T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
    [Crossref] [PubMed]
  2. L. S. Ma, Z. Bi, A. Bartels, L. Robertsson, M. Zucco, R. S. Windeler, G. Wilpers, C. Oates, L. Hollberg, and S. A. Diddams, “Optical frequency synthesis and comparison with uncertainty at the 10-19 level,” Science 303(5665), 1843–1845 (2004).
    [Crossref] [PubMed]
  3. R. Holzwarth, T. Udem, T. W. Hansch, J. C. Knight, W. J. Wadsworth, and P. S. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85(11), 2264–2267 (2000).
    [Crossref] [PubMed]
  4. H. Inaba, T. Ikegami, F. L. Hong, Y. Bitou, A. Onae, T. R. Schibli, K. Minoshima, and H. Matsumoto, “Doppler-free spectroscopy using a continuous-wave optical frequency synthesizer,” Appl. Opt. 45(20), 4910–4915 (2006).
    [Crossref] [PubMed]
  5. Y. Yao, Y. Jiang, L. Wu, H. Yu, Z. Bi, and L. Ma, “A low noise optical frequency synthesizer at 700–990 nm,” Appl. Phys. Lett. 109(13), 131102 (2016).
    [Crossref]
  6. H. Kiuchi, T. Kawanishi, and A. Kanno, “Wide frequency range optical synthesizer with high-frequency resolution,” IEEE Photonics Technol. Lett. 29(1), 78–81 (2017).
    [Crossref]
  7. T. Shioda and T. Yamazaki, “Ultrafast optical frequency comb synthesizer and analyzer,” Opt. Lett. 37(17), 3642–3644 (2012).
    [Crossref] [PubMed]
  8. A. K. Mills, Y. F. Chen, K. W. Madison, and D. J. Jones, “Widely tunable, single-mode optical frequency synthesizer with a 100 kHz uncertainty,” J. Opt. Soc. Am. B 26(7), 1276–1280 (2009).
    [Crossref]
  9. A. G. Griffith, R. K. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. Yu, C. T. Phare, C. B. Poitras, A. L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 6299 (2015).
    [Crossref] [PubMed]
  10. Y. Okawachi, K. Saha, J. S. Levy, Y. H. Wen, M. Lipson, and A. L. Gaeta, “Octave-spanning frequency comb generation in a silicon nitride chip,” Opt. Lett. 36(17), 3398–3400 (2011).
    [Crossref] [PubMed]
  11. H. Jung, C. Xiong, K. Y. Fong, X. Zhang, and H. X. Tang, “Optical frequency comb generation from aluminum nitride microring resonator,” Opt. Lett. 38(15), 2810–2813 (2013).
    [Crossref] [PubMed]
  12. F. Aflatouni, O. Momeni, and H. Hashemi, “A heterodyne phase locked loop with GHz acquisition range for coherent locking of semiconductor lasers in 0.13 μm CMOS,” IEEE Custom Integrated Circuits Conference, pp. 463–466 (2007).
  13. B. Argence, B. Chanteau, O. Lopez, D. Nicolodi, M. Abgrall, C. Chardonnet, C. Daussy, B. Darquié, Y. Le Coq, and A. Amy-Klein, “Quantum cascade laser frequency stabilization at the sub-Hz level,” Nat. Photonics 9(7), 456–460 (2015).
    [Crossref]
  14. S. Barbieri, P. Gellie, G. Santarelli, L. Ding, W. Maineult, C. Sirtori, R. Colombelli, H. Beere, and D. Ritchie, “Phase-locking of a 2.7-THz quantum cascade laser to a mode-locked erbium-doped fiber laser,” Nat. Photonics 4(9), 636–640 (2010).
    [Crossref]
  15. L. Consolino, A. Taschin, P. Bartolini, S. Bartalini, P. Cancio, A. Tredicucci, H. E. Beere, D. A. Ritchie, R. Torre, M. S. Vitiello, and P. De Natale, “Phase-locking to a free-space terahertz comb for metrological-grade terahertz lasers,” Nat. Commun. 3, 1040 (2012).
    [Crossref] [PubMed]
  16. N. Satyan, A. Vasilyev, G. Rakuljic, J. O. White, and A. Yariv, “Phase-locking and coherent power combining of broadband linearly chirped optical waves,” Opt. Express 20(23), 25213–25227 (2012).
    [Crossref] [PubMed]
  17. W. Liang, N. Satyan, F. Aflatouni, A. Yariv, A. Kewitsch, G. Rakuljic, and H. Hashemi, “Coherent beam combining with multilevel optical phase-locked loops,” J. Opt. Soc. Am. B 24(12), 2930–2939 (2007).
    [Crossref]
  18. F. Aflatouni and H. Hashemi, “An electronically controlled optical phased array,” IEEE International Microwave Symposium (IMS) Dig. Papers, WEPN-6 (2012).
  19. M. Lu, H. Park, E. Bloch, A. Sivananthan, A. Bhardwaj, Z. Griffith, L. A. Johansson, M. J. Rodwell, and L. A. Coldren, “Highly integrated optical heterodyne phase-locked loop with phase/frequency detection,” Opt. Express 20(9), 9736–9741 (2012).
    [Crossref] [PubMed]
  20. M. Lu, H. C. Park, E. Bloch, L. A. Johansson, M. J. Rodwell, and L. A. Coldren, “A highly-integrated optical frequency synthesizer based on phase-locked loops,” Optical Fiber Communication Conference (OFC), pp. 1–3 (2014).
    [Crossref]
  21. H. Abediasl and H. Hashemi, “Monolithic optical phased-array transceiver in a standard SOI CMOS process,” Opt. Express 23(5), 6509–6519 (2015).
    [Crossref] [PubMed]
  22. A. Khachaturian, B. Abiri, A. Zhou, and A. Hajimiri, “Monolithic Mach-Zehnder Interferometer Modulator in an unmodified CMOS process,” IEEE Photonics Conference (IPC), pp. 394–395 (2015).
    [Crossref]
  23. C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528(7583), 534–538 (2015).
    [Crossref] [PubMed]
  24. A. Yariv, “Dynamic analysis of the semiconductor laser as a current-controlled oscillator in the optical phased-lock loop: applications,” Opt. Lett. 30(17), 2191–2193 (2005).
    [Crossref] [PubMed]
  25. F. M. Gardner, Phaselock techniques (John Wiley and Sons, 2005).
  26. R. M. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Jeffrey, and D. E. Knuth, “On the Lambert W function,” Adv. Comput. Math. 5(4), 329–359 (1996).
    [Crossref]
  27. F. Aflatouni, “Electronically assisted relative and absolute phase control of semiconductor lasers,” (Doctoral dissertation) pp. 36–46 (2011).
  28. T. A. Burton, Stability and Periodic Solutions of Ordinary and Functional Differential Equations. (Academic Incorporation, 1985).
  29. S. Saito, O. Nilsson, and Y. Yamamoto, “Coherent FSK transmitter using a negative feedback stabilized semiconductor laser,” Electron. Lett. 20(17), 703–704 (1984).
    [Crossref]
  30. F. Behbahani, Y. Kishigami, J. Leete, and A. A. Abidi, “CMOS mixers and polyphase filters for large image rejection,” IEEE J. Solid-State Circuits 36(6), 873–887 (2001).
    [Crossref]

2017 (1)

H. Kiuchi, T. Kawanishi, and A. Kanno, “Wide frequency range optical synthesizer with high-frequency resolution,” IEEE Photonics Technol. Lett. 29(1), 78–81 (2017).
[Crossref]

2016 (1)

Y. Yao, Y. Jiang, L. Wu, H. Yu, Z. Bi, and L. Ma, “A low noise optical frequency synthesizer at 700–990 nm,” Appl. Phys. Lett. 109(13), 131102 (2016).
[Crossref]

2015 (4)

B. Argence, B. Chanteau, O. Lopez, D. Nicolodi, M. Abgrall, C. Chardonnet, C. Daussy, B. Darquié, Y. Le Coq, and A. Amy-Klein, “Quantum cascade laser frequency stabilization at the sub-Hz level,” Nat. Photonics 9(7), 456–460 (2015).
[Crossref]

H. Abediasl and H. Hashemi, “Monolithic optical phased-array transceiver in a standard SOI CMOS process,” Opt. Express 23(5), 6509–6519 (2015).
[Crossref] [PubMed]

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528(7583), 534–538 (2015).
[Crossref] [PubMed]

A. G. Griffith, R. K. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. Yu, C. T. Phare, C. B. Poitras, A. L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 6299 (2015).
[Crossref] [PubMed]

2013 (1)

2012 (4)

2011 (1)

2010 (1)

S. Barbieri, P. Gellie, G. Santarelli, L. Ding, W. Maineult, C. Sirtori, R. Colombelli, H. Beere, and D. Ritchie, “Phase-locking of a 2.7-THz quantum cascade laser to a mode-locked erbium-doped fiber laser,” Nat. Photonics 4(9), 636–640 (2010).
[Crossref]

2009 (1)

2007 (1)

2006 (1)

2005 (1)

2004 (1)

L. S. Ma, Z. Bi, A. Bartels, L. Robertsson, M. Zucco, R. S. Windeler, G. Wilpers, C. Oates, L. Hollberg, and S. A. Diddams, “Optical frequency synthesis and comparison with uncertainty at the 10-19 level,” Science 303(5665), 1843–1845 (2004).
[Crossref] [PubMed]

2002 (1)

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
[Crossref] [PubMed]

2001 (1)

F. Behbahani, Y. Kishigami, J. Leete, and A. A. Abidi, “CMOS mixers and polyphase filters for large image rejection,” IEEE J. Solid-State Circuits 36(6), 873–887 (2001).
[Crossref]

2000 (1)

R. Holzwarth, T. Udem, T. W. Hansch, J. C. Knight, W. J. Wadsworth, and P. S. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85(11), 2264–2267 (2000).
[Crossref] [PubMed]

1996 (1)

R. M. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Jeffrey, and D. E. Knuth, “On the Lambert W function,” Adv. Comput. Math. 5(4), 329–359 (1996).
[Crossref]

1984 (1)

S. Saito, O. Nilsson, and Y. Yamamoto, “Coherent FSK transmitter using a negative feedback stabilized semiconductor laser,” Electron. Lett. 20(17), 703–704 (1984).
[Crossref]

Abediasl, H.

Abgrall, M.

B. Argence, B. Chanteau, O. Lopez, D. Nicolodi, M. Abgrall, C. Chardonnet, C. Daussy, B. Darquié, Y. Le Coq, and A. Amy-Klein, “Quantum cascade laser frequency stabilization at the sub-Hz level,” Nat. Photonics 9(7), 456–460 (2015).
[Crossref]

Abidi, A. A.

F. Behbahani, Y. Kishigami, J. Leete, and A. A. Abidi, “CMOS mixers and polyphase filters for large image rejection,” IEEE J. Solid-State Circuits 36(6), 873–887 (2001).
[Crossref]

Abiri, B.

A. Khachaturian, B. Abiri, A. Zhou, and A. Hajimiri, “Monolithic Mach-Zehnder Interferometer Modulator in an unmodified CMOS process,” IEEE Photonics Conference (IPC), pp. 394–395 (2015).
[Crossref]

Aflatouni, F.

W. Liang, N. Satyan, F. Aflatouni, A. Yariv, A. Kewitsch, G. Rakuljic, and H. Hashemi, “Coherent beam combining with multilevel optical phase-locked loops,” J. Opt. Soc. Am. B 24(12), 2930–2939 (2007).
[Crossref]

F. Aflatouni, O. Momeni, and H. Hashemi, “A heterodyne phase locked loop with GHz acquisition range for coherent locking of semiconductor lasers in 0.13 μm CMOS,” IEEE Custom Integrated Circuits Conference, pp. 463–466 (2007).

Alloatti, L.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528(7583), 534–538 (2015).
[Crossref] [PubMed]

Amy-Klein, A.

B. Argence, B. Chanteau, O. Lopez, D. Nicolodi, M. Abgrall, C. Chardonnet, C. Daussy, B. Darquié, Y. Le Coq, and A. Amy-Klein, “Quantum cascade laser frequency stabilization at the sub-Hz level,” Nat. Photonics 9(7), 456–460 (2015).
[Crossref]

Argence, B.

B. Argence, B. Chanteau, O. Lopez, D. Nicolodi, M. Abgrall, C. Chardonnet, C. Daussy, B. Darquié, Y. Le Coq, and A. Amy-Klein, “Quantum cascade laser frequency stabilization at the sub-Hz level,” Nat. Photonics 9(7), 456–460 (2015).
[Crossref]

Asanovic, K.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528(7583), 534–538 (2015).
[Crossref] [PubMed]

Atabaki, A. H.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528(7583), 534–538 (2015).
[Crossref] [PubMed]

Avizienis, R. R.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528(7583), 534–538 (2015).
[Crossref] [PubMed]

Barbieri, S.

S. Barbieri, P. Gellie, G. Santarelli, L. Ding, W. Maineult, C. Sirtori, R. Colombelli, H. Beere, and D. Ritchie, “Phase-locking of a 2.7-THz quantum cascade laser to a mode-locked erbium-doped fiber laser,” Nat. Photonics 4(9), 636–640 (2010).
[Crossref]

Bartalini, S.

L. Consolino, A. Taschin, P. Bartolini, S. Bartalini, P. Cancio, A. Tredicucci, H. E. Beere, D. A. Ritchie, R. Torre, M. S. Vitiello, and P. De Natale, “Phase-locking to a free-space terahertz comb for metrological-grade terahertz lasers,” Nat. Commun. 3, 1040 (2012).
[Crossref] [PubMed]

Bartels, A.

L. S. Ma, Z. Bi, A. Bartels, L. Robertsson, M. Zucco, R. S. Windeler, G. Wilpers, C. Oates, L. Hollberg, and S. A. Diddams, “Optical frequency synthesis and comparison with uncertainty at the 10-19 level,” Science 303(5665), 1843–1845 (2004).
[Crossref] [PubMed]

Bartolini, P.

L. Consolino, A. Taschin, P. Bartolini, S. Bartalini, P. Cancio, A. Tredicucci, H. E. Beere, D. A. Ritchie, R. Torre, M. S. Vitiello, and P. De Natale, “Phase-locking to a free-space terahertz comb for metrological-grade terahertz lasers,” Nat. Commun. 3, 1040 (2012).
[Crossref] [PubMed]

Beere, H.

S. Barbieri, P. Gellie, G. Santarelli, L. Ding, W. Maineult, C. Sirtori, R. Colombelli, H. Beere, and D. Ritchie, “Phase-locking of a 2.7-THz quantum cascade laser to a mode-locked erbium-doped fiber laser,” Nat. Photonics 4(9), 636–640 (2010).
[Crossref]

Beere, H. E.

L. Consolino, A. Taschin, P. Bartolini, S. Bartalini, P. Cancio, A. Tredicucci, H. E. Beere, D. A. Ritchie, R. Torre, M. S. Vitiello, and P. De Natale, “Phase-locking to a free-space terahertz comb for metrological-grade terahertz lasers,” Nat. Commun. 3, 1040 (2012).
[Crossref] [PubMed]

Behbahani, F.

F. Behbahani, Y. Kishigami, J. Leete, and A. A. Abidi, “CMOS mixers and polyphase filters for large image rejection,” IEEE J. Solid-State Circuits 36(6), 873–887 (2001).
[Crossref]

Bhardwaj, A.

Bi, Z.

Y. Yao, Y. Jiang, L. Wu, H. Yu, Z. Bi, and L. Ma, “A low noise optical frequency synthesizer at 700–990 nm,” Appl. Phys. Lett. 109(13), 131102 (2016).
[Crossref]

L. S. Ma, Z. Bi, A. Bartels, L. Robertsson, M. Zucco, R. S. Windeler, G. Wilpers, C. Oates, L. Hollberg, and S. A. Diddams, “Optical frequency synthesis and comparison with uncertainty at the 10-19 level,” Science 303(5665), 1843–1845 (2004).
[Crossref] [PubMed]

Bitou, Y.

Bloch, E.

M. Lu, H. Park, E. Bloch, A. Sivananthan, A. Bhardwaj, Z. Griffith, L. A. Johansson, M. J. Rodwell, and L. A. Coldren, “Highly integrated optical heterodyne phase-locked loop with phase/frequency detection,” Opt. Express 20(9), 9736–9741 (2012).
[Crossref] [PubMed]

M. Lu, H. C. Park, E. Bloch, L. A. Johansson, M. J. Rodwell, and L. A. Coldren, “A highly-integrated optical frequency synthesizer based on phase-locked loops,” Optical Fiber Communication Conference (OFC), pp. 1–3 (2014).
[Crossref]

Cancio, P.

L. Consolino, A. Taschin, P. Bartolini, S. Bartalini, P. Cancio, A. Tredicucci, H. E. Beere, D. A. Ritchie, R. Torre, M. S. Vitiello, and P. De Natale, “Phase-locking to a free-space terahertz comb for metrological-grade terahertz lasers,” Nat. Commun. 3, 1040 (2012).
[Crossref] [PubMed]

Cardenas, J.

A. G. Griffith, R. K. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. Yu, C. T. Phare, C. B. Poitras, A. L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 6299 (2015).
[Crossref] [PubMed]

Chanteau, B.

B. Argence, B. Chanteau, O. Lopez, D. Nicolodi, M. Abgrall, C. Chardonnet, C. Daussy, B. Darquié, Y. Le Coq, and A. Amy-Klein, “Quantum cascade laser frequency stabilization at the sub-Hz level,” Nat. Photonics 9(7), 456–460 (2015).
[Crossref]

Chardonnet, C.

B. Argence, B. Chanteau, O. Lopez, D. Nicolodi, M. Abgrall, C. Chardonnet, C. Daussy, B. Darquié, Y. Le Coq, and A. Amy-Klein, “Quantum cascade laser frequency stabilization at the sub-Hz level,” Nat. Photonics 9(7), 456–460 (2015).
[Crossref]

Chen, Y. F.

Chen, Y. H.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528(7583), 534–538 (2015).
[Crossref] [PubMed]

Coldren, L. A.

M. Lu, H. Park, E. Bloch, A. Sivananthan, A. Bhardwaj, Z. Griffith, L. A. Johansson, M. J. Rodwell, and L. A. Coldren, “Highly integrated optical heterodyne phase-locked loop with phase/frequency detection,” Opt. Express 20(9), 9736–9741 (2012).
[Crossref] [PubMed]

M. Lu, H. C. Park, E. Bloch, L. A. Johansson, M. J. Rodwell, and L. A. Coldren, “A highly-integrated optical frequency synthesizer based on phase-locked loops,” Optical Fiber Communication Conference (OFC), pp. 1–3 (2014).
[Crossref]

Colombelli, R.

S. Barbieri, P. Gellie, G. Santarelli, L. Ding, W. Maineult, C. Sirtori, R. Colombelli, H. Beere, and D. Ritchie, “Phase-locking of a 2.7-THz quantum cascade laser to a mode-locked erbium-doped fiber laser,” Nat. Photonics 4(9), 636–640 (2010).
[Crossref]

Consolino, L.

L. Consolino, A. Taschin, P. Bartolini, S. Bartalini, P. Cancio, A. Tredicucci, H. E. Beere, D. A. Ritchie, R. Torre, M. S. Vitiello, and P. De Natale, “Phase-locking to a free-space terahertz comb for metrological-grade terahertz lasers,” Nat. Commun. 3, 1040 (2012).
[Crossref] [PubMed]

Cook, H. M.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528(7583), 534–538 (2015).
[Crossref] [PubMed]

Corless, R. M.

R. M. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Jeffrey, and D. E. Knuth, “On the Lambert W function,” Adv. Comput. Math. 5(4), 329–359 (1996).
[Crossref]

Darquié, B.

B. Argence, B. Chanteau, O. Lopez, D. Nicolodi, M. Abgrall, C. Chardonnet, C. Daussy, B. Darquié, Y. Le Coq, and A. Amy-Klein, “Quantum cascade laser frequency stabilization at the sub-Hz level,” Nat. Photonics 9(7), 456–460 (2015).
[Crossref]

Daussy, C.

B. Argence, B. Chanteau, O. Lopez, D. Nicolodi, M. Abgrall, C. Chardonnet, C. Daussy, B. Darquié, Y. Le Coq, and A. Amy-Klein, “Quantum cascade laser frequency stabilization at the sub-Hz level,” Nat. Photonics 9(7), 456–460 (2015).
[Crossref]

De Natale, P.

L. Consolino, A. Taschin, P. Bartolini, S. Bartalini, P. Cancio, A. Tredicucci, H. E. Beere, D. A. Ritchie, R. Torre, M. S. Vitiello, and P. De Natale, “Phase-locking to a free-space terahertz comb for metrological-grade terahertz lasers,” Nat. Commun. 3, 1040 (2012).
[Crossref] [PubMed]

Diddams, S. A.

L. S. Ma, Z. Bi, A. Bartels, L. Robertsson, M. Zucco, R. S. Windeler, G. Wilpers, C. Oates, L. Hollberg, and S. A. Diddams, “Optical frequency synthesis and comparison with uncertainty at the 10-19 level,” Science 303(5665), 1843–1845 (2004).
[Crossref] [PubMed]

Ding, L.

S. Barbieri, P. Gellie, G. Santarelli, L. Ding, W. Maineult, C. Sirtori, R. Colombelli, H. Beere, and D. Ritchie, “Phase-locking of a 2.7-THz quantum cascade laser to a mode-locked erbium-doped fiber laser,” Nat. Photonics 4(9), 636–640 (2010).
[Crossref]

Fain, R.

A. G. Griffith, R. K. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. Yu, C. T. Phare, C. B. Poitras, A. L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 6299 (2015).
[Crossref] [PubMed]

Fong, K. Y.

Gaeta, A. L.

A. G. Griffith, R. K. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. Yu, C. T. Phare, C. B. Poitras, A. L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 6299 (2015).
[Crossref] [PubMed]

Y. Okawachi, K. Saha, J. S. Levy, Y. H. Wen, M. Lipson, and A. L. Gaeta, “Octave-spanning frequency comb generation in a silicon nitride chip,” Opt. Lett. 36(17), 3398–3400 (2011).
[Crossref] [PubMed]

Gellie, P.

S. Barbieri, P. Gellie, G. Santarelli, L. Ding, W. Maineult, C. Sirtori, R. Colombelli, H. Beere, and D. Ritchie, “Phase-locking of a 2.7-THz quantum cascade laser to a mode-locked erbium-doped fiber laser,” Nat. Photonics 4(9), 636–640 (2010).
[Crossref]

Georgas, M. S.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528(7583), 534–538 (2015).
[Crossref] [PubMed]

Gonnet, G. H.

R. M. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Jeffrey, and D. E. Knuth, “On the Lambert W function,” Adv. Comput. Math. 5(4), 329–359 (1996).
[Crossref]

Griffith, A. G.

A. G. Griffith, R. K. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. Yu, C. T. Phare, C. B. Poitras, A. L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 6299 (2015).
[Crossref] [PubMed]

Griffith, Z.

Hajimiri, A.

A. Khachaturian, B. Abiri, A. Zhou, and A. Hajimiri, “Monolithic Mach-Zehnder Interferometer Modulator in an unmodified CMOS process,” IEEE Photonics Conference (IPC), pp. 394–395 (2015).
[Crossref]

Hansch, T. W.

R. Holzwarth, T. Udem, T. W. Hansch, J. C. Knight, W. J. Wadsworth, and P. S. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85(11), 2264–2267 (2000).
[Crossref] [PubMed]

Hänsch, T. W.

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
[Crossref] [PubMed]

Hare, D. E. G.

R. M. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Jeffrey, and D. E. Knuth, “On the Lambert W function,” Adv. Comput. Math. 5(4), 329–359 (1996).
[Crossref]

Hashemi, H.

Hollberg, L.

L. S. Ma, Z. Bi, A. Bartels, L. Robertsson, M. Zucco, R. S. Windeler, G. Wilpers, C. Oates, L. Hollberg, and S. A. Diddams, “Optical frequency synthesis and comparison with uncertainty at the 10-19 level,” Science 303(5665), 1843–1845 (2004).
[Crossref] [PubMed]

Holzwarth, R.

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
[Crossref] [PubMed]

R. Holzwarth, T. Udem, T. W. Hansch, J. C. Knight, W. J. Wadsworth, and P. S. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85(11), 2264–2267 (2000).
[Crossref] [PubMed]

Hong, F. L.

Ikegami, T.

Inaba, H.

Jeffrey, D. J.

R. M. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Jeffrey, and D. E. Knuth, “On the Lambert W function,” Adv. Comput. Math. 5(4), 329–359 (1996).
[Crossref]

Jiang, Y.

Y. Yao, Y. Jiang, L. Wu, H. Yu, Z. Bi, and L. Ma, “A low noise optical frequency synthesizer at 700–990 nm,” Appl. Phys. Lett. 109(13), 131102 (2016).
[Crossref]

Johansson, L. A.

M. Lu, H. Park, E. Bloch, A. Sivananthan, A. Bhardwaj, Z. Griffith, L. A. Johansson, M. J. Rodwell, and L. A. Coldren, “Highly integrated optical heterodyne phase-locked loop with phase/frequency detection,” Opt. Express 20(9), 9736–9741 (2012).
[Crossref] [PubMed]

M. Lu, H. C. Park, E. Bloch, L. A. Johansson, M. J. Rodwell, and L. A. Coldren, “A highly-integrated optical frequency synthesizer based on phase-locked loops,” Optical Fiber Communication Conference (OFC), pp. 1–3 (2014).
[Crossref]

Jones, D. J.

Jung, H.

Kanno, A.

H. Kiuchi, T. Kawanishi, and A. Kanno, “Wide frequency range optical synthesizer with high-frequency resolution,” IEEE Photonics Technol. Lett. 29(1), 78–81 (2017).
[Crossref]

Kawanishi, T.

H. Kiuchi, T. Kawanishi, and A. Kanno, “Wide frequency range optical synthesizer with high-frequency resolution,” IEEE Photonics Technol. Lett. 29(1), 78–81 (2017).
[Crossref]

Kewitsch, A.

Khachaturian, A.

A. Khachaturian, B. Abiri, A. Zhou, and A. Hajimiri, “Monolithic Mach-Zehnder Interferometer Modulator in an unmodified CMOS process,” IEEE Photonics Conference (IPC), pp. 394–395 (2015).
[Crossref]

Kishigami, Y.

F. Behbahani, Y. Kishigami, J. Leete, and A. A. Abidi, “CMOS mixers and polyphase filters for large image rejection,” IEEE J. Solid-State Circuits 36(6), 873–887 (2001).
[Crossref]

Kiuchi, H.

H. Kiuchi, T. Kawanishi, and A. Kanno, “Wide frequency range optical synthesizer with high-frequency resolution,” IEEE Photonics Technol. Lett. 29(1), 78–81 (2017).
[Crossref]

Knight, J. C.

R. Holzwarth, T. Udem, T. W. Hansch, J. C. Knight, W. J. Wadsworth, and P. S. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85(11), 2264–2267 (2000).
[Crossref] [PubMed]

Knuth, D. E.

R. M. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Jeffrey, and D. E. Knuth, “On the Lambert W function,” Adv. Comput. Math. 5(4), 329–359 (1996).
[Crossref]

Kumar, R.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528(7583), 534–538 (2015).
[Crossref] [PubMed]

Lau, R. K.

A. G. Griffith, R. K. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. Yu, C. T. Phare, C. B. Poitras, A. L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 6299 (2015).
[Crossref] [PubMed]

Le Coq, Y.

B. Argence, B. Chanteau, O. Lopez, D. Nicolodi, M. Abgrall, C. Chardonnet, C. Daussy, B. Darquié, Y. Le Coq, and A. Amy-Klein, “Quantum cascade laser frequency stabilization at the sub-Hz level,” Nat. Photonics 9(7), 456–460 (2015).
[Crossref]

Lee, Y.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528(7583), 534–538 (2015).
[Crossref] [PubMed]

Lee, Y. H. D.

A. G. Griffith, R. K. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. Yu, C. T. Phare, C. B. Poitras, A. L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 6299 (2015).
[Crossref] [PubMed]

Leete, J.

F. Behbahani, Y. Kishigami, J. Leete, and A. A. Abidi, “CMOS mixers and polyphase filters for large image rejection,” IEEE J. Solid-State Circuits 36(6), 873–887 (2001).
[Crossref]

Leu, J. C.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528(7583), 534–538 (2015).
[Crossref] [PubMed]

Levy, J. S.

Liang, W.

Lin, S.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528(7583), 534–538 (2015).
[Crossref] [PubMed]

Lipson, M.

A. G. Griffith, R. K. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. Yu, C. T. Phare, C. B. Poitras, A. L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 6299 (2015).
[Crossref] [PubMed]

Y. Okawachi, K. Saha, J. S. Levy, Y. H. Wen, M. Lipson, and A. L. Gaeta, “Octave-spanning frequency comb generation in a silicon nitride chip,” Opt. Lett. 36(17), 3398–3400 (2011).
[Crossref] [PubMed]

Lopez, O.

B. Argence, B. Chanteau, O. Lopez, D. Nicolodi, M. Abgrall, C. Chardonnet, C. Daussy, B. Darquié, Y. Le Coq, and A. Amy-Klein, “Quantum cascade laser frequency stabilization at the sub-Hz level,” Nat. Photonics 9(7), 456–460 (2015).
[Crossref]

Lu, M.

M. Lu, H. Park, E. Bloch, A. Sivananthan, A. Bhardwaj, Z. Griffith, L. A. Johansson, M. J. Rodwell, and L. A. Coldren, “Highly integrated optical heterodyne phase-locked loop with phase/frequency detection,” Opt. Express 20(9), 9736–9741 (2012).
[Crossref] [PubMed]

M. Lu, H. C. Park, E. Bloch, L. A. Johansson, M. J. Rodwell, and L. A. Coldren, “A highly-integrated optical frequency synthesizer based on phase-locked loops,” Optical Fiber Communication Conference (OFC), pp. 1–3 (2014).
[Crossref]

Ma, L.

Y. Yao, Y. Jiang, L. Wu, H. Yu, Z. Bi, and L. Ma, “A low noise optical frequency synthesizer at 700–990 nm,” Appl. Phys. Lett. 109(13), 131102 (2016).
[Crossref]

Ma, L. S.

L. S. Ma, Z. Bi, A. Bartels, L. Robertsson, M. Zucco, R. S. Windeler, G. Wilpers, C. Oates, L. Hollberg, and S. A. Diddams, “Optical frequency synthesis and comparison with uncertainty at the 10-19 level,” Science 303(5665), 1843–1845 (2004).
[Crossref] [PubMed]

Madison, K. W.

Maineult, W.

S. Barbieri, P. Gellie, G. Santarelli, L. Ding, W. Maineult, C. Sirtori, R. Colombelli, H. Beere, and D. Ritchie, “Phase-locking of a 2.7-THz quantum cascade laser to a mode-locked erbium-doped fiber laser,” Nat. Photonics 4(9), 636–640 (2010).
[Crossref]

Matsumoto, H.

Mills, A. K.

Minoshima, K.

Mohanty, A.

A. G. Griffith, R. K. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. Yu, C. T. Phare, C. B. Poitras, A. L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 6299 (2015).
[Crossref] [PubMed]

Momeni, O.

F. Aflatouni, O. Momeni, and H. Hashemi, “A heterodyne phase locked loop with GHz acquisition range for coherent locking of semiconductor lasers in 0.13 μm CMOS,” IEEE Custom Integrated Circuits Conference, pp. 463–466 (2007).

Moss, B. R.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528(7583), 534–538 (2015).
[Crossref] [PubMed]

Nicolodi, D.

B. Argence, B. Chanteau, O. Lopez, D. Nicolodi, M. Abgrall, C. Chardonnet, C. Daussy, B. Darquié, Y. Le Coq, and A. Amy-Klein, “Quantum cascade laser frequency stabilization at the sub-Hz level,” Nat. Photonics 9(7), 456–460 (2015).
[Crossref]

Nilsson, O.

S. Saito, O. Nilsson, and Y. Yamamoto, “Coherent FSK transmitter using a negative feedback stabilized semiconductor laser,” Electron. Lett. 20(17), 703–704 (1984).
[Crossref]

Oates, C.

L. S. Ma, Z. Bi, A. Bartels, L. Robertsson, M. Zucco, R. S. Windeler, G. Wilpers, C. Oates, L. Hollberg, and S. A. Diddams, “Optical frequency synthesis and comparison with uncertainty at the 10-19 level,” Science 303(5665), 1843–1845 (2004).
[Crossref] [PubMed]

Okawachi, Y.

A. G. Griffith, R. K. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. Yu, C. T. Phare, C. B. Poitras, A. L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 6299 (2015).
[Crossref] [PubMed]

Y. Okawachi, K. Saha, J. S. Levy, Y. H. Wen, M. Lipson, and A. L. Gaeta, “Octave-spanning frequency comb generation in a silicon nitride chip,” Opt. Lett. 36(17), 3398–3400 (2011).
[Crossref] [PubMed]

Onae, A.

Orcutt, J. S.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528(7583), 534–538 (2015).
[Crossref] [PubMed]

Ou, A. J.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528(7583), 534–538 (2015).
[Crossref] [PubMed]

Park, H.

Park, H. C.

M. Lu, H. C. Park, E. Bloch, L. A. Johansson, M. J. Rodwell, and L. A. Coldren, “A highly-integrated optical frequency synthesizer based on phase-locked loops,” Optical Fiber Communication Conference (OFC), pp. 1–3 (2014).
[Crossref]

Pavanello, F.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528(7583), 534–538 (2015).
[Crossref] [PubMed]

Phare, C. T.

A. G. Griffith, R. K. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. Yu, C. T. Phare, C. B. Poitras, A. L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 6299 (2015).
[Crossref] [PubMed]

Poitras, C. B.

A. G. Griffith, R. K. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. Yu, C. T. Phare, C. B. Poitras, A. L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 6299 (2015).
[Crossref] [PubMed]

Popovic, M. A.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528(7583), 534–538 (2015).
[Crossref] [PubMed]

Rakuljic, G.

Ram, R. J.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528(7583), 534–538 (2015).
[Crossref] [PubMed]

Ritchie, D.

S. Barbieri, P. Gellie, G. Santarelli, L. Ding, W. Maineult, C. Sirtori, R. Colombelli, H. Beere, and D. Ritchie, “Phase-locking of a 2.7-THz quantum cascade laser to a mode-locked erbium-doped fiber laser,” Nat. Photonics 4(9), 636–640 (2010).
[Crossref]

Ritchie, D. A.

L. Consolino, A. Taschin, P. Bartolini, S. Bartalini, P. Cancio, A. Tredicucci, H. E. Beere, D. A. Ritchie, R. Torre, M. S. Vitiello, and P. De Natale, “Phase-locking to a free-space terahertz comb for metrological-grade terahertz lasers,” Nat. Commun. 3, 1040 (2012).
[Crossref] [PubMed]

Robertsson, L.

L. S. Ma, Z. Bi, A. Bartels, L. Robertsson, M. Zucco, R. S. Windeler, G. Wilpers, C. Oates, L. Hollberg, and S. A. Diddams, “Optical frequency synthesis and comparison with uncertainty at the 10-19 level,” Science 303(5665), 1843–1845 (2004).
[Crossref] [PubMed]

Rodwell, M. J.

M. Lu, H. Park, E. Bloch, A. Sivananthan, A. Bhardwaj, Z. Griffith, L. A. Johansson, M. J. Rodwell, and L. A. Coldren, “Highly integrated optical heterodyne phase-locked loop with phase/frequency detection,” Opt. Express 20(9), 9736–9741 (2012).
[Crossref] [PubMed]

M. Lu, H. C. Park, E. Bloch, L. A. Johansson, M. J. Rodwell, and L. A. Coldren, “A highly-integrated optical frequency synthesizer based on phase-locked loops,” Optical Fiber Communication Conference (OFC), pp. 1–3 (2014).
[Crossref]

Russell, P. S.

R. Holzwarth, T. Udem, T. W. Hansch, J. C. Knight, W. J. Wadsworth, and P. S. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85(11), 2264–2267 (2000).
[Crossref] [PubMed]

Saha, K.

Saito, S.

S. Saito, O. Nilsson, and Y. Yamamoto, “Coherent FSK transmitter using a negative feedback stabilized semiconductor laser,” Electron. Lett. 20(17), 703–704 (1984).
[Crossref]

Santarelli, G.

S. Barbieri, P. Gellie, G. Santarelli, L. Ding, W. Maineult, C. Sirtori, R. Colombelli, H. Beere, and D. Ritchie, “Phase-locking of a 2.7-THz quantum cascade laser to a mode-locked erbium-doped fiber laser,” Nat. Photonics 4(9), 636–640 (2010).
[Crossref]

Satyan, N.

Schibli, T. R.

Shainline, J. M.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528(7583), 534–538 (2015).
[Crossref] [PubMed]

Shioda, T.

Sirtori, C.

S. Barbieri, P. Gellie, G. Santarelli, L. Ding, W. Maineult, C. Sirtori, R. Colombelli, H. Beere, and D. Ritchie, “Phase-locking of a 2.7-THz quantum cascade laser to a mode-locked erbium-doped fiber laser,” Nat. Photonics 4(9), 636–640 (2010).
[Crossref]

Sivananthan, A.

Stojanovic, V. M.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528(7583), 534–538 (2015).
[Crossref] [PubMed]

Sun, C.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528(7583), 534–538 (2015).
[Crossref] [PubMed]

Tang, H. X.

Taschin, A.

L. Consolino, A. Taschin, P. Bartolini, S. Bartalini, P. Cancio, A. Tredicucci, H. E. Beere, D. A. Ritchie, R. Torre, M. S. Vitiello, and P. De Natale, “Phase-locking to a free-space terahertz comb for metrological-grade terahertz lasers,” Nat. Commun. 3, 1040 (2012).
[Crossref] [PubMed]

Torre, R.

L. Consolino, A. Taschin, P. Bartolini, S. Bartalini, P. Cancio, A. Tredicucci, H. E. Beere, D. A. Ritchie, R. Torre, M. S. Vitiello, and P. De Natale, “Phase-locking to a free-space terahertz comb for metrological-grade terahertz lasers,” Nat. Commun. 3, 1040 (2012).
[Crossref] [PubMed]

Tredicucci, A.

L. Consolino, A. Taschin, P. Bartolini, S. Bartalini, P. Cancio, A. Tredicucci, H. E. Beere, D. A. Ritchie, R. Torre, M. S. Vitiello, and P. De Natale, “Phase-locking to a free-space terahertz comb for metrological-grade terahertz lasers,” Nat. Commun. 3, 1040 (2012).
[Crossref] [PubMed]

Udem, T.

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
[Crossref] [PubMed]

R. Holzwarth, T. Udem, T. W. Hansch, J. C. Knight, W. J. Wadsworth, and P. S. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85(11), 2264–2267 (2000).
[Crossref] [PubMed]

Vasilyev, A.

Vitiello, M. S.

L. Consolino, A. Taschin, P. Bartolini, S. Bartalini, P. Cancio, A. Tredicucci, H. E. Beere, D. A. Ritchie, R. Torre, M. S. Vitiello, and P. De Natale, “Phase-locking to a free-space terahertz comb for metrological-grade terahertz lasers,” Nat. Commun. 3, 1040 (2012).
[Crossref] [PubMed]

Wade, M. T.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528(7583), 534–538 (2015).
[Crossref] [PubMed]

Wadsworth, W. J.

R. Holzwarth, T. Udem, T. W. Hansch, J. C. Knight, W. J. Wadsworth, and P. S. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85(11), 2264–2267 (2000).
[Crossref] [PubMed]

Waterman, A. S.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528(7583), 534–538 (2015).
[Crossref] [PubMed]

Wen, Y. H.

White, J. O.

Wilpers, G.

L. S. Ma, Z. Bi, A. Bartels, L. Robertsson, M. Zucco, R. S. Windeler, G. Wilpers, C. Oates, L. Hollberg, and S. A. Diddams, “Optical frequency synthesis and comparison with uncertainty at the 10-19 level,” Science 303(5665), 1843–1845 (2004).
[Crossref] [PubMed]

Windeler, R. S.

L. S. Ma, Z. Bi, A. Bartels, L. Robertsson, M. Zucco, R. S. Windeler, G. Wilpers, C. Oates, L. Hollberg, and S. A. Diddams, “Optical frequency synthesis and comparison with uncertainty at the 10-19 level,” Science 303(5665), 1843–1845 (2004).
[Crossref] [PubMed]

Wu, L.

Y. Yao, Y. Jiang, L. Wu, H. Yu, Z. Bi, and L. Ma, “A low noise optical frequency synthesizer at 700–990 nm,” Appl. Phys. Lett. 109(13), 131102 (2016).
[Crossref]

Xiong, C.

Yamamoto, Y.

S. Saito, O. Nilsson, and Y. Yamamoto, “Coherent FSK transmitter using a negative feedback stabilized semiconductor laser,” Electron. Lett. 20(17), 703–704 (1984).
[Crossref]

Yamazaki, T.

Yao, Y.

Y. Yao, Y. Jiang, L. Wu, H. Yu, Z. Bi, and L. Ma, “A low noise optical frequency synthesizer at 700–990 nm,” Appl. Phys. Lett. 109(13), 131102 (2016).
[Crossref]

Yariv, A.

Yu, H.

Y. Yao, Y. Jiang, L. Wu, H. Yu, Z. Bi, and L. Ma, “A low noise optical frequency synthesizer at 700–990 nm,” Appl. Phys. Lett. 109(13), 131102 (2016).
[Crossref]

Yu, M.

A. G. Griffith, R. K. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. Yu, C. T. Phare, C. B. Poitras, A. L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 6299 (2015).
[Crossref] [PubMed]

Zhang, X.

Zhou, A.

A. Khachaturian, B. Abiri, A. Zhou, and A. Hajimiri, “Monolithic Mach-Zehnder Interferometer Modulator in an unmodified CMOS process,” IEEE Photonics Conference (IPC), pp. 394–395 (2015).
[Crossref]

Zucco, M.

L. S. Ma, Z. Bi, A. Bartels, L. Robertsson, M. Zucco, R. S. Windeler, G. Wilpers, C. Oates, L. Hollberg, and S. A. Diddams, “Optical frequency synthesis and comparison with uncertainty at the 10-19 level,” Science 303(5665), 1843–1845 (2004).
[Crossref] [PubMed]

Adv. Comput. Math. (1)

R. M. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Jeffrey, and D. E. Knuth, “On the Lambert W function,” Adv. Comput. Math. 5(4), 329–359 (1996).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

Y. Yao, Y. Jiang, L. Wu, H. Yu, Z. Bi, and L. Ma, “A low noise optical frequency synthesizer at 700–990 nm,” Appl. Phys. Lett. 109(13), 131102 (2016).
[Crossref]

Electron. Lett. (1)

S. Saito, O. Nilsson, and Y. Yamamoto, “Coherent FSK transmitter using a negative feedback stabilized semiconductor laser,” Electron. Lett. 20(17), 703–704 (1984).
[Crossref]

IEEE J. Solid-State Circuits (1)

F. Behbahani, Y. Kishigami, J. Leete, and A. A. Abidi, “CMOS mixers and polyphase filters for large image rejection,” IEEE J. Solid-State Circuits 36(6), 873–887 (2001).
[Crossref]

IEEE Photonics Technol. Lett. (1)

H. Kiuchi, T. Kawanishi, and A. Kanno, “Wide frequency range optical synthesizer with high-frequency resolution,” IEEE Photonics Technol. Lett. 29(1), 78–81 (2017).
[Crossref]

J. Opt. Soc. Am. B (2)

Nat. Commun. (2)

L. Consolino, A. Taschin, P. Bartolini, S. Bartalini, P. Cancio, A. Tredicucci, H. E. Beere, D. A. Ritchie, R. Torre, M. S. Vitiello, and P. De Natale, “Phase-locking to a free-space terahertz comb for metrological-grade terahertz lasers,” Nat. Commun. 3, 1040 (2012).
[Crossref] [PubMed]

A. G. Griffith, R. K. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. Yu, C. T. Phare, C. B. Poitras, A. L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 6299 (2015).
[Crossref] [PubMed]

Nat. Photonics (2)

B. Argence, B. Chanteau, O. Lopez, D. Nicolodi, M. Abgrall, C. Chardonnet, C. Daussy, B. Darquié, Y. Le Coq, and A. Amy-Klein, “Quantum cascade laser frequency stabilization at the sub-Hz level,” Nat. Photonics 9(7), 456–460 (2015).
[Crossref]

S. Barbieri, P. Gellie, G. Santarelli, L. Ding, W. Maineult, C. Sirtori, R. Colombelli, H. Beere, and D. Ritchie, “Phase-locking of a 2.7-THz quantum cascade laser to a mode-locked erbium-doped fiber laser,” Nat. Photonics 4(9), 636–640 (2010).
[Crossref]

Nature (2)

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
[Crossref] [PubMed]

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528(7583), 534–538 (2015).
[Crossref] [PubMed]

Opt. Express (3)

Opt. Lett. (4)

Phys. Rev. Lett. (1)

R. Holzwarth, T. Udem, T. W. Hansch, J. C. Knight, W. J. Wadsworth, and P. S. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85(11), 2264–2267 (2000).
[Crossref] [PubMed]

Science (1)

L. S. Ma, Z. Bi, A. Bartels, L. Robertsson, M. Zucco, R. S. Windeler, G. Wilpers, C. Oates, L. Hollberg, and S. A. Diddams, “Optical frequency synthesis and comparison with uncertainty at the 10-19 level,” Science 303(5665), 1843–1845 (2004).
[Crossref] [PubMed]

Other (7)

F. Aflatouni and H. Hashemi, “An electronically controlled optical phased array,” IEEE International Microwave Symposium (IMS) Dig. Papers, WEPN-6 (2012).

F. Aflatouni, O. Momeni, and H. Hashemi, “A heterodyne phase locked loop with GHz acquisition range for coherent locking of semiconductor lasers in 0.13 μm CMOS,” IEEE Custom Integrated Circuits Conference, pp. 463–466 (2007).

F. M. Gardner, Phaselock techniques (John Wiley and Sons, 2005).

F. Aflatouni, “Electronically assisted relative and absolute phase control of semiconductor lasers,” (Doctoral dissertation) pp. 36–46 (2011).

T. A. Burton, Stability and Periodic Solutions of Ordinary and Functional Differential Equations. (Academic Incorporation, 1985).

A. Khachaturian, B. Abiri, A. Zhou, and A. Hajimiri, “Monolithic Mach-Zehnder Interferometer Modulator in an unmodified CMOS process,” IEEE Photonics Conference (IPC), pp. 394–395 (2015).
[Crossref]

M. Lu, H. C. Park, E. Bloch, L. A. Johansson, M. J. Rodwell, and L. A. Coldren, “A highly-integrated optical frequency synthesizer based on phase-locked loops,” Optical Fiber Communication Conference (OFC), pp. 1–3 (2014).
[Crossref]

Supplementary Material (2)

NameDescription
» Visualization 1: MOV (1587 KB)      Visualization 1
» Visualization 2: MOV (14182 KB)      Visualization 2

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Block diagram of a heterodyne optical synthesizer.
Fig. 2
Fig. 2 The EOPLL principle of operation. (a) The semiconductor laser modelled as a current controlled oscillator, (b) an optical phase detector, and (c) the conceptual block diagram of an EOPLL in presence of loop delay.
Fig. 3
Fig. 3 Reported EOPLL with integrated photonic and electronic devices. (a) Schematic of the EOPLL chip. (b) The EOPLL chip microphotograph.
Fig. 4
Fig. 4 Characterization of integrated photonic structures. (a) Two back-to-back grating couplers implemented for coupling efficiency measurement. (b) The measured coupling efficiency of the grating coupler with peak efficiency at 1560 nm for coupling angle of 17°. (c) Waveguides with different lengths. (d) The measured propagation loss of a 1 mm long 500 nm wide nanophotonic waveguide after de-embedding the effect of grating couplers and averaging over several chips. (e) Cascaded Y-junctions implemented for transmission characterization. (f) Transmission of the on-chip Y-junctions with measured average excess loss of 0.5 dB.
Fig. 5
Fig. 5 The block diagram of the EOPLL and frequency acquisition principle of operation. (a) Block diagram of the EOPLL chip with three paths: the frequency detection path, the phase detection path, and the integrator path. (b) Frequency detection principle of operation in the complex frequency plane is shown. Each diagram shows the frequency spectrum of the corresponding node in Fig. 5a. “I” and “Q” represent cosine and sine functions, respectively.
Fig. 6
Fig. 6 Measured (a) amplitude and (b) phase mismatch at the output of quadrature mixers (nodes (5) and (6) in Fig. 5(a)). (c) The measured characteristics of the frequency detection path when the frequency of the heterodyning signal is set to 900 MHz.
Fig. 7
Fig. 7 Measurement setup used for monitoring the lock spectrum.
Fig. 8
Fig. 8 (a) – (e) The lock spectrum when the heterodyning frequency is set to 500 MHz, 728 MHz, 897 MHz, 1.01 GHz, and 1.27 GHz, respectively. The heterodyning frequency can be widely tuned while the EOPLL remains phase and frequency locked.

Tables (1)

Tables Icon

Table 1 Performance comparison with previously published works.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

d Φ e (t) dt +Kcos( Φ e (t) )* f Loop (t)*δ(t t d )=Δω.
d Φ e (t) dt +Kcos( Φ e (t t d ) )=Δω.
dδ Φ e (t) dt +Kcos( Φ e,ss +δ Φ e (t t d ) )=Δω.
cos( Φ e,ss +δ Φ e (t t d ) )= cos( Φ e,ss )cos( δ Φ e (t t d ) )sin( Φ e,ss )sin( δ Φ e (t t d ) ) cos( Φ e,ss )δ Φ e (t t d )sin( Φ e,ss ).
sin( Φ e,ss )=± 1 ( Δω K ) 2 .
dδ Φ e (t) dt +K( Δω K δ Φ e (t t d ) 1 ( Δω K ) 2 )=Δω.
s t d e s t d =± t d K 2 Δ ω 2 .
s t d =W( ± t d K 2 Δ ω 2 ).
0K π 2 t d 1+ ( 2 t d Δω π ) 2 .
a d 2 Φ e (t) d t 2 + d Φ e (t) dt +Kcos( Φ e (t t d ) )=Δω.
d 2 δ Φ e (t) d t 2 + 1 a dδ Φ e (t) dt ± K a 1 ( Δω K ) 2 δ Φ e (t t d )=0.
K< 1 t d 1+ ( Δω t d ) 2 .

Metrics