Abstract

A core-shell structure with a NaYF4:Sm3+/Yb3+ core for photothermal conversion nanocalorifier and a NaYF4:Er3+/Yb3+ shell as temperature probe for potential applications in photothermal therapy (PTT) were synthesized by a thermal decomposition technique of rare-earth oleate complexes. The optical temperature reading-out property for the NaYF4:Sm3+/Yb3+@NaYF4:Er3+/Yb3+ core-shell structure was systematically investigated and it was found that in comparison with pure NaYF4:Er3+/Yb3+ particles, the temperature sensing performance of the NaYF4:Er3+/Yb3+ shell did not become worse due to the presence of NaYF4:Sm3+/Yb3+ core. Furthermore, the photothermal conversion behavior for core-shell nanoparticles was successfully examined by dint of temperature sensing of the NaYF4:Er3+/Yb3+ shell, and it was found that an excitation-power-density-dependent temperature increase of up to several tens degrees can be achieved. All the experimental results suggested that the core-shell structure may be an excellent nanocalorifier candidate for advanced temperature-controllable PTT.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Temperature sensing, excitation power dependent fluorescence branching ratios, and photothermal conversion in NaYF4:Er3+/Yb3+ @NaYF4:Tm3+/Yb3+core-shell particles

Yanqiu Zhang, Sai Xu, Xiangping Li, Jinsu Zhang, Jiashi Sun, Haiping Xia, Ruinian Hua, and Baojiu Chen
Opt. Mater. Express 8(2) 368-384 (2018)

Multifunctional nanoheater based on NaGdF4:Yb3+, Er3+ upconversion nanoparticles

Qiyue Shao, Lilai Ouyang, Lifei Jin, and Jianqing Jiang
Opt. Express 23(23) 30057-30066 (2015)

Dual-functional β-NaYF4: Yb3+, Er3+ nanoparticles for bioimaging and temperature sensing

Lili Huo, Jiajia Zhou, Ruozhen Wu, Junfei Ren, Shengjun Zhang, Junjie Zhang, and Shiqing Xu
Opt. Mater. Express 6(4) 1056-1064 (2016)

References

  • View by:
  • |
  • |
  • |

  1. F. Vetrone, R. Naccache, A. Zamarrón, A. Juarranz de la Fuente, F. Sanz-Rodríguez, L. Martinez Maestro, E. Martín Rodriguez, D. Jaque, J. García Solé, and J. A. Capobianco, “Temperature sensing using fluorescent nanothermometers,” ACS Nano 4(6), 3254–3258 (2010).
    [Crossref] [PubMed]
  2. H. Zheng, B. J. Chen, H. Q. Yu, X. P. Li, J. S. Zhang, J. S. Sun, L. L. Tong, Z. L. Wu, H. Zhong, R. N. Hua, and H. P. Xia, “Rod-shaped NaY(MoO4)2:Sm3+/Yb3+ nanoheaters for photothermal conversion: Influence of doping concentration and excitation power density,” Sensor. Actuat. Biol. Chem. 234, 286–293 (2016).
  3. S. Xu, S. Y. Xiang, Y. Q. Zhang, J. S. Zhang, X. P. Li, J. S. Sun, L. H. Cheng, and B. J. Chen, ““808 nm laser induced photothermal effect on Sm3+/Nd3+ doped NaY(WO4)2 microstructures,” Sensor. Actuat,” Biol. Chem. 240, 386–391 (2017).
  4. Y. Li, C. Jiang, D. Zhang, Y. Wang, X. Ren, K. Ai, X. Chen, and L. Lu, “Targeted polydopamine nanoparticles enable photoacoustic imaging guided chemo-photothermal synergistic therapy of tumor,” Acta Biomater. 47, 124–134 (2017).
    [Crossref] [PubMed]
  5. B. Jang, J. Y. Park, C. H. Tung, I. H. Kim, and Y. Choi, “Gold nanorod-photosensitizer complex for near-infrared fluorescence imaging and photodynamic/photothermal therapy in vivo,” ACS Nano 5(2), 1086–1094 (2011).
    [Crossref] [PubMed]
  6. X. W. Liu, H. Q. Tao, K. Yang, S. Zhang, S. T. Lee, and Z. Liu, “Optimization of surface on single-walled carbon nanotubes for in vivo photothermal chemistry,” Biomater 32, 44 (2011).
    [PubMed]
  7. H. Liu, W. Tang, C. Li, P. Lv, Z. Wang, Y. Liu, C. Zhang, Y. Bao, H. Chen, X. Meng, Y. Song, X. Xia, F. Pan, D. Cui, and Y. Shi, “CdSe/ZnS quantum dots-labeled mesenchymal stem cells for targeted fluorescence imaging of pancreas tissues and therapy of type 1 diabetic rats,” Nanoscale Res. Lett. 10(1), 265 (2015).
    [Crossref] [PubMed]
  8. Q. Li, L. Hong, H. Li, and C. Liu, “Graphene oxide-fullerene C60 (GO-C60) hybrid for photodynamic and photothermal therapy triggered by near-infrared light,” Biosens. Bioelectron. 89(Pt 1), 477–482 (2017).
    [Crossref] [PubMed]
  9. K. Yang, S. Zhang, G. Zhang, X. Sun, S. T. Lee, and Z. Liu, “Graphene in mice: ultrahigh in vivo tumor uptake and efficient photothermal therapy,” Nano Lett. 10(9), 3318–3323 (2010).
    [Crossref] [PubMed]
  10. E. M. Chan, “Combinatorial approaches for developing upconverting nanomaterials: high-throughput screening, modeling, and applications,” Chem. Soc. Rev. 44(6), 1653–1679 (2015).
    [Crossref] [PubMed]
  11. Y. I. Park, K. T. Lee, Y. D. Suh, and T. Hyeon, “Upconverting nanoparticles: a versatile platform for wide-field two-photon microscopy and multi-modal in vivo imaging,” Chem. Soc. Rev. 44(6), 1302–1317 (2015).
    [Crossref] [PubMed]
  12. X. Li, F. Zhang, and D. Zhao, “Lab on upconversion nanoparticles: optical properties and applications engineering via designed nanostructure,” Chem. Soc. Rev. 44(6), 1346–1378 (2015).
    [Crossref] [PubMed]
  13. N. M. Idris, M. K. G. Jayakumar, A. Bansal, and Y. Zhang, “Upconversion nanoparticles as versatile light nanotransducers for photoactivation applications,” Chem. Soc. Rev. 44(6), 1449–1478 (2015).
    [Crossref] [PubMed]
  14. W. Zheng, P. Huang, D. Tu, E. Ma, H. Zhu, and X. Chen, “Lanthanide-doped upconversion nano-bioprobes: electronic structures, optical properties, and biodetection,” Chem. Soc. Rev. 44(6), 1379–1415 (2015).
    [Crossref] [PubMed]
  15. E. Kauer, R. Kersten, and F. Mahdjuri, “Photothermal conversion,” Acta Electron. (Paris) 18, 295 (1975).
  16. E. Carrasco, B. Rosal, F. S. Rodriguez, A. J. Fuente, P. H. Gonzalez, U. Rocha, K. U. Kumar, C. Jacinto, J. G. Sole, and D. Jaque, “Intratumoral thermal reading during photo-thermal therapy by multifunctional fluorescent Nanoparticles,” Adv. Funct. Mater. 25(4), 615–626 (2015).
    [Crossref]
  17. E. C. Ximendes, U. Rocha, C. Jacinto, K. U. Kumar, D. Bravo, F. J. López, E. Martín Rodríguez, J. García-Solé, and D. Jaque, “Self-monitored photothermal nanoparticles based on core-shell engineering,” Nanoscale 8(5), 3057–3066 (2016).
    [Crossref] [PubMed]
  18. A. Dubey, A. K. Soni, A. Kumari, R. Dey, and V. K. Rai, “Enhanced green upconversion emission in NaYF4:Er3+/Yb3+/Li3+ phosphors for optical thermometry,” J. Alloys Compd. 693, 194–200 (2017).
    [Crossref]
  19. W. B. Bi, Q. Y. Meng, W. J. Sun, and S. C. Lu, “Optical temperature sensing properties of Er3+, Yb3+ co-doped NaGd(MoO4)2 phosphor,” Ceram. Int. 43(1), 1460–1465 (2017).
    [Crossref]
  20. Y. Tian, B. N. Tian, C. E. Cui, P. Huang, L. Wang, and B. J. Chen, “Size-dependent upconversion luminescence and temperature sensing behavior of spherical Gd2O3:Yb3+/Er3+ phosphor,” RSC Advances 5(19), 14123–14128 (2015).
    [Crossref]
  21. H. Zheng, B. Chen, H. Yu, J. Zhang, J. Sun, X. Li, M. Sun, B. Tian, S. Fu, H. Zhong, B. Dong, R. Hua, and H. Xia, “Microwave-assisted hydrothermal synthesis and temperature sensing application of Er3+/Yb3+ doped NaY(WO4)2 microstructures,” J. Colloid Interface Sci. 420, 27–34 (2014).
    [Crossref] [PubMed]
  22. S. Y. Xiang, B. J. Chen, J. S. Zhang, X. P. Li, J. S. Sun, H. Zheng, Z. L. Wu, H. Zhong, H. Q. Yu, and H. P. Xia, “Microwave-assisted hydrothermal synthesis and laser-induced optical heating effect of NaY(WO4)2:Tm3+/Yb3+ microstructures,” Opt. Mater. Express 4(9), 1966 (2014).
    [Crossref]
  23. H. Zheng, B. J. Chen, H. Q. Yu, J. S. Zhang, J. S. Sun, X. P. Li, M. Sun, B. N. Tian, H. Zhong, S. B. Fu, R. N. Hua, and H. P. Xia, “Temperature sensing and optical heating in Er3+ single-doped and Er3+/Yb3+ codoped NaY(WO4)2 particles,” RSC Advances 4(88), 47556–47563 (2014).
    [Crossref]
  24. Y. Tian, B. J. Chen, R. N. Hua, J. S. Sun, L. H. Cheng, H. Y. Zhong, X. P. Li, J. S. Zhang, Y. F. Zheng, T. T. Yu, L. B. Huang, and H. Q. Yu, “Optical transition, electron-phonon coupling and fluorescent quenching of La2(MoO4)3:Eu3+ phosphor,” J. Appl. Phys. 109(5), 053511 (2011).
    [Crossref]
  25. L. Tong, X. Li, R. Hua, Y. Tianxiang Peng, X. Wang, Zhang, and B. Chen, “Anomalous temperature-dependent upconversion luminescence of β-NaYF4:Yb3+/Er3+ nanocrystals synthesized by a microwave-assisted hydrothermal method,” J. Nanosci. Nanotechnol. 16(1), 816–821 (2016).
    [Crossref] [PubMed]
  26. Y. Y. Tian, Y. Tian, P. Huang, L. Wang, Q. F. Shi, and C. E. Cui, “Effect of Yb3+ concentration on upconversion luminescence and temperature sensing behavior in Yb3+/Er3+ co-doped YNbO4 nanoparticles prepared via molten salt route,” Chem. Eng. J. 297, 26–34 (2016).
    [Crossref]
  27. X. D. Liu, X. Zhang, G. Tian, W. Y. Yin, L. Yan, L. F. Ruan, Z. Y. Yang, D. B. Xiao, and Z. J. Gu, “A simple and efficient synthetic route for preparation of NaYF4 upconversion nanoparticles by thermo-decomposition of rare-earth oleates,” CrystEngComm 16(25), 5650 (2014).
    [Crossref]
  28. S. A. Wade, S. F. Collins, and G. W. Baxter, “Fluorescence intensity ratio technique for optical fiber point temperature sensing,” J. Appl. Phys. 94(8), 4743 (2003).
    [Crossref]
  29. L. L. Tong, X. P. Li, R. N. Hua, X. J. Li, H. Zheng, J. S. Sun, J. S. Zhang, L. H. Cheng, and B. J. Chen, “Comparative study on upconversion luminescence and temperature sensing of α- and β-NaYF4: Yb3+/Er3+ nano-/micro-nanocrystals derived from a microwave-assisted hydrothermal route,” J. Lumin. 167, 386–390 (2015).
    [Crossref]

2017 (5)

S. Xu, S. Y. Xiang, Y. Q. Zhang, J. S. Zhang, X. P. Li, J. S. Sun, L. H. Cheng, and B. J. Chen, ““808 nm laser induced photothermal effect on Sm3+/Nd3+ doped NaY(WO4)2 microstructures,” Sensor. Actuat,” Biol. Chem. 240, 386–391 (2017).

Y. Li, C. Jiang, D. Zhang, Y. Wang, X. Ren, K. Ai, X. Chen, and L. Lu, “Targeted polydopamine nanoparticles enable photoacoustic imaging guided chemo-photothermal synergistic therapy of tumor,” Acta Biomater. 47, 124–134 (2017).
[Crossref] [PubMed]

Q. Li, L. Hong, H. Li, and C. Liu, “Graphene oxide-fullerene C60 (GO-C60) hybrid for photodynamic and photothermal therapy triggered by near-infrared light,” Biosens. Bioelectron. 89(Pt 1), 477–482 (2017).
[Crossref] [PubMed]

A. Dubey, A. K. Soni, A. Kumari, R. Dey, and V. K. Rai, “Enhanced green upconversion emission in NaYF4:Er3+/Yb3+/Li3+ phosphors for optical thermometry,” J. Alloys Compd. 693, 194–200 (2017).
[Crossref]

W. B. Bi, Q. Y. Meng, W. J. Sun, and S. C. Lu, “Optical temperature sensing properties of Er3+, Yb3+ co-doped NaGd(MoO4)2 phosphor,” Ceram. Int. 43(1), 1460–1465 (2017).
[Crossref]

2016 (4)

H. Zheng, B. J. Chen, H. Q. Yu, X. P. Li, J. S. Zhang, J. S. Sun, L. L. Tong, Z. L. Wu, H. Zhong, R. N. Hua, and H. P. Xia, “Rod-shaped NaY(MoO4)2:Sm3+/Yb3+ nanoheaters for photothermal conversion: Influence of doping concentration and excitation power density,” Sensor. Actuat. Biol. Chem. 234, 286–293 (2016).

L. Tong, X. Li, R. Hua, Y. Tianxiang Peng, X. Wang, Zhang, and B. Chen, “Anomalous temperature-dependent upconversion luminescence of β-NaYF4:Yb3+/Er3+ nanocrystals synthesized by a microwave-assisted hydrothermal method,” J. Nanosci. Nanotechnol. 16(1), 816–821 (2016).
[Crossref] [PubMed]

Y. Y. Tian, Y. Tian, P. Huang, L. Wang, Q. F. Shi, and C. E. Cui, “Effect of Yb3+ concentration on upconversion luminescence and temperature sensing behavior in Yb3+/Er3+ co-doped YNbO4 nanoparticles prepared via molten salt route,” Chem. Eng. J. 297, 26–34 (2016).
[Crossref]

E. C. Ximendes, U. Rocha, C. Jacinto, K. U. Kumar, D. Bravo, F. J. López, E. Martín Rodríguez, J. García-Solé, and D. Jaque, “Self-monitored photothermal nanoparticles based on core-shell engineering,” Nanoscale 8(5), 3057–3066 (2016).
[Crossref] [PubMed]

2015 (9)

H. Liu, W. Tang, C. Li, P. Lv, Z. Wang, Y. Liu, C. Zhang, Y. Bao, H. Chen, X. Meng, Y. Song, X. Xia, F. Pan, D. Cui, and Y. Shi, “CdSe/ZnS quantum dots-labeled mesenchymal stem cells for targeted fluorescence imaging of pancreas tissues and therapy of type 1 diabetic rats,” Nanoscale Res. Lett. 10(1), 265 (2015).
[Crossref] [PubMed]

E. Carrasco, B. Rosal, F. S. Rodriguez, A. J. Fuente, P. H. Gonzalez, U. Rocha, K. U. Kumar, C. Jacinto, J. G. Sole, and D. Jaque, “Intratumoral thermal reading during photo-thermal therapy by multifunctional fluorescent Nanoparticles,” Adv. Funct. Mater. 25(4), 615–626 (2015).
[Crossref]

L. L. Tong, X. P. Li, R. N. Hua, X. J. Li, H. Zheng, J. S. Sun, J. S. Zhang, L. H. Cheng, and B. J. Chen, “Comparative study on upconversion luminescence and temperature sensing of α- and β-NaYF4: Yb3+/Er3+ nano-/micro-nanocrystals derived from a microwave-assisted hydrothermal route,” J. Lumin. 167, 386–390 (2015).
[Crossref]

Y. Tian, B. N. Tian, C. E. Cui, P. Huang, L. Wang, and B. J. Chen, “Size-dependent upconversion luminescence and temperature sensing behavior of spherical Gd2O3:Yb3+/Er3+ phosphor,” RSC Advances 5(19), 14123–14128 (2015).
[Crossref]

E. M. Chan, “Combinatorial approaches for developing upconverting nanomaterials: high-throughput screening, modeling, and applications,” Chem. Soc. Rev. 44(6), 1653–1679 (2015).
[Crossref] [PubMed]

Y. I. Park, K. T. Lee, Y. D. Suh, and T. Hyeon, “Upconverting nanoparticles: a versatile platform for wide-field two-photon microscopy and multi-modal in vivo imaging,” Chem. Soc. Rev. 44(6), 1302–1317 (2015).
[Crossref] [PubMed]

X. Li, F. Zhang, and D. Zhao, “Lab on upconversion nanoparticles: optical properties and applications engineering via designed nanostructure,” Chem. Soc. Rev. 44(6), 1346–1378 (2015).
[Crossref] [PubMed]

N. M. Idris, M. K. G. Jayakumar, A. Bansal, and Y. Zhang, “Upconversion nanoparticles as versatile light nanotransducers for photoactivation applications,” Chem. Soc. Rev. 44(6), 1449–1478 (2015).
[Crossref] [PubMed]

W. Zheng, P. Huang, D. Tu, E. Ma, H. Zhu, and X. Chen, “Lanthanide-doped upconversion nano-bioprobes: electronic structures, optical properties, and biodetection,” Chem. Soc. Rev. 44(6), 1379–1415 (2015).
[Crossref] [PubMed]

2014 (4)

H. Zheng, B. Chen, H. Yu, J. Zhang, J. Sun, X. Li, M. Sun, B. Tian, S. Fu, H. Zhong, B. Dong, R. Hua, and H. Xia, “Microwave-assisted hydrothermal synthesis and temperature sensing application of Er3+/Yb3+ doped NaY(WO4)2 microstructures,” J. Colloid Interface Sci. 420, 27–34 (2014).
[Crossref] [PubMed]

H. Zheng, B. J. Chen, H. Q. Yu, J. S. Zhang, J. S. Sun, X. P. Li, M. Sun, B. N. Tian, H. Zhong, S. B. Fu, R. N. Hua, and H. P. Xia, “Temperature sensing and optical heating in Er3+ single-doped and Er3+/Yb3+ codoped NaY(WO4)2 particles,” RSC Advances 4(88), 47556–47563 (2014).
[Crossref]

S. Y. Xiang, B. J. Chen, J. S. Zhang, X. P. Li, J. S. Sun, H. Zheng, Z. L. Wu, H. Zhong, H. Q. Yu, and H. P. Xia, “Microwave-assisted hydrothermal synthesis and laser-induced optical heating effect of NaY(WO4)2:Tm3+/Yb3+ microstructures,” Opt. Mater. Express 4(9), 1966 (2014).
[Crossref]

X. D. Liu, X. Zhang, G. Tian, W. Y. Yin, L. Yan, L. F. Ruan, Z. Y. Yang, D. B. Xiao, and Z. J. Gu, “A simple and efficient synthetic route for preparation of NaYF4 upconversion nanoparticles by thermo-decomposition of rare-earth oleates,” CrystEngComm 16(25), 5650 (2014).
[Crossref]

2011 (3)

Y. Tian, B. J. Chen, R. N. Hua, J. S. Sun, L. H. Cheng, H. Y. Zhong, X. P. Li, J. S. Zhang, Y. F. Zheng, T. T. Yu, L. B. Huang, and H. Q. Yu, “Optical transition, electron-phonon coupling and fluorescent quenching of La2(MoO4)3:Eu3+ phosphor,” J. Appl. Phys. 109(5), 053511 (2011).
[Crossref]

B. Jang, J. Y. Park, C. H. Tung, I. H. Kim, and Y. Choi, “Gold nanorod-photosensitizer complex for near-infrared fluorescence imaging and photodynamic/photothermal therapy in vivo,” ACS Nano 5(2), 1086–1094 (2011).
[Crossref] [PubMed]

X. W. Liu, H. Q. Tao, K. Yang, S. Zhang, S. T. Lee, and Z. Liu, “Optimization of surface on single-walled carbon nanotubes for in vivo photothermal chemistry,” Biomater 32, 44 (2011).
[PubMed]

2010 (2)

F. Vetrone, R. Naccache, A. Zamarrón, A. Juarranz de la Fuente, F. Sanz-Rodríguez, L. Martinez Maestro, E. Martín Rodriguez, D. Jaque, J. García Solé, and J. A. Capobianco, “Temperature sensing using fluorescent nanothermometers,” ACS Nano 4(6), 3254–3258 (2010).
[Crossref] [PubMed]

K. Yang, S. Zhang, G. Zhang, X. Sun, S. T. Lee, and Z. Liu, “Graphene in mice: ultrahigh in vivo tumor uptake and efficient photothermal therapy,” Nano Lett. 10(9), 3318–3323 (2010).
[Crossref] [PubMed]

2003 (1)

S. A. Wade, S. F. Collins, and G. W. Baxter, “Fluorescence intensity ratio technique for optical fiber point temperature sensing,” J. Appl. Phys. 94(8), 4743 (2003).
[Crossref]

1975 (1)

E. Kauer, R. Kersten, and F. Mahdjuri, “Photothermal conversion,” Acta Electron. (Paris) 18, 295 (1975).

Ai, K.

Y. Li, C. Jiang, D. Zhang, Y. Wang, X. Ren, K. Ai, X. Chen, and L. Lu, “Targeted polydopamine nanoparticles enable photoacoustic imaging guided chemo-photothermal synergistic therapy of tumor,” Acta Biomater. 47, 124–134 (2017).
[Crossref] [PubMed]

Bansal, A.

N. M. Idris, M. K. G. Jayakumar, A. Bansal, and Y. Zhang, “Upconversion nanoparticles as versatile light nanotransducers for photoactivation applications,” Chem. Soc. Rev. 44(6), 1449–1478 (2015).
[Crossref] [PubMed]

Bao, Y.

H. Liu, W. Tang, C. Li, P. Lv, Z. Wang, Y. Liu, C. Zhang, Y. Bao, H. Chen, X. Meng, Y. Song, X. Xia, F. Pan, D. Cui, and Y. Shi, “CdSe/ZnS quantum dots-labeled mesenchymal stem cells for targeted fluorescence imaging of pancreas tissues and therapy of type 1 diabetic rats,” Nanoscale Res. Lett. 10(1), 265 (2015).
[Crossref] [PubMed]

Baxter, G. W.

S. A. Wade, S. F. Collins, and G. W. Baxter, “Fluorescence intensity ratio technique for optical fiber point temperature sensing,” J. Appl. Phys. 94(8), 4743 (2003).
[Crossref]

Bi, W. B.

W. B. Bi, Q. Y. Meng, W. J. Sun, and S. C. Lu, “Optical temperature sensing properties of Er3+, Yb3+ co-doped NaGd(MoO4)2 phosphor,” Ceram. Int. 43(1), 1460–1465 (2017).
[Crossref]

Bravo, D.

E. C. Ximendes, U. Rocha, C. Jacinto, K. U. Kumar, D. Bravo, F. J. López, E. Martín Rodríguez, J. García-Solé, and D. Jaque, “Self-monitored photothermal nanoparticles based on core-shell engineering,” Nanoscale 8(5), 3057–3066 (2016).
[Crossref] [PubMed]

Capobianco, J. A.

F. Vetrone, R. Naccache, A. Zamarrón, A. Juarranz de la Fuente, F. Sanz-Rodríguez, L. Martinez Maestro, E. Martín Rodriguez, D. Jaque, J. García Solé, and J. A. Capobianco, “Temperature sensing using fluorescent nanothermometers,” ACS Nano 4(6), 3254–3258 (2010).
[Crossref] [PubMed]

Carrasco, E.

E. Carrasco, B. Rosal, F. S. Rodriguez, A. J. Fuente, P. H. Gonzalez, U. Rocha, K. U. Kumar, C. Jacinto, J. G. Sole, and D. Jaque, “Intratumoral thermal reading during photo-thermal therapy by multifunctional fluorescent Nanoparticles,” Adv. Funct. Mater. 25(4), 615–626 (2015).
[Crossref]

Chan, E. M.

E. M. Chan, “Combinatorial approaches for developing upconverting nanomaterials: high-throughput screening, modeling, and applications,” Chem. Soc. Rev. 44(6), 1653–1679 (2015).
[Crossref] [PubMed]

Chen, B.

L. Tong, X. Li, R. Hua, Y. Tianxiang Peng, X. Wang, Zhang, and B. Chen, “Anomalous temperature-dependent upconversion luminescence of β-NaYF4:Yb3+/Er3+ nanocrystals synthesized by a microwave-assisted hydrothermal method,” J. Nanosci. Nanotechnol. 16(1), 816–821 (2016).
[Crossref] [PubMed]

H. Zheng, B. Chen, H. Yu, J. Zhang, J. Sun, X. Li, M. Sun, B. Tian, S. Fu, H. Zhong, B. Dong, R. Hua, and H. Xia, “Microwave-assisted hydrothermal synthesis and temperature sensing application of Er3+/Yb3+ doped NaY(WO4)2 microstructures,” J. Colloid Interface Sci. 420, 27–34 (2014).
[Crossref] [PubMed]

Chen, B. J.

S. Xu, S. Y. Xiang, Y. Q. Zhang, J. S. Zhang, X. P. Li, J. S. Sun, L. H. Cheng, and B. J. Chen, ““808 nm laser induced photothermal effect on Sm3+/Nd3+ doped NaY(WO4)2 microstructures,” Sensor. Actuat,” Biol. Chem. 240, 386–391 (2017).

H. Zheng, B. J. Chen, H. Q. Yu, X. P. Li, J. S. Zhang, J. S. Sun, L. L. Tong, Z. L. Wu, H. Zhong, R. N. Hua, and H. P. Xia, “Rod-shaped NaY(MoO4)2:Sm3+/Yb3+ nanoheaters for photothermal conversion: Influence of doping concentration and excitation power density,” Sensor. Actuat. Biol. Chem. 234, 286–293 (2016).

Y. Tian, B. N. Tian, C. E. Cui, P. Huang, L. Wang, and B. J. Chen, “Size-dependent upconversion luminescence and temperature sensing behavior of spherical Gd2O3:Yb3+/Er3+ phosphor,” RSC Advances 5(19), 14123–14128 (2015).
[Crossref]

L. L. Tong, X. P. Li, R. N. Hua, X. J. Li, H. Zheng, J. S. Sun, J. S. Zhang, L. H. Cheng, and B. J. Chen, “Comparative study on upconversion luminescence and temperature sensing of α- and β-NaYF4: Yb3+/Er3+ nano-/micro-nanocrystals derived from a microwave-assisted hydrothermal route,” J. Lumin. 167, 386–390 (2015).
[Crossref]

S. Y. Xiang, B. J. Chen, J. S. Zhang, X. P. Li, J. S. Sun, H. Zheng, Z. L. Wu, H. Zhong, H. Q. Yu, and H. P. Xia, “Microwave-assisted hydrothermal synthesis and laser-induced optical heating effect of NaY(WO4)2:Tm3+/Yb3+ microstructures,” Opt. Mater. Express 4(9), 1966 (2014).
[Crossref]

H. Zheng, B. J. Chen, H. Q. Yu, J. S. Zhang, J. S. Sun, X. P. Li, M. Sun, B. N. Tian, H. Zhong, S. B. Fu, R. N. Hua, and H. P. Xia, “Temperature sensing and optical heating in Er3+ single-doped and Er3+/Yb3+ codoped NaY(WO4)2 particles,” RSC Advances 4(88), 47556–47563 (2014).
[Crossref]

Y. Tian, B. J. Chen, R. N. Hua, J. S. Sun, L. H. Cheng, H. Y. Zhong, X. P. Li, J. S. Zhang, Y. F. Zheng, T. T. Yu, L. B. Huang, and H. Q. Yu, “Optical transition, electron-phonon coupling and fluorescent quenching of La2(MoO4)3:Eu3+ phosphor,” J. Appl. Phys. 109(5), 053511 (2011).
[Crossref]

Chen, H.

H. Liu, W. Tang, C. Li, P. Lv, Z. Wang, Y. Liu, C. Zhang, Y. Bao, H. Chen, X. Meng, Y. Song, X. Xia, F. Pan, D. Cui, and Y. Shi, “CdSe/ZnS quantum dots-labeled mesenchymal stem cells for targeted fluorescence imaging of pancreas tissues and therapy of type 1 diabetic rats,” Nanoscale Res. Lett. 10(1), 265 (2015).
[Crossref] [PubMed]

Chen, X.

Y. Li, C. Jiang, D. Zhang, Y. Wang, X. Ren, K. Ai, X. Chen, and L. Lu, “Targeted polydopamine nanoparticles enable photoacoustic imaging guided chemo-photothermal synergistic therapy of tumor,” Acta Biomater. 47, 124–134 (2017).
[Crossref] [PubMed]

W. Zheng, P. Huang, D. Tu, E. Ma, H. Zhu, and X. Chen, “Lanthanide-doped upconversion nano-bioprobes: electronic structures, optical properties, and biodetection,” Chem. Soc. Rev. 44(6), 1379–1415 (2015).
[Crossref] [PubMed]

Cheng, L. H.

S. Xu, S. Y. Xiang, Y. Q. Zhang, J. S. Zhang, X. P. Li, J. S. Sun, L. H. Cheng, and B. J. Chen, ““808 nm laser induced photothermal effect on Sm3+/Nd3+ doped NaY(WO4)2 microstructures,” Sensor. Actuat,” Biol. Chem. 240, 386–391 (2017).

L. L. Tong, X. P. Li, R. N. Hua, X. J. Li, H. Zheng, J. S. Sun, J. S. Zhang, L. H. Cheng, and B. J. Chen, “Comparative study on upconversion luminescence and temperature sensing of α- and β-NaYF4: Yb3+/Er3+ nano-/micro-nanocrystals derived from a microwave-assisted hydrothermal route,” J. Lumin. 167, 386–390 (2015).
[Crossref]

Y. Tian, B. J. Chen, R. N. Hua, J. S. Sun, L. H. Cheng, H. Y. Zhong, X. P. Li, J. S. Zhang, Y. F. Zheng, T. T. Yu, L. B. Huang, and H. Q. Yu, “Optical transition, electron-phonon coupling and fluorescent quenching of La2(MoO4)3:Eu3+ phosphor,” J. Appl. Phys. 109(5), 053511 (2011).
[Crossref]

Choi, Y.

B. Jang, J. Y. Park, C. H. Tung, I. H. Kim, and Y. Choi, “Gold nanorod-photosensitizer complex for near-infrared fluorescence imaging and photodynamic/photothermal therapy in vivo,” ACS Nano 5(2), 1086–1094 (2011).
[Crossref] [PubMed]

Collins, S. F.

S. A. Wade, S. F. Collins, and G. W. Baxter, “Fluorescence intensity ratio technique for optical fiber point temperature sensing,” J. Appl. Phys. 94(8), 4743 (2003).
[Crossref]

Cui, C. E.

Y. Y. Tian, Y. Tian, P. Huang, L. Wang, Q. F. Shi, and C. E. Cui, “Effect of Yb3+ concentration on upconversion luminescence and temperature sensing behavior in Yb3+/Er3+ co-doped YNbO4 nanoparticles prepared via molten salt route,” Chem. Eng. J. 297, 26–34 (2016).
[Crossref]

Y. Tian, B. N. Tian, C. E. Cui, P. Huang, L. Wang, and B. J. Chen, “Size-dependent upconversion luminescence and temperature sensing behavior of spherical Gd2O3:Yb3+/Er3+ phosphor,” RSC Advances 5(19), 14123–14128 (2015).
[Crossref]

Cui, D.

H. Liu, W. Tang, C. Li, P. Lv, Z. Wang, Y. Liu, C. Zhang, Y. Bao, H. Chen, X. Meng, Y. Song, X. Xia, F. Pan, D. Cui, and Y. Shi, “CdSe/ZnS quantum dots-labeled mesenchymal stem cells for targeted fluorescence imaging of pancreas tissues and therapy of type 1 diabetic rats,” Nanoscale Res. Lett. 10(1), 265 (2015).
[Crossref] [PubMed]

Dey, R.

A. Dubey, A. K. Soni, A. Kumari, R. Dey, and V. K. Rai, “Enhanced green upconversion emission in NaYF4:Er3+/Yb3+/Li3+ phosphors for optical thermometry,” J. Alloys Compd. 693, 194–200 (2017).
[Crossref]

Dong, B.

H. Zheng, B. Chen, H. Yu, J. Zhang, J. Sun, X. Li, M. Sun, B. Tian, S. Fu, H. Zhong, B. Dong, R. Hua, and H. Xia, “Microwave-assisted hydrothermal synthesis and temperature sensing application of Er3+/Yb3+ doped NaY(WO4)2 microstructures,” J. Colloid Interface Sci. 420, 27–34 (2014).
[Crossref] [PubMed]

Dubey, A.

A. Dubey, A. K. Soni, A. Kumari, R. Dey, and V. K. Rai, “Enhanced green upconversion emission in NaYF4:Er3+/Yb3+/Li3+ phosphors for optical thermometry,” J. Alloys Compd. 693, 194–200 (2017).
[Crossref]

Fu, S.

H. Zheng, B. Chen, H. Yu, J. Zhang, J. Sun, X. Li, M. Sun, B. Tian, S. Fu, H. Zhong, B. Dong, R. Hua, and H. Xia, “Microwave-assisted hydrothermal synthesis and temperature sensing application of Er3+/Yb3+ doped NaY(WO4)2 microstructures,” J. Colloid Interface Sci. 420, 27–34 (2014).
[Crossref] [PubMed]

Fu, S. B.

H. Zheng, B. J. Chen, H. Q. Yu, J. S. Zhang, J. S. Sun, X. P. Li, M. Sun, B. N. Tian, H. Zhong, S. B. Fu, R. N. Hua, and H. P. Xia, “Temperature sensing and optical heating in Er3+ single-doped and Er3+/Yb3+ codoped NaY(WO4)2 particles,” RSC Advances 4(88), 47556–47563 (2014).
[Crossref]

Fuente, A. J.

E. Carrasco, B. Rosal, F. S. Rodriguez, A. J. Fuente, P. H. Gonzalez, U. Rocha, K. U. Kumar, C. Jacinto, J. G. Sole, and D. Jaque, “Intratumoral thermal reading during photo-thermal therapy by multifunctional fluorescent Nanoparticles,” Adv. Funct. Mater. 25(4), 615–626 (2015).
[Crossref]

García Solé, J.

F. Vetrone, R. Naccache, A. Zamarrón, A. Juarranz de la Fuente, F. Sanz-Rodríguez, L. Martinez Maestro, E. Martín Rodriguez, D. Jaque, J. García Solé, and J. A. Capobianco, “Temperature sensing using fluorescent nanothermometers,” ACS Nano 4(6), 3254–3258 (2010).
[Crossref] [PubMed]

García-Solé, J.

E. C. Ximendes, U. Rocha, C. Jacinto, K. U. Kumar, D. Bravo, F. J. López, E. Martín Rodríguez, J. García-Solé, and D. Jaque, “Self-monitored photothermal nanoparticles based on core-shell engineering,” Nanoscale 8(5), 3057–3066 (2016).
[Crossref] [PubMed]

Gonzalez, P. H.

E. Carrasco, B. Rosal, F. S. Rodriguez, A. J. Fuente, P. H. Gonzalez, U. Rocha, K. U. Kumar, C. Jacinto, J. G. Sole, and D. Jaque, “Intratumoral thermal reading during photo-thermal therapy by multifunctional fluorescent Nanoparticles,” Adv. Funct. Mater. 25(4), 615–626 (2015).
[Crossref]

Gu, Z. J.

X. D. Liu, X. Zhang, G. Tian, W. Y. Yin, L. Yan, L. F. Ruan, Z. Y. Yang, D. B. Xiao, and Z. J. Gu, “A simple and efficient synthetic route for preparation of NaYF4 upconversion nanoparticles by thermo-decomposition of rare-earth oleates,” CrystEngComm 16(25), 5650 (2014).
[Crossref]

Hong, L.

Q. Li, L. Hong, H. Li, and C. Liu, “Graphene oxide-fullerene C60 (GO-C60) hybrid for photodynamic and photothermal therapy triggered by near-infrared light,” Biosens. Bioelectron. 89(Pt 1), 477–482 (2017).
[Crossref] [PubMed]

Hua, R.

L. Tong, X. Li, R. Hua, Y. Tianxiang Peng, X. Wang, Zhang, and B. Chen, “Anomalous temperature-dependent upconversion luminescence of β-NaYF4:Yb3+/Er3+ nanocrystals synthesized by a microwave-assisted hydrothermal method,” J. Nanosci. Nanotechnol. 16(1), 816–821 (2016).
[Crossref] [PubMed]

H. Zheng, B. Chen, H. Yu, J. Zhang, J. Sun, X. Li, M. Sun, B. Tian, S. Fu, H. Zhong, B. Dong, R. Hua, and H. Xia, “Microwave-assisted hydrothermal synthesis and temperature sensing application of Er3+/Yb3+ doped NaY(WO4)2 microstructures,” J. Colloid Interface Sci. 420, 27–34 (2014).
[Crossref] [PubMed]

Hua, R. N.

H. Zheng, B. J. Chen, H. Q. Yu, X. P. Li, J. S. Zhang, J. S. Sun, L. L. Tong, Z. L. Wu, H. Zhong, R. N. Hua, and H. P. Xia, “Rod-shaped NaY(MoO4)2:Sm3+/Yb3+ nanoheaters for photothermal conversion: Influence of doping concentration and excitation power density,” Sensor. Actuat. Biol. Chem. 234, 286–293 (2016).

L. L. Tong, X. P. Li, R. N. Hua, X. J. Li, H. Zheng, J. S. Sun, J. S. Zhang, L. H. Cheng, and B. J. Chen, “Comparative study on upconversion luminescence and temperature sensing of α- and β-NaYF4: Yb3+/Er3+ nano-/micro-nanocrystals derived from a microwave-assisted hydrothermal route,” J. Lumin. 167, 386–390 (2015).
[Crossref]

H. Zheng, B. J. Chen, H. Q. Yu, J. S. Zhang, J. S. Sun, X. P. Li, M. Sun, B. N. Tian, H. Zhong, S. B. Fu, R. N. Hua, and H. P. Xia, “Temperature sensing and optical heating in Er3+ single-doped and Er3+/Yb3+ codoped NaY(WO4)2 particles,” RSC Advances 4(88), 47556–47563 (2014).
[Crossref]

Y. Tian, B. J. Chen, R. N. Hua, J. S. Sun, L. H. Cheng, H. Y. Zhong, X. P. Li, J. S. Zhang, Y. F. Zheng, T. T. Yu, L. B. Huang, and H. Q. Yu, “Optical transition, electron-phonon coupling and fluorescent quenching of La2(MoO4)3:Eu3+ phosphor,” J. Appl. Phys. 109(5), 053511 (2011).
[Crossref]

Huang, L. B.

Y. Tian, B. J. Chen, R. N. Hua, J. S. Sun, L. H. Cheng, H. Y. Zhong, X. P. Li, J. S. Zhang, Y. F. Zheng, T. T. Yu, L. B. Huang, and H. Q. Yu, “Optical transition, electron-phonon coupling and fluorescent quenching of La2(MoO4)3:Eu3+ phosphor,” J. Appl. Phys. 109(5), 053511 (2011).
[Crossref]

Huang, P.

Y. Y. Tian, Y. Tian, P. Huang, L. Wang, Q. F. Shi, and C. E. Cui, “Effect of Yb3+ concentration on upconversion luminescence and temperature sensing behavior in Yb3+/Er3+ co-doped YNbO4 nanoparticles prepared via molten salt route,” Chem. Eng. J. 297, 26–34 (2016).
[Crossref]

Y. Tian, B. N. Tian, C. E. Cui, P. Huang, L. Wang, and B. J. Chen, “Size-dependent upconversion luminescence and temperature sensing behavior of spherical Gd2O3:Yb3+/Er3+ phosphor,” RSC Advances 5(19), 14123–14128 (2015).
[Crossref]

W. Zheng, P. Huang, D. Tu, E. Ma, H. Zhu, and X. Chen, “Lanthanide-doped upconversion nano-bioprobes: electronic structures, optical properties, and biodetection,” Chem. Soc. Rev. 44(6), 1379–1415 (2015).
[Crossref] [PubMed]

Hyeon, T.

Y. I. Park, K. T. Lee, Y. D. Suh, and T. Hyeon, “Upconverting nanoparticles: a versatile platform for wide-field two-photon microscopy and multi-modal in vivo imaging,” Chem. Soc. Rev. 44(6), 1302–1317 (2015).
[Crossref] [PubMed]

Idris, N. M.

N. M. Idris, M. K. G. Jayakumar, A. Bansal, and Y. Zhang, “Upconversion nanoparticles as versatile light nanotransducers for photoactivation applications,” Chem. Soc. Rev. 44(6), 1449–1478 (2015).
[Crossref] [PubMed]

Jacinto, C.

E. C. Ximendes, U. Rocha, C. Jacinto, K. U. Kumar, D. Bravo, F. J. López, E. Martín Rodríguez, J. García-Solé, and D. Jaque, “Self-monitored photothermal nanoparticles based on core-shell engineering,” Nanoscale 8(5), 3057–3066 (2016).
[Crossref] [PubMed]

E. Carrasco, B. Rosal, F. S. Rodriguez, A. J. Fuente, P. H. Gonzalez, U. Rocha, K. U. Kumar, C. Jacinto, J. G. Sole, and D. Jaque, “Intratumoral thermal reading during photo-thermal therapy by multifunctional fluorescent Nanoparticles,” Adv. Funct. Mater. 25(4), 615–626 (2015).
[Crossref]

Jang, B.

B. Jang, J. Y. Park, C. H. Tung, I. H. Kim, and Y. Choi, “Gold nanorod-photosensitizer complex for near-infrared fluorescence imaging and photodynamic/photothermal therapy in vivo,” ACS Nano 5(2), 1086–1094 (2011).
[Crossref] [PubMed]

Jaque, D.

E. C. Ximendes, U. Rocha, C. Jacinto, K. U. Kumar, D. Bravo, F. J. López, E. Martín Rodríguez, J. García-Solé, and D. Jaque, “Self-monitored photothermal nanoparticles based on core-shell engineering,” Nanoscale 8(5), 3057–3066 (2016).
[Crossref] [PubMed]

E. Carrasco, B. Rosal, F. S. Rodriguez, A. J. Fuente, P. H. Gonzalez, U. Rocha, K. U. Kumar, C. Jacinto, J. G. Sole, and D. Jaque, “Intratumoral thermal reading during photo-thermal therapy by multifunctional fluorescent Nanoparticles,” Adv. Funct. Mater. 25(4), 615–626 (2015).
[Crossref]

F. Vetrone, R. Naccache, A. Zamarrón, A. Juarranz de la Fuente, F. Sanz-Rodríguez, L. Martinez Maestro, E. Martín Rodriguez, D. Jaque, J. García Solé, and J. A. Capobianco, “Temperature sensing using fluorescent nanothermometers,” ACS Nano 4(6), 3254–3258 (2010).
[Crossref] [PubMed]

Jayakumar, M. K. G.

N. M. Idris, M. K. G. Jayakumar, A. Bansal, and Y. Zhang, “Upconversion nanoparticles as versatile light nanotransducers for photoactivation applications,” Chem. Soc. Rev. 44(6), 1449–1478 (2015).
[Crossref] [PubMed]

Jiang, C.

Y. Li, C. Jiang, D. Zhang, Y. Wang, X. Ren, K. Ai, X. Chen, and L. Lu, “Targeted polydopamine nanoparticles enable photoacoustic imaging guided chemo-photothermal synergistic therapy of tumor,” Acta Biomater. 47, 124–134 (2017).
[Crossref] [PubMed]

Juarranz de la Fuente, A.

F. Vetrone, R. Naccache, A. Zamarrón, A. Juarranz de la Fuente, F. Sanz-Rodríguez, L. Martinez Maestro, E. Martín Rodriguez, D. Jaque, J. García Solé, and J. A. Capobianco, “Temperature sensing using fluorescent nanothermometers,” ACS Nano 4(6), 3254–3258 (2010).
[Crossref] [PubMed]

Kauer, E.

E. Kauer, R. Kersten, and F. Mahdjuri, “Photothermal conversion,” Acta Electron. (Paris) 18, 295 (1975).

Kersten, R.

E. Kauer, R. Kersten, and F. Mahdjuri, “Photothermal conversion,” Acta Electron. (Paris) 18, 295 (1975).

Kim, I. H.

B. Jang, J. Y. Park, C. H. Tung, I. H. Kim, and Y. Choi, “Gold nanorod-photosensitizer complex for near-infrared fluorescence imaging and photodynamic/photothermal therapy in vivo,” ACS Nano 5(2), 1086–1094 (2011).
[Crossref] [PubMed]

Kumar, K. U.

E. C. Ximendes, U. Rocha, C. Jacinto, K. U. Kumar, D. Bravo, F. J. López, E. Martín Rodríguez, J. García-Solé, and D. Jaque, “Self-monitored photothermal nanoparticles based on core-shell engineering,” Nanoscale 8(5), 3057–3066 (2016).
[Crossref] [PubMed]

E. Carrasco, B. Rosal, F. S. Rodriguez, A. J. Fuente, P. H. Gonzalez, U. Rocha, K. U. Kumar, C. Jacinto, J. G. Sole, and D. Jaque, “Intratumoral thermal reading during photo-thermal therapy by multifunctional fluorescent Nanoparticles,” Adv. Funct. Mater. 25(4), 615–626 (2015).
[Crossref]

Kumari, A.

A. Dubey, A. K. Soni, A. Kumari, R. Dey, and V. K. Rai, “Enhanced green upconversion emission in NaYF4:Er3+/Yb3+/Li3+ phosphors for optical thermometry,” J. Alloys Compd. 693, 194–200 (2017).
[Crossref]

Lee, K. T.

Y. I. Park, K. T. Lee, Y. D. Suh, and T. Hyeon, “Upconverting nanoparticles: a versatile platform for wide-field two-photon microscopy and multi-modal in vivo imaging,” Chem. Soc. Rev. 44(6), 1302–1317 (2015).
[Crossref] [PubMed]

Lee, S. T.

X. W. Liu, H. Q. Tao, K. Yang, S. Zhang, S. T. Lee, and Z. Liu, “Optimization of surface on single-walled carbon nanotubes for in vivo photothermal chemistry,” Biomater 32, 44 (2011).
[PubMed]

K. Yang, S. Zhang, G. Zhang, X. Sun, S. T. Lee, and Z. Liu, “Graphene in mice: ultrahigh in vivo tumor uptake and efficient photothermal therapy,” Nano Lett. 10(9), 3318–3323 (2010).
[Crossref] [PubMed]

Li, C.

H. Liu, W. Tang, C. Li, P. Lv, Z. Wang, Y. Liu, C. Zhang, Y. Bao, H. Chen, X. Meng, Y. Song, X. Xia, F. Pan, D. Cui, and Y. Shi, “CdSe/ZnS quantum dots-labeled mesenchymal stem cells for targeted fluorescence imaging of pancreas tissues and therapy of type 1 diabetic rats,” Nanoscale Res. Lett. 10(1), 265 (2015).
[Crossref] [PubMed]

Li, H.

Q. Li, L. Hong, H. Li, and C. Liu, “Graphene oxide-fullerene C60 (GO-C60) hybrid for photodynamic and photothermal therapy triggered by near-infrared light,” Biosens. Bioelectron. 89(Pt 1), 477–482 (2017).
[Crossref] [PubMed]

Li, Q.

Q. Li, L. Hong, H. Li, and C. Liu, “Graphene oxide-fullerene C60 (GO-C60) hybrid for photodynamic and photothermal therapy triggered by near-infrared light,” Biosens. Bioelectron. 89(Pt 1), 477–482 (2017).
[Crossref] [PubMed]

Li, X.

L. Tong, X. Li, R. Hua, Y. Tianxiang Peng, X. Wang, Zhang, and B. Chen, “Anomalous temperature-dependent upconversion luminescence of β-NaYF4:Yb3+/Er3+ nanocrystals synthesized by a microwave-assisted hydrothermal method,” J. Nanosci. Nanotechnol. 16(1), 816–821 (2016).
[Crossref] [PubMed]

X. Li, F. Zhang, and D. Zhao, “Lab on upconversion nanoparticles: optical properties and applications engineering via designed nanostructure,” Chem. Soc. Rev. 44(6), 1346–1378 (2015).
[Crossref] [PubMed]

H. Zheng, B. Chen, H. Yu, J. Zhang, J. Sun, X. Li, M. Sun, B. Tian, S. Fu, H. Zhong, B. Dong, R. Hua, and H. Xia, “Microwave-assisted hydrothermal synthesis and temperature sensing application of Er3+/Yb3+ doped NaY(WO4)2 microstructures,” J. Colloid Interface Sci. 420, 27–34 (2014).
[Crossref] [PubMed]

Li, X. J.

L. L. Tong, X. P. Li, R. N. Hua, X. J. Li, H. Zheng, J. S. Sun, J. S. Zhang, L. H. Cheng, and B. J. Chen, “Comparative study on upconversion luminescence and temperature sensing of α- and β-NaYF4: Yb3+/Er3+ nano-/micro-nanocrystals derived from a microwave-assisted hydrothermal route,” J. Lumin. 167, 386–390 (2015).
[Crossref]

Li, X. P.

S. Xu, S. Y. Xiang, Y. Q. Zhang, J. S. Zhang, X. P. Li, J. S. Sun, L. H. Cheng, and B. J. Chen, ““808 nm laser induced photothermal effect on Sm3+/Nd3+ doped NaY(WO4)2 microstructures,” Sensor. Actuat,” Biol. Chem. 240, 386–391 (2017).

H. Zheng, B. J. Chen, H. Q. Yu, X. P. Li, J. S. Zhang, J. S. Sun, L. L. Tong, Z. L. Wu, H. Zhong, R. N. Hua, and H. P. Xia, “Rod-shaped NaY(MoO4)2:Sm3+/Yb3+ nanoheaters for photothermal conversion: Influence of doping concentration and excitation power density,” Sensor. Actuat. Biol. Chem. 234, 286–293 (2016).

L. L. Tong, X. P. Li, R. N. Hua, X. J. Li, H. Zheng, J. S. Sun, J. S. Zhang, L. H. Cheng, and B. J. Chen, “Comparative study on upconversion luminescence and temperature sensing of α- and β-NaYF4: Yb3+/Er3+ nano-/micro-nanocrystals derived from a microwave-assisted hydrothermal route,” J. Lumin. 167, 386–390 (2015).
[Crossref]

S. Y. Xiang, B. J. Chen, J. S. Zhang, X. P. Li, J. S. Sun, H. Zheng, Z. L. Wu, H. Zhong, H. Q. Yu, and H. P. Xia, “Microwave-assisted hydrothermal synthesis and laser-induced optical heating effect of NaY(WO4)2:Tm3+/Yb3+ microstructures,” Opt. Mater. Express 4(9), 1966 (2014).
[Crossref]

H. Zheng, B. J. Chen, H. Q. Yu, J. S. Zhang, J. S. Sun, X. P. Li, M. Sun, B. N. Tian, H. Zhong, S. B. Fu, R. N. Hua, and H. P. Xia, “Temperature sensing and optical heating in Er3+ single-doped and Er3+/Yb3+ codoped NaY(WO4)2 particles,” RSC Advances 4(88), 47556–47563 (2014).
[Crossref]

Y. Tian, B. J. Chen, R. N. Hua, J. S. Sun, L. H. Cheng, H. Y. Zhong, X. P. Li, J. S. Zhang, Y. F. Zheng, T. T. Yu, L. B. Huang, and H. Q. Yu, “Optical transition, electron-phonon coupling and fluorescent quenching of La2(MoO4)3:Eu3+ phosphor,” J. Appl. Phys. 109(5), 053511 (2011).
[Crossref]

Li, Y.

Y. Li, C. Jiang, D. Zhang, Y. Wang, X. Ren, K. Ai, X. Chen, and L. Lu, “Targeted polydopamine nanoparticles enable photoacoustic imaging guided chemo-photothermal synergistic therapy of tumor,” Acta Biomater. 47, 124–134 (2017).
[Crossref] [PubMed]

Liu, C.

Q. Li, L. Hong, H. Li, and C. Liu, “Graphene oxide-fullerene C60 (GO-C60) hybrid for photodynamic and photothermal therapy triggered by near-infrared light,” Biosens. Bioelectron. 89(Pt 1), 477–482 (2017).
[Crossref] [PubMed]

Liu, H.

H. Liu, W. Tang, C. Li, P. Lv, Z. Wang, Y. Liu, C. Zhang, Y. Bao, H. Chen, X. Meng, Y. Song, X. Xia, F. Pan, D. Cui, and Y. Shi, “CdSe/ZnS quantum dots-labeled mesenchymal stem cells for targeted fluorescence imaging of pancreas tissues and therapy of type 1 diabetic rats,” Nanoscale Res. Lett. 10(1), 265 (2015).
[Crossref] [PubMed]

Liu, X. D.

X. D. Liu, X. Zhang, G. Tian, W. Y. Yin, L. Yan, L. F. Ruan, Z. Y. Yang, D. B. Xiao, and Z. J. Gu, “A simple and efficient synthetic route for preparation of NaYF4 upconversion nanoparticles by thermo-decomposition of rare-earth oleates,” CrystEngComm 16(25), 5650 (2014).
[Crossref]

Liu, X. W.

X. W. Liu, H. Q. Tao, K. Yang, S. Zhang, S. T. Lee, and Z. Liu, “Optimization of surface on single-walled carbon nanotubes for in vivo photothermal chemistry,” Biomater 32, 44 (2011).
[PubMed]

Liu, Y.

H. Liu, W. Tang, C. Li, P. Lv, Z. Wang, Y. Liu, C. Zhang, Y. Bao, H. Chen, X. Meng, Y. Song, X. Xia, F. Pan, D. Cui, and Y. Shi, “CdSe/ZnS quantum dots-labeled mesenchymal stem cells for targeted fluorescence imaging of pancreas tissues and therapy of type 1 diabetic rats,” Nanoscale Res. Lett. 10(1), 265 (2015).
[Crossref] [PubMed]

Liu, Z.

X. W. Liu, H. Q. Tao, K. Yang, S. Zhang, S. T. Lee, and Z. Liu, “Optimization of surface on single-walled carbon nanotubes for in vivo photothermal chemistry,” Biomater 32, 44 (2011).
[PubMed]

K. Yang, S. Zhang, G. Zhang, X. Sun, S. T. Lee, and Z. Liu, “Graphene in mice: ultrahigh in vivo tumor uptake and efficient photothermal therapy,” Nano Lett. 10(9), 3318–3323 (2010).
[Crossref] [PubMed]

López, F. J.

E. C. Ximendes, U. Rocha, C. Jacinto, K. U. Kumar, D. Bravo, F. J. López, E. Martín Rodríguez, J. García-Solé, and D. Jaque, “Self-monitored photothermal nanoparticles based on core-shell engineering,” Nanoscale 8(5), 3057–3066 (2016).
[Crossref] [PubMed]

Lu, L.

Y. Li, C. Jiang, D. Zhang, Y. Wang, X. Ren, K. Ai, X. Chen, and L. Lu, “Targeted polydopamine nanoparticles enable photoacoustic imaging guided chemo-photothermal synergistic therapy of tumor,” Acta Biomater. 47, 124–134 (2017).
[Crossref] [PubMed]

Lu, S. C.

W. B. Bi, Q. Y. Meng, W. J. Sun, and S. C. Lu, “Optical temperature sensing properties of Er3+, Yb3+ co-doped NaGd(MoO4)2 phosphor,” Ceram. Int. 43(1), 1460–1465 (2017).
[Crossref]

Lv, P.

H. Liu, W. Tang, C. Li, P. Lv, Z. Wang, Y. Liu, C. Zhang, Y. Bao, H. Chen, X. Meng, Y. Song, X. Xia, F. Pan, D. Cui, and Y. Shi, “CdSe/ZnS quantum dots-labeled mesenchymal stem cells for targeted fluorescence imaging of pancreas tissues and therapy of type 1 diabetic rats,” Nanoscale Res. Lett. 10(1), 265 (2015).
[Crossref] [PubMed]

Ma, E.

W. Zheng, P. Huang, D. Tu, E. Ma, H. Zhu, and X. Chen, “Lanthanide-doped upconversion nano-bioprobes: electronic structures, optical properties, and biodetection,” Chem. Soc. Rev. 44(6), 1379–1415 (2015).
[Crossref] [PubMed]

Mahdjuri, F.

E. Kauer, R. Kersten, and F. Mahdjuri, “Photothermal conversion,” Acta Electron. (Paris) 18, 295 (1975).

Martín Rodriguez, E.

F. Vetrone, R. Naccache, A. Zamarrón, A. Juarranz de la Fuente, F. Sanz-Rodríguez, L. Martinez Maestro, E. Martín Rodriguez, D. Jaque, J. García Solé, and J. A. Capobianco, “Temperature sensing using fluorescent nanothermometers,” ACS Nano 4(6), 3254–3258 (2010).
[Crossref] [PubMed]

Martín Rodríguez, E.

E. C. Ximendes, U. Rocha, C. Jacinto, K. U. Kumar, D. Bravo, F. J. López, E. Martín Rodríguez, J. García-Solé, and D. Jaque, “Self-monitored photothermal nanoparticles based on core-shell engineering,” Nanoscale 8(5), 3057–3066 (2016).
[Crossref] [PubMed]

Martinez Maestro, L.

F. Vetrone, R. Naccache, A. Zamarrón, A. Juarranz de la Fuente, F. Sanz-Rodríguez, L. Martinez Maestro, E. Martín Rodriguez, D. Jaque, J. García Solé, and J. A. Capobianco, “Temperature sensing using fluorescent nanothermometers,” ACS Nano 4(6), 3254–3258 (2010).
[Crossref] [PubMed]

Meng, Q. Y.

W. B. Bi, Q. Y. Meng, W. J. Sun, and S. C. Lu, “Optical temperature sensing properties of Er3+, Yb3+ co-doped NaGd(MoO4)2 phosphor,” Ceram. Int. 43(1), 1460–1465 (2017).
[Crossref]

Meng, X.

H. Liu, W. Tang, C. Li, P. Lv, Z. Wang, Y. Liu, C. Zhang, Y. Bao, H. Chen, X. Meng, Y. Song, X. Xia, F. Pan, D. Cui, and Y. Shi, “CdSe/ZnS quantum dots-labeled mesenchymal stem cells for targeted fluorescence imaging of pancreas tissues and therapy of type 1 diabetic rats,” Nanoscale Res. Lett. 10(1), 265 (2015).
[Crossref] [PubMed]

Naccache, R.

F. Vetrone, R. Naccache, A. Zamarrón, A. Juarranz de la Fuente, F. Sanz-Rodríguez, L. Martinez Maestro, E. Martín Rodriguez, D. Jaque, J. García Solé, and J. A. Capobianco, “Temperature sensing using fluorescent nanothermometers,” ACS Nano 4(6), 3254–3258 (2010).
[Crossref] [PubMed]

Pan, F.

H. Liu, W. Tang, C. Li, P. Lv, Z. Wang, Y. Liu, C. Zhang, Y. Bao, H. Chen, X. Meng, Y. Song, X. Xia, F. Pan, D. Cui, and Y. Shi, “CdSe/ZnS quantum dots-labeled mesenchymal stem cells for targeted fluorescence imaging of pancreas tissues and therapy of type 1 diabetic rats,” Nanoscale Res. Lett. 10(1), 265 (2015).
[Crossref] [PubMed]

Park, J. Y.

B. Jang, J. Y. Park, C. H. Tung, I. H. Kim, and Y. Choi, “Gold nanorod-photosensitizer complex for near-infrared fluorescence imaging and photodynamic/photothermal therapy in vivo,” ACS Nano 5(2), 1086–1094 (2011).
[Crossref] [PubMed]

Park, Y. I.

Y. I. Park, K. T. Lee, Y. D. Suh, and T. Hyeon, “Upconverting nanoparticles: a versatile platform for wide-field two-photon microscopy and multi-modal in vivo imaging,” Chem. Soc. Rev. 44(6), 1302–1317 (2015).
[Crossref] [PubMed]

Rai, V. K.

A. Dubey, A. K. Soni, A. Kumari, R. Dey, and V. K. Rai, “Enhanced green upconversion emission in NaYF4:Er3+/Yb3+/Li3+ phosphors for optical thermometry,” J. Alloys Compd. 693, 194–200 (2017).
[Crossref]

Ren, X.

Y. Li, C. Jiang, D. Zhang, Y. Wang, X. Ren, K. Ai, X. Chen, and L. Lu, “Targeted polydopamine nanoparticles enable photoacoustic imaging guided chemo-photothermal synergistic therapy of tumor,” Acta Biomater. 47, 124–134 (2017).
[Crossref] [PubMed]

Rocha, U.

E. C. Ximendes, U. Rocha, C. Jacinto, K. U. Kumar, D. Bravo, F. J. López, E. Martín Rodríguez, J. García-Solé, and D. Jaque, “Self-monitored photothermal nanoparticles based on core-shell engineering,” Nanoscale 8(5), 3057–3066 (2016).
[Crossref] [PubMed]

E. Carrasco, B. Rosal, F. S. Rodriguez, A. J. Fuente, P. H. Gonzalez, U. Rocha, K. U. Kumar, C. Jacinto, J. G. Sole, and D. Jaque, “Intratumoral thermal reading during photo-thermal therapy by multifunctional fluorescent Nanoparticles,” Adv. Funct. Mater. 25(4), 615–626 (2015).
[Crossref]

Rodriguez, F. S.

E. Carrasco, B. Rosal, F. S. Rodriguez, A. J. Fuente, P. H. Gonzalez, U. Rocha, K. U. Kumar, C. Jacinto, J. G. Sole, and D. Jaque, “Intratumoral thermal reading during photo-thermal therapy by multifunctional fluorescent Nanoparticles,” Adv. Funct. Mater. 25(4), 615–626 (2015).
[Crossref]

Rosal, B.

E. Carrasco, B. Rosal, F. S. Rodriguez, A. J. Fuente, P. H. Gonzalez, U. Rocha, K. U. Kumar, C. Jacinto, J. G. Sole, and D. Jaque, “Intratumoral thermal reading during photo-thermal therapy by multifunctional fluorescent Nanoparticles,” Adv. Funct. Mater. 25(4), 615–626 (2015).
[Crossref]

Ruan, L. F.

X. D. Liu, X. Zhang, G. Tian, W. Y. Yin, L. Yan, L. F. Ruan, Z. Y. Yang, D. B. Xiao, and Z. J. Gu, “A simple and efficient synthetic route for preparation of NaYF4 upconversion nanoparticles by thermo-decomposition of rare-earth oleates,” CrystEngComm 16(25), 5650 (2014).
[Crossref]

Sanz-Rodríguez, F.

F. Vetrone, R. Naccache, A. Zamarrón, A. Juarranz de la Fuente, F. Sanz-Rodríguez, L. Martinez Maestro, E. Martín Rodriguez, D. Jaque, J. García Solé, and J. A. Capobianco, “Temperature sensing using fluorescent nanothermometers,” ACS Nano 4(6), 3254–3258 (2010).
[Crossref] [PubMed]

Shi, Q. F.

Y. Y. Tian, Y. Tian, P. Huang, L. Wang, Q. F. Shi, and C. E. Cui, “Effect of Yb3+ concentration on upconversion luminescence and temperature sensing behavior in Yb3+/Er3+ co-doped YNbO4 nanoparticles prepared via molten salt route,” Chem. Eng. J. 297, 26–34 (2016).
[Crossref]

Shi, Y.

H. Liu, W. Tang, C. Li, P. Lv, Z. Wang, Y. Liu, C. Zhang, Y. Bao, H. Chen, X. Meng, Y. Song, X. Xia, F. Pan, D. Cui, and Y. Shi, “CdSe/ZnS quantum dots-labeled mesenchymal stem cells for targeted fluorescence imaging of pancreas tissues and therapy of type 1 diabetic rats,” Nanoscale Res. Lett. 10(1), 265 (2015).
[Crossref] [PubMed]

Sole, J. G.

E. Carrasco, B. Rosal, F. S. Rodriguez, A. J. Fuente, P. H. Gonzalez, U. Rocha, K. U. Kumar, C. Jacinto, J. G. Sole, and D. Jaque, “Intratumoral thermal reading during photo-thermal therapy by multifunctional fluorescent Nanoparticles,” Adv. Funct. Mater. 25(4), 615–626 (2015).
[Crossref]

Song, Y.

H. Liu, W. Tang, C. Li, P. Lv, Z. Wang, Y. Liu, C. Zhang, Y. Bao, H. Chen, X. Meng, Y. Song, X. Xia, F. Pan, D. Cui, and Y. Shi, “CdSe/ZnS quantum dots-labeled mesenchymal stem cells for targeted fluorescence imaging of pancreas tissues and therapy of type 1 diabetic rats,” Nanoscale Res. Lett. 10(1), 265 (2015).
[Crossref] [PubMed]

Soni, A. K.

A. Dubey, A. K. Soni, A. Kumari, R. Dey, and V. K. Rai, “Enhanced green upconversion emission in NaYF4:Er3+/Yb3+/Li3+ phosphors for optical thermometry,” J. Alloys Compd. 693, 194–200 (2017).
[Crossref]

Suh, Y. D.

Y. I. Park, K. T. Lee, Y. D. Suh, and T. Hyeon, “Upconverting nanoparticles: a versatile platform for wide-field two-photon microscopy and multi-modal in vivo imaging,” Chem. Soc. Rev. 44(6), 1302–1317 (2015).
[Crossref] [PubMed]

Sun, J.

H. Zheng, B. Chen, H. Yu, J. Zhang, J. Sun, X. Li, M. Sun, B. Tian, S. Fu, H. Zhong, B. Dong, R. Hua, and H. Xia, “Microwave-assisted hydrothermal synthesis and temperature sensing application of Er3+/Yb3+ doped NaY(WO4)2 microstructures,” J. Colloid Interface Sci. 420, 27–34 (2014).
[Crossref] [PubMed]

Sun, J. S.

S. Xu, S. Y. Xiang, Y. Q. Zhang, J. S. Zhang, X. P. Li, J. S. Sun, L. H. Cheng, and B. J. Chen, ““808 nm laser induced photothermal effect on Sm3+/Nd3+ doped NaY(WO4)2 microstructures,” Sensor. Actuat,” Biol. Chem. 240, 386–391 (2017).

H. Zheng, B. J. Chen, H. Q. Yu, X. P. Li, J. S. Zhang, J. S. Sun, L. L. Tong, Z. L. Wu, H. Zhong, R. N. Hua, and H. P. Xia, “Rod-shaped NaY(MoO4)2:Sm3+/Yb3+ nanoheaters for photothermal conversion: Influence of doping concentration and excitation power density,” Sensor. Actuat. Biol. Chem. 234, 286–293 (2016).

L. L. Tong, X. P. Li, R. N. Hua, X. J. Li, H. Zheng, J. S. Sun, J. S. Zhang, L. H. Cheng, and B. J. Chen, “Comparative study on upconversion luminescence and temperature sensing of α- and β-NaYF4: Yb3+/Er3+ nano-/micro-nanocrystals derived from a microwave-assisted hydrothermal route,” J. Lumin. 167, 386–390 (2015).
[Crossref]

S. Y. Xiang, B. J. Chen, J. S. Zhang, X. P. Li, J. S. Sun, H. Zheng, Z. L. Wu, H. Zhong, H. Q. Yu, and H. P. Xia, “Microwave-assisted hydrothermal synthesis and laser-induced optical heating effect of NaY(WO4)2:Tm3+/Yb3+ microstructures,” Opt. Mater. Express 4(9), 1966 (2014).
[Crossref]

H. Zheng, B. J. Chen, H. Q. Yu, J. S. Zhang, J. S. Sun, X. P. Li, M. Sun, B. N. Tian, H. Zhong, S. B. Fu, R. N. Hua, and H. P. Xia, “Temperature sensing and optical heating in Er3+ single-doped and Er3+/Yb3+ codoped NaY(WO4)2 particles,” RSC Advances 4(88), 47556–47563 (2014).
[Crossref]

Y. Tian, B. J. Chen, R. N. Hua, J. S. Sun, L. H. Cheng, H. Y. Zhong, X. P. Li, J. S. Zhang, Y. F. Zheng, T. T. Yu, L. B. Huang, and H. Q. Yu, “Optical transition, electron-phonon coupling and fluorescent quenching of La2(MoO4)3:Eu3+ phosphor,” J. Appl. Phys. 109(5), 053511 (2011).
[Crossref]

Sun, M.

H. Zheng, B. J. Chen, H. Q. Yu, J. S. Zhang, J. S. Sun, X. P. Li, M. Sun, B. N. Tian, H. Zhong, S. B. Fu, R. N. Hua, and H. P. Xia, “Temperature sensing and optical heating in Er3+ single-doped and Er3+/Yb3+ codoped NaY(WO4)2 particles,” RSC Advances 4(88), 47556–47563 (2014).
[Crossref]

H. Zheng, B. Chen, H. Yu, J. Zhang, J. Sun, X. Li, M. Sun, B. Tian, S. Fu, H. Zhong, B. Dong, R. Hua, and H. Xia, “Microwave-assisted hydrothermal synthesis and temperature sensing application of Er3+/Yb3+ doped NaY(WO4)2 microstructures,” J. Colloid Interface Sci. 420, 27–34 (2014).
[Crossref] [PubMed]

Sun, W. J.

W. B. Bi, Q. Y. Meng, W. J. Sun, and S. C. Lu, “Optical temperature sensing properties of Er3+, Yb3+ co-doped NaGd(MoO4)2 phosphor,” Ceram. Int. 43(1), 1460–1465 (2017).
[Crossref]

Sun, X.

K. Yang, S. Zhang, G. Zhang, X. Sun, S. T. Lee, and Z. Liu, “Graphene in mice: ultrahigh in vivo tumor uptake and efficient photothermal therapy,” Nano Lett. 10(9), 3318–3323 (2010).
[Crossref] [PubMed]

Tang, W.

H. Liu, W. Tang, C. Li, P. Lv, Z. Wang, Y. Liu, C. Zhang, Y. Bao, H. Chen, X. Meng, Y. Song, X. Xia, F. Pan, D. Cui, and Y. Shi, “CdSe/ZnS quantum dots-labeled mesenchymal stem cells for targeted fluorescence imaging of pancreas tissues and therapy of type 1 diabetic rats,” Nanoscale Res. Lett. 10(1), 265 (2015).
[Crossref] [PubMed]

Tao, H. Q.

X. W. Liu, H. Q. Tao, K. Yang, S. Zhang, S. T. Lee, and Z. Liu, “Optimization of surface on single-walled carbon nanotubes for in vivo photothermal chemistry,” Biomater 32, 44 (2011).
[PubMed]

Tian, B.

H. Zheng, B. Chen, H. Yu, J. Zhang, J. Sun, X. Li, M. Sun, B. Tian, S. Fu, H. Zhong, B. Dong, R. Hua, and H. Xia, “Microwave-assisted hydrothermal synthesis and temperature sensing application of Er3+/Yb3+ doped NaY(WO4)2 microstructures,” J. Colloid Interface Sci. 420, 27–34 (2014).
[Crossref] [PubMed]

Tian, B. N.

Y. Tian, B. N. Tian, C. E. Cui, P. Huang, L. Wang, and B. J. Chen, “Size-dependent upconversion luminescence and temperature sensing behavior of spherical Gd2O3:Yb3+/Er3+ phosphor,” RSC Advances 5(19), 14123–14128 (2015).
[Crossref]

H. Zheng, B. J. Chen, H. Q. Yu, J. S. Zhang, J. S. Sun, X. P. Li, M. Sun, B. N. Tian, H. Zhong, S. B. Fu, R. N. Hua, and H. P. Xia, “Temperature sensing and optical heating in Er3+ single-doped and Er3+/Yb3+ codoped NaY(WO4)2 particles,” RSC Advances 4(88), 47556–47563 (2014).
[Crossref]

Tian, G.

X. D. Liu, X. Zhang, G. Tian, W. Y. Yin, L. Yan, L. F. Ruan, Z. Y. Yang, D. B. Xiao, and Z. J. Gu, “A simple and efficient synthetic route for preparation of NaYF4 upconversion nanoparticles by thermo-decomposition of rare-earth oleates,” CrystEngComm 16(25), 5650 (2014).
[Crossref]

Tian, Y.

Y. Y. Tian, Y. Tian, P. Huang, L. Wang, Q. F. Shi, and C. E. Cui, “Effect of Yb3+ concentration on upconversion luminescence and temperature sensing behavior in Yb3+/Er3+ co-doped YNbO4 nanoparticles prepared via molten salt route,” Chem. Eng. J. 297, 26–34 (2016).
[Crossref]

Y. Tian, B. N. Tian, C. E. Cui, P. Huang, L. Wang, and B. J. Chen, “Size-dependent upconversion luminescence and temperature sensing behavior of spherical Gd2O3:Yb3+/Er3+ phosphor,” RSC Advances 5(19), 14123–14128 (2015).
[Crossref]

Y. Tian, B. J. Chen, R. N. Hua, J. S. Sun, L. H. Cheng, H. Y. Zhong, X. P. Li, J. S. Zhang, Y. F. Zheng, T. T. Yu, L. B. Huang, and H. Q. Yu, “Optical transition, electron-phonon coupling and fluorescent quenching of La2(MoO4)3:Eu3+ phosphor,” J. Appl. Phys. 109(5), 053511 (2011).
[Crossref]

Tian, Y. Y.

Y. Y. Tian, Y. Tian, P. Huang, L. Wang, Q. F. Shi, and C. E. Cui, “Effect of Yb3+ concentration on upconversion luminescence and temperature sensing behavior in Yb3+/Er3+ co-doped YNbO4 nanoparticles prepared via molten salt route,” Chem. Eng. J. 297, 26–34 (2016).
[Crossref]

Tianxiang Peng, Y.

L. Tong, X. Li, R. Hua, Y. Tianxiang Peng, X. Wang, Zhang, and B. Chen, “Anomalous temperature-dependent upconversion luminescence of β-NaYF4:Yb3+/Er3+ nanocrystals synthesized by a microwave-assisted hydrothermal method,” J. Nanosci. Nanotechnol. 16(1), 816–821 (2016).
[Crossref] [PubMed]

Tong, L.

L. Tong, X. Li, R. Hua, Y. Tianxiang Peng, X. Wang, Zhang, and B. Chen, “Anomalous temperature-dependent upconversion luminescence of β-NaYF4:Yb3+/Er3+ nanocrystals synthesized by a microwave-assisted hydrothermal method,” J. Nanosci. Nanotechnol. 16(1), 816–821 (2016).
[Crossref] [PubMed]

Tong, L. L.

H. Zheng, B. J. Chen, H. Q. Yu, X. P. Li, J. S. Zhang, J. S. Sun, L. L. Tong, Z. L. Wu, H. Zhong, R. N. Hua, and H. P. Xia, “Rod-shaped NaY(MoO4)2:Sm3+/Yb3+ nanoheaters for photothermal conversion: Influence of doping concentration and excitation power density,” Sensor. Actuat. Biol. Chem. 234, 286–293 (2016).

L. L. Tong, X. P. Li, R. N. Hua, X. J. Li, H. Zheng, J. S. Sun, J. S. Zhang, L. H. Cheng, and B. J. Chen, “Comparative study on upconversion luminescence and temperature sensing of α- and β-NaYF4: Yb3+/Er3+ nano-/micro-nanocrystals derived from a microwave-assisted hydrothermal route,” J. Lumin. 167, 386–390 (2015).
[Crossref]

Tu, D.

W. Zheng, P. Huang, D. Tu, E. Ma, H. Zhu, and X. Chen, “Lanthanide-doped upconversion nano-bioprobes: electronic structures, optical properties, and biodetection,” Chem. Soc. Rev. 44(6), 1379–1415 (2015).
[Crossref] [PubMed]

Tung, C. H.

B. Jang, J. Y. Park, C. H. Tung, I. H. Kim, and Y. Choi, “Gold nanorod-photosensitizer complex for near-infrared fluorescence imaging and photodynamic/photothermal therapy in vivo,” ACS Nano 5(2), 1086–1094 (2011).
[Crossref] [PubMed]

Vetrone, F.

F. Vetrone, R. Naccache, A. Zamarrón, A. Juarranz de la Fuente, F. Sanz-Rodríguez, L. Martinez Maestro, E. Martín Rodriguez, D. Jaque, J. García Solé, and J. A. Capobianco, “Temperature sensing using fluorescent nanothermometers,” ACS Nano 4(6), 3254–3258 (2010).
[Crossref] [PubMed]

Wade, S. A.

S. A. Wade, S. F. Collins, and G. W. Baxter, “Fluorescence intensity ratio technique for optical fiber point temperature sensing,” J. Appl. Phys. 94(8), 4743 (2003).
[Crossref]

Wang, L.

Y. Y. Tian, Y. Tian, P. Huang, L. Wang, Q. F. Shi, and C. E. Cui, “Effect of Yb3+ concentration on upconversion luminescence and temperature sensing behavior in Yb3+/Er3+ co-doped YNbO4 nanoparticles prepared via molten salt route,” Chem. Eng. J. 297, 26–34 (2016).
[Crossref]

Y. Tian, B. N. Tian, C. E. Cui, P. Huang, L. Wang, and B. J. Chen, “Size-dependent upconversion luminescence and temperature sensing behavior of spherical Gd2O3:Yb3+/Er3+ phosphor,” RSC Advances 5(19), 14123–14128 (2015).
[Crossref]

Wang, X.

L. Tong, X. Li, R. Hua, Y. Tianxiang Peng, X. Wang, Zhang, and B. Chen, “Anomalous temperature-dependent upconversion luminescence of β-NaYF4:Yb3+/Er3+ nanocrystals synthesized by a microwave-assisted hydrothermal method,” J. Nanosci. Nanotechnol. 16(1), 816–821 (2016).
[Crossref] [PubMed]

Wang, Y.

Y. Li, C. Jiang, D. Zhang, Y. Wang, X. Ren, K. Ai, X. Chen, and L. Lu, “Targeted polydopamine nanoparticles enable photoacoustic imaging guided chemo-photothermal synergistic therapy of tumor,” Acta Biomater. 47, 124–134 (2017).
[Crossref] [PubMed]

Wang, Z.

H. Liu, W. Tang, C. Li, P. Lv, Z. Wang, Y. Liu, C. Zhang, Y. Bao, H. Chen, X. Meng, Y. Song, X. Xia, F. Pan, D. Cui, and Y. Shi, “CdSe/ZnS quantum dots-labeled mesenchymal stem cells for targeted fluorescence imaging of pancreas tissues and therapy of type 1 diabetic rats,” Nanoscale Res. Lett. 10(1), 265 (2015).
[Crossref] [PubMed]

Wu, Z. L.

H. Zheng, B. J. Chen, H. Q. Yu, X. P. Li, J. S. Zhang, J. S. Sun, L. L. Tong, Z. L. Wu, H. Zhong, R. N. Hua, and H. P. Xia, “Rod-shaped NaY(MoO4)2:Sm3+/Yb3+ nanoheaters for photothermal conversion: Influence of doping concentration and excitation power density,” Sensor. Actuat. Biol. Chem. 234, 286–293 (2016).

S. Y. Xiang, B. J. Chen, J. S. Zhang, X. P. Li, J. S. Sun, H. Zheng, Z. L. Wu, H. Zhong, H. Q. Yu, and H. P. Xia, “Microwave-assisted hydrothermal synthesis and laser-induced optical heating effect of NaY(WO4)2:Tm3+/Yb3+ microstructures,” Opt. Mater. Express 4(9), 1966 (2014).
[Crossref]

Xia, H.

H. Zheng, B. Chen, H. Yu, J. Zhang, J. Sun, X. Li, M. Sun, B. Tian, S. Fu, H. Zhong, B. Dong, R. Hua, and H. Xia, “Microwave-assisted hydrothermal synthesis and temperature sensing application of Er3+/Yb3+ doped NaY(WO4)2 microstructures,” J. Colloid Interface Sci. 420, 27–34 (2014).
[Crossref] [PubMed]

Xia, H. P.

H. Zheng, B. J. Chen, H. Q. Yu, X. P. Li, J. S. Zhang, J. S. Sun, L. L. Tong, Z. L. Wu, H. Zhong, R. N. Hua, and H. P. Xia, “Rod-shaped NaY(MoO4)2:Sm3+/Yb3+ nanoheaters for photothermal conversion: Influence of doping concentration and excitation power density,” Sensor. Actuat. Biol. Chem. 234, 286–293 (2016).

S. Y. Xiang, B. J. Chen, J. S. Zhang, X. P. Li, J. S. Sun, H. Zheng, Z. L. Wu, H. Zhong, H. Q. Yu, and H. P. Xia, “Microwave-assisted hydrothermal synthesis and laser-induced optical heating effect of NaY(WO4)2:Tm3+/Yb3+ microstructures,” Opt. Mater. Express 4(9), 1966 (2014).
[Crossref]

H. Zheng, B. J. Chen, H. Q. Yu, J. S. Zhang, J. S. Sun, X. P. Li, M. Sun, B. N. Tian, H. Zhong, S. B. Fu, R. N. Hua, and H. P. Xia, “Temperature sensing and optical heating in Er3+ single-doped and Er3+/Yb3+ codoped NaY(WO4)2 particles,” RSC Advances 4(88), 47556–47563 (2014).
[Crossref]

Xia, X.

H. Liu, W. Tang, C. Li, P. Lv, Z. Wang, Y. Liu, C. Zhang, Y. Bao, H. Chen, X. Meng, Y. Song, X. Xia, F. Pan, D. Cui, and Y. Shi, “CdSe/ZnS quantum dots-labeled mesenchymal stem cells for targeted fluorescence imaging of pancreas tissues and therapy of type 1 diabetic rats,” Nanoscale Res. Lett. 10(1), 265 (2015).
[Crossref] [PubMed]

Xiang, S. Y.

S. Xu, S. Y. Xiang, Y. Q. Zhang, J. S. Zhang, X. P. Li, J. S. Sun, L. H. Cheng, and B. J. Chen, ““808 nm laser induced photothermal effect on Sm3+/Nd3+ doped NaY(WO4)2 microstructures,” Sensor. Actuat,” Biol. Chem. 240, 386–391 (2017).

S. Y. Xiang, B. J. Chen, J. S. Zhang, X. P. Li, J. S. Sun, H. Zheng, Z. L. Wu, H. Zhong, H. Q. Yu, and H. P. Xia, “Microwave-assisted hydrothermal synthesis and laser-induced optical heating effect of NaY(WO4)2:Tm3+/Yb3+ microstructures,” Opt. Mater. Express 4(9), 1966 (2014).
[Crossref]

Xiao, D. B.

X. D. Liu, X. Zhang, G. Tian, W. Y. Yin, L. Yan, L. F. Ruan, Z. Y. Yang, D. B. Xiao, and Z. J. Gu, “A simple and efficient synthetic route for preparation of NaYF4 upconversion nanoparticles by thermo-decomposition of rare-earth oleates,” CrystEngComm 16(25), 5650 (2014).
[Crossref]

Ximendes, E. C.

E. C. Ximendes, U. Rocha, C. Jacinto, K. U. Kumar, D. Bravo, F. J. López, E. Martín Rodríguez, J. García-Solé, and D. Jaque, “Self-monitored photothermal nanoparticles based on core-shell engineering,” Nanoscale 8(5), 3057–3066 (2016).
[Crossref] [PubMed]

Xu, S.

S. Xu, S. Y. Xiang, Y. Q. Zhang, J. S. Zhang, X. P. Li, J. S. Sun, L. H. Cheng, and B. J. Chen, ““808 nm laser induced photothermal effect on Sm3+/Nd3+ doped NaY(WO4)2 microstructures,” Sensor. Actuat,” Biol. Chem. 240, 386–391 (2017).

Yan, L.

X. D. Liu, X. Zhang, G. Tian, W. Y. Yin, L. Yan, L. F. Ruan, Z. Y. Yang, D. B. Xiao, and Z. J. Gu, “A simple and efficient synthetic route for preparation of NaYF4 upconversion nanoparticles by thermo-decomposition of rare-earth oleates,” CrystEngComm 16(25), 5650 (2014).
[Crossref]

Yang, K.

X. W. Liu, H. Q. Tao, K. Yang, S. Zhang, S. T. Lee, and Z. Liu, “Optimization of surface on single-walled carbon nanotubes for in vivo photothermal chemistry,” Biomater 32, 44 (2011).
[PubMed]

K. Yang, S. Zhang, G. Zhang, X. Sun, S. T. Lee, and Z. Liu, “Graphene in mice: ultrahigh in vivo tumor uptake and efficient photothermal therapy,” Nano Lett. 10(9), 3318–3323 (2010).
[Crossref] [PubMed]

Yang, Z. Y.

X. D. Liu, X. Zhang, G. Tian, W. Y. Yin, L. Yan, L. F. Ruan, Z. Y. Yang, D. B. Xiao, and Z. J. Gu, “A simple and efficient synthetic route for preparation of NaYF4 upconversion nanoparticles by thermo-decomposition of rare-earth oleates,” CrystEngComm 16(25), 5650 (2014).
[Crossref]

Yin, W. Y.

X. D. Liu, X. Zhang, G. Tian, W. Y. Yin, L. Yan, L. F. Ruan, Z. Y. Yang, D. B. Xiao, and Z. J. Gu, “A simple and efficient synthetic route for preparation of NaYF4 upconversion nanoparticles by thermo-decomposition of rare-earth oleates,” CrystEngComm 16(25), 5650 (2014).
[Crossref]

Yu, H.

H. Zheng, B. Chen, H. Yu, J. Zhang, J. Sun, X. Li, M. Sun, B. Tian, S. Fu, H. Zhong, B. Dong, R. Hua, and H. Xia, “Microwave-assisted hydrothermal synthesis and temperature sensing application of Er3+/Yb3+ doped NaY(WO4)2 microstructures,” J. Colloid Interface Sci. 420, 27–34 (2014).
[Crossref] [PubMed]

Yu, H. Q.

H. Zheng, B. J. Chen, H. Q. Yu, X. P. Li, J. S. Zhang, J. S. Sun, L. L. Tong, Z. L. Wu, H. Zhong, R. N. Hua, and H. P. Xia, “Rod-shaped NaY(MoO4)2:Sm3+/Yb3+ nanoheaters for photothermal conversion: Influence of doping concentration and excitation power density,” Sensor. Actuat. Biol. Chem. 234, 286–293 (2016).

S. Y. Xiang, B. J. Chen, J. S. Zhang, X. P. Li, J. S. Sun, H. Zheng, Z. L. Wu, H. Zhong, H. Q. Yu, and H. P. Xia, “Microwave-assisted hydrothermal synthesis and laser-induced optical heating effect of NaY(WO4)2:Tm3+/Yb3+ microstructures,” Opt. Mater. Express 4(9), 1966 (2014).
[Crossref]

H. Zheng, B. J. Chen, H. Q. Yu, J. S. Zhang, J. S. Sun, X. P. Li, M. Sun, B. N. Tian, H. Zhong, S. B. Fu, R. N. Hua, and H. P. Xia, “Temperature sensing and optical heating in Er3+ single-doped and Er3+/Yb3+ codoped NaY(WO4)2 particles,” RSC Advances 4(88), 47556–47563 (2014).
[Crossref]

Y. Tian, B. J. Chen, R. N. Hua, J. S. Sun, L. H. Cheng, H. Y. Zhong, X. P. Li, J. S. Zhang, Y. F. Zheng, T. T. Yu, L. B. Huang, and H. Q. Yu, “Optical transition, electron-phonon coupling and fluorescent quenching of La2(MoO4)3:Eu3+ phosphor,” J. Appl. Phys. 109(5), 053511 (2011).
[Crossref]

Yu, T. T.

Y. Tian, B. J. Chen, R. N. Hua, J. S. Sun, L. H. Cheng, H. Y. Zhong, X. P. Li, J. S. Zhang, Y. F. Zheng, T. T. Yu, L. B. Huang, and H. Q. Yu, “Optical transition, electron-phonon coupling and fluorescent quenching of La2(MoO4)3:Eu3+ phosphor,” J. Appl. Phys. 109(5), 053511 (2011).
[Crossref]

Zamarrón, A.

F. Vetrone, R. Naccache, A. Zamarrón, A. Juarranz de la Fuente, F. Sanz-Rodríguez, L. Martinez Maestro, E. Martín Rodriguez, D. Jaque, J. García Solé, and J. A. Capobianco, “Temperature sensing using fluorescent nanothermometers,” ACS Nano 4(6), 3254–3258 (2010).
[Crossref] [PubMed]

Zhang,

L. Tong, X. Li, R. Hua, Y. Tianxiang Peng, X. Wang, Zhang, and B. Chen, “Anomalous temperature-dependent upconversion luminescence of β-NaYF4:Yb3+/Er3+ nanocrystals synthesized by a microwave-assisted hydrothermal method,” J. Nanosci. Nanotechnol. 16(1), 816–821 (2016).
[Crossref] [PubMed]

Zhang, C.

H. Liu, W. Tang, C. Li, P. Lv, Z. Wang, Y. Liu, C. Zhang, Y. Bao, H. Chen, X. Meng, Y. Song, X. Xia, F. Pan, D. Cui, and Y. Shi, “CdSe/ZnS quantum dots-labeled mesenchymal stem cells for targeted fluorescence imaging of pancreas tissues and therapy of type 1 diabetic rats,” Nanoscale Res. Lett. 10(1), 265 (2015).
[Crossref] [PubMed]

Zhang, D.

Y. Li, C. Jiang, D. Zhang, Y. Wang, X. Ren, K. Ai, X. Chen, and L. Lu, “Targeted polydopamine nanoparticles enable photoacoustic imaging guided chemo-photothermal synergistic therapy of tumor,” Acta Biomater. 47, 124–134 (2017).
[Crossref] [PubMed]

Zhang, F.

X. Li, F. Zhang, and D. Zhao, “Lab on upconversion nanoparticles: optical properties and applications engineering via designed nanostructure,” Chem. Soc. Rev. 44(6), 1346–1378 (2015).
[Crossref] [PubMed]

Zhang, G.

K. Yang, S. Zhang, G. Zhang, X. Sun, S. T. Lee, and Z. Liu, “Graphene in mice: ultrahigh in vivo tumor uptake and efficient photothermal therapy,” Nano Lett. 10(9), 3318–3323 (2010).
[Crossref] [PubMed]

Zhang, J.

H. Zheng, B. Chen, H. Yu, J. Zhang, J. Sun, X. Li, M. Sun, B. Tian, S. Fu, H. Zhong, B. Dong, R. Hua, and H. Xia, “Microwave-assisted hydrothermal synthesis and temperature sensing application of Er3+/Yb3+ doped NaY(WO4)2 microstructures,” J. Colloid Interface Sci. 420, 27–34 (2014).
[Crossref] [PubMed]

Zhang, J. S.

S. Xu, S. Y. Xiang, Y. Q. Zhang, J. S. Zhang, X. P. Li, J. S. Sun, L. H. Cheng, and B. J. Chen, ““808 nm laser induced photothermal effect on Sm3+/Nd3+ doped NaY(WO4)2 microstructures,” Sensor. Actuat,” Biol. Chem. 240, 386–391 (2017).

H. Zheng, B. J. Chen, H. Q. Yu, X. P. Li, J. S. Zhang, J. S. Sun, L. L. Tong, Z. L. Wu, H. Zhong, R. N. Hua, and H. P. Xia, “Rod-shaped NaY(MoO4)2:Sm3+/Yb3+ nanoheaters for photothermal conversion: Influence of doping concentration and excitation power density,” Sensor. Actuat. Biol. Chem. 234, 286–293 (2016).

L. L. Tong, X. P. Li, R. N. Hua, X. J. Li, H. Zheng, J. S. Sun, J. S. Zhang, L. H. Cheng, and B. J. Chen, “Comparative study on upconversion luminescence and temperature sensing of α- and β-NaYF4: Yb3+/Er3+ nano-/micro-nanocrystals derived from a microwave-assisted hydrothermal route,” J. Lumin. 167, 386–390 (2015).
[Crossref]

S. Y. Xiang, B. J. Chen, J. S. Zhang, X. P. Li, J. S. Sun, H. Zheng, Z. L. Wu, H. Zhong, H. Q. Yu, and H. P. Xia, “Microwave-assisted hydrothermal synthesis and laser-induced optical heating effect of NaY(WO4)2:Tm3+/Yb3+ microstructures,” Opt. Mater. Express 4(9), 1966 (2014).
[Crossref]

H. Zheng, B. J. Chen, H. Q. Yu, J. S. Zhang, J. S. Sun, X. P. Li, M. Sun, B. N. Tian, H. Zhong, S. B. Fu, R. N. Hua, and H. P. Xia, “Temperature sensing and optical heating in Er3+ single-doped and Er3+/Yb3+ codoped NaY(WO4)2 particles,” RSC Advances 4(88), 47556–47563 (2014).
[Crossref]

Y. Tian, B. J. Chen, R. N. Hua, J. S. Sun, L. H. Cheng, H. Y. Zhong, X. P. Li, J. S. Zhang, Y. F. Zheng, T. T. Yu, L. B. Huang, and H. Q. Yu, “Optical transition, electron-phonon coupling and fluorescent quenching of La2(MoO4)3:Eu3+ phosphor,” J. Appl. Phys. 109(5), 053511 (2011).
[Crossref]

Zhang, S.

X. W. Liu, H. Q. Tao, K. Yang, S. Zhang, S. T. Lee, and Z. Liu, “Optimization of surface on single-walled carbon nanotubes for in vivo photothermal chemistry,” Biomater 32, 44 (2011).
[PubMed]

K. Yang, S. Zhang, G. Zhang, X. Sun, S. T. Lee, and Z. Liu, “Graphene in mice: ultrahigh in vivo tumor uptake and efficient photothermal therapy,” Nano Lett. 10(9), 3318–3323 (2010).
[Crossref] [PubMed]

Zhang, X.

X. D. Liu, X. Zhang, G. Tian, W. Y. Yin, L. Yan, L. F. Ruan, Z. Y. Yang, D. B. Xiao, and Z. J. Gu, “A simple and efficient synthetic route for preparation of NaYF4 upconversion nanoparticles by thermo-decomposition of rare-earth oleates,” CrystEngComm 16(25), 5650 (2014).
[Crossref]

Zhang, Y.

N. M. Idris, M. K. G. Jayakumar, A. Bansal, and Y. Zhang, “Upconversion nanoparticles as versatile light nanotransducers for photoactivation applications,” Chem. Soc. Rev. 44(6), 1449–1478 (2015).
[Crossref] [PubMed]

Zhang, Y. Q.

S. Xu, S. Y. Xiang, Y. Q. Zhang, J. S. Zhang, X. P. Li, J. S. Sun, L. H. Cheng, and B. J. Chen, ““808 nm laser induced photothermal effect on Sm3+/Nd3+ doped NaY(WO4)2 microstructures,” Sensor. Actuat,” Biol. Chem. 240, 386–391 (2017).

Zhao, D.

X. Li, F. Zhang, and D. Zhao, “Lab on upconversion nanoparticles: optical properties and applications engineering via designed nanostructure,” Chem. Soc. Rev. 44(6), 1346–1378 (2015).
[Crossref] [PubMed]

Zheng, H.

H. Zheng, B. J. Chen, H. Q. Yu, X. P. Li, J. S. Zhang, J. S. Sun, L. L. Tong, Z. L. Wu, H. Zhong, R. N. Hua, and H. P. Xia, “Rod-shaped NaY(MoO4)2:Sm3+/Yb3+ nanoheaters for photothermal conversion: Influence of doping concentration and excitation power density,” Sensor. Actuat. Biol. Chem. 234, 286–293 (2016).

L. L. Tong, X. P. Li, R. N. Hua, X. J. Li, H. Zheng, J. S. Sun, J. S. Zhang, L. H. Cheng, and B. J. Chen, “Comparative study on upconversion luminescence and temperature sensing of α- and β-NaYF4: Yb3+/Er3+ nano-/micro-nanocrystals derived from a microwave-assisted hydrothermal route,” J. Lumin. 167, 386–390 (2015).
[Crossref]

S. Y. Xiang, B. J. Chen, J. S. Zhang, X. P. Li, J. S. Sun, H. Zheng, Z. L. Wu, H. Zhong, H. Q. Yu, and H. P. Xia, “Microwave-assisted hydrothermal synthesis and laser-induced optical heating effect of NaY(WO4)2:Tm3+/Yb3+ microstructures,” Opt. Mater. Express 4(9), 1966 (2014).
[Crossref]

H. Zheng, B. Chen, H. Yu, J. Zhang, J. Sun, X. Li, M. Sun, B. Tian, S. Fu, H. Zhong, B. Dong, R. Hua, and H. Xia, “Microwave-assisted hydrothermal synthesis and temperature sensing application of Er3+/Yb3+ doped NaY(WO4)2 microstructures,” J. Colloid Interface Sci. 420, 27–34 (2014).
[Crossref] [PubMed]

H. Zheng, B. J. Chen, H. Q. Yu, J. S. Zhang, J. S. Sun, X. P. Li, M. Sun, B. N. Tian, H. Zhong, S. B. Fu, R. N. Hua, and H. P. Xia, “Temperature sensing and optical heating in Er3+ single-doped and Er3+/Yb3+ codoped NaY(WO4)2 particles,” RSC Advances 4(88), 47556–47563 (2014).
[Crossref]

Zheng, W.

W. Zheng, P. Huang, D. Tu, E. Ma, H. Zhu, and X. Chen, “Lanthanide-doped upconversion nano-bioprobes: electronic structures, optical properties, and biodetection,” Chem. Soc. Rev. 44(6), 1379–1415 (2015).
[Crossref] [PubMed]

Zheng, Y. F.

Y. Tian, B. J. Chen, R. N. Hua, J. S. Sun, L. H. Cheng, H. Y. Zhong, X. P. Li, J. S. Zhang, Y. F. Zheng, T. T. Yu, L. B. Huang, and H. Q. Yu, “Optical transition, electron-phonon coupling and fluorescent quenching of La2(MoO4)3:Eu3+ phosphor,” J. Appl. Phys. 109(5), 053511 (2011).
[Crossref]

Zhong, H.

H. Zheng, B. J. Chen, H. Q. Yu, X. P. Li, J. S. Zhang, J. S. Sun, L. L. Tong, Z. L. Wu, H. Zhong, R. N. Hua, and H. P. Xia, “Rod-shaped NaY(MoO4)2:Sm3+/Yb3+ nanoheaters for photothermal conversion: Influence of doping concentration and excitation power density,” Sensor. Actuat. Biol. Chem. 234, 286–293 (2016).

H. Zheng, B. Chen, H. Yu, J. Zhang, J. Sun, X. Li, M. Sun, B. Tian, S. Fu, H. Zhong, B. Dong, R. Hua, and H. Xia, “Microwave-assisted hydrothermal synthesis and temperature sensing application of Er3+/Yb3+ doped NaY(WO4)2 microstructures,” J. Colloid Interface Sci. 420, 27–34 (2014).
[Crossref] [PubMed]

H. Zheng, B. J. Chen, H. Q. Yu, J. S. Zhang, J. S. Sun, X. P. Li, M. Sun, B. N. Tian, H. Zhong, S. B. Fu, R. N. Hua, and H. P. Xia, “Temperature sensing and optical heating in Er3+ single-doped and Er3+/Yb3+ codoped NaY(WO4)2 particles,” RSC Advances 4(88), 47556–47563 (2014).
[Crossref]

S. Y. Xiang, B. J. Chen, J. S. Zhang, X. P. Li, J. S. Sun, H. Zheng, Z. L. Wu, H. Zhong, H. Q. Yu, and H. P. Xia, “Microwave-assisted hydrothermal synthesis and laser-induced optical heating effect of NaY(WO4)2:Tm3+/Yb3+ microstructures,” Opt. Mater. Express 4(9), 1966 (2014).
[Crossref]

Zhong, H. Y.

Y. Tian, B. J. Chen, R. N. Hua, J. S. Sun, L. H. Cheng, H. Y. Zhong, X. P. Li, J. S. Zhang, Y. F. Zheng, T. T. Yu, L. B. Huang, and H. Q. Yu, “Optical transition, electron-phonon coupling and fluorescent quenching of La2(MoO4)3:Eu3+ phosphor,” J. Appl. Phys. 109(5), 053511 (2011).
[Crossref]

Zhu, H.

W. Zheng, P. Huang, D. Tu, E. Ma, H. Zhu, and X. Chen, “Lanthanide-doped upconversion nano-bioprobes: electronic structures, optical properties, and biodetection,” Chem. Soc. Rev. 44(6), 1379–1415 (2015).
[Crossref] [PubMed]

ACS Nano (2)

F. Vetrone, R. Naccache, A. Zamarrón, A. Juarranz de la Fuente, F. Sanz-Rodríguez, L. Martinez Maestro, E. Martín Rodriguez, D. Jaque, J. García Solé, and J. A. Capobianco, “Temperature sensing using fluorescent nanothermometers,” ACS Nano 4(6), 3254–3258 (2010).
[Crossref] [PubMed]

B. Jang, J. Y. Park, C. H. Tung, I. H. Kim, and Y. Choi, “Gold nanorod-photosensitizer complex for near-infrared fluorescence imaging and photodynamic/photothermal therapy in vivo,” ACS Nano 5(2), 1086–1094 (2011).
[Crossref] [PubMed]

Acta Biomater. (1)

Y. Li, C. Jiang, D. Zhang, Y. Wang, X. Ren, K. Ai, X. Chen, and L. Lu, “Targeted polydopamine nanoparticles enable photoacoustic imaging guided chemo-photothermal synergistic therapy of tumor,” Acta Biomater. 47, 124–134 (2017).
[Crossref] [PubMed]

Acta Electron. (Paris) (1)

E. Kauer, R. Kersten, and F. Mahdjuri, “Photothermal conversion,” Acta Electron. (Paris) 18, 295 (1975).

Adv. Funct. Mater. (1)

E. Carrasco, B. Rosal, F. S. Rodriguez, A. J. Fuente, P. H. Gonzalez, U. Rocha, K. U. Kumar, C. Jacinto, J. G. Sole, and D. Jaque, “Intratumoral thermal reading during photo-thermal therapy by multifunctional fluorescent Nanoparticles,” Adv. Funct. Mater. 25(4), 615–626 (2015).
[Crossref]

Biol. Chem. (1)

S. Xu, S. Y. Xiang, Y. Q. Zhang, J. S. Zhang, X. P. Li, J. S. Sun, L. H. Cheng, and B. J. Chen, ““808 nm laser induced photothermal effect on Sm3+/Nd3+ doped NaY(WO4)2 microstructures,” Sensor. Actuat,” Biol. Chem. 240, 386–391 (2017).

Biomater (1)

X. W. Liu, H. Q. Tao, K. Yang, S. Zhang, S. T. Lee, and Z. Liu, “Optimization of surface on single-walled carbon nanotubes for in vivo photothermal chemistry,” Biomater 32, 44 (2011).
[PubMed]

Biosens. Bioelectron. (1)

Q. Li, L. Hong, H. Li, and C. Liu, “Graphene oxide-fullerene C60 (GO-C60) hybrid for photodynamic and photothermal therapy triggered by near-infrared light,” Biosens. Bioelectron. 89(Pt 1), 477–482 (2017).
[Crossref] [PubMed]

Ceram. Int. (1)

W. B. Bi, Q. Y. Meng, W. J. Sun, and S. C. Lu, “Optical temperature sensing properties of Er3+, Yb3+ co-doped NaGd(MoO4)2 phosphor,” Ceram. Int. 43(1), 1460–1465 (2017).
[Crossref]

Chem. Eng. J. (1)

Y. Y. Tian, Y. Tian, P. Huang, L. Wang, Q. F. Shi, and C. E. Cui, “Effect of Yb3+ concentration on upconversion luminescence and temperature sensing behavior in Yb3+/Er3+ co-doped YNbO4 nanoparticles prepared via molten salt route,” Chem. Eng. J. 297, 26–34 (2016).
[Crossref]

Chem. Soc. Rev. (5)

E. M. Chan, “Combinatorial approaches for developing upconverting nanomaterials: high-throughput screening, modeling, and applications,” Chem. Soc. Rev. 44(6), 1653–1679 (2015).
[Crossref] [PubMed]

Y. I. Park, K. T. Lee, Y. D. Suh, and T. Hyeon, “Upconverting nanoparticles: a versatile platform for wide-field two-photon microscopy and multi-modal in vivo imaging,” Chem. Soc. Rev. 44(6), 1302–1317 (2015).
[Crossref] [PubMed]

X. Li, F. Zhang, and D. Zhao, “Lab on upconversion nanoparticles: optical properties and applications engineering via designed nanostructure,” Chem. Soc. Rev. 44(6), 1346–1378 (2015).
[Crossref] [PubMed]

N. M. Idris, M. K. G. Jayakumar, A. Bansal, and Y. Zhang, “Upconversion nanoparticles as versatile light nanotransducers for photoactivation applications,” Chem. Soc. Rev. 44(6), 1449–1478 (2015).
[Crossref] [PubMed]

W. Zheng, P. Huang, D. Tu, E. Ma, H. Zhu, and X. Chen, “Lanthanide-doped upconversion nano-bioprobes: electronic structures, optical properties, and biodetection,” Chem. Soc. Rev. 44(6), 1379–1415 (2015).
[Crossref] [PubMed]

CrystEngComm (1)

X. D. Liu, X. Zhang, G. Tian, W. Y. Yin, L. Yan, L. F. Ruan, Z. Y. Yang, D. B. Xiao, and Z. J. Gu, “A simple and efficient synthetic route for preparation of NaYF4 upconversion nanoparticles by thermo-decomposition of rare-earth oleates,” CrystEngComm 16(25), 5650 (2014).
[Crossref]

J. Alloys Compd. (1)

A. Dubey, A. K. Soni, A. Kumari, R. Dey, and V. K. Rai, “Enhanced green upconversion emission in NaYF4:Er3+/Yb3+/Li3+ phosphors for optical thermometry,” J. Alloys Compd. 693, 194–200 (2017).
[Crossref]

J. Appl. Phys. (2)

S. A. Wade, S. F. Collins, and G. W. Baxter, “Fluorescence intensity ratio technique for optical fiber point temperature sensing,” J. Appl. Phys. 94(8), 4743 (2003).
[Crossref]

Y. Tian, B. J. Chen, R. N. Hua, J. S. Sun, L. H. Cheng, H. Y. Zhong, X. P. Li, J. S. Zhang, Y. F. Zheng, T. T. Yu, L. B. Huang, and H. Q. Yu, “Optical transition, electron-phonon coupling and fluorescent quenching of La2(MoO4)3:Eu3+ phosphor,” J. Appl. Phys. 109(5), 053511 (2011).
[Crossref]

J. Colloid Interface Sci. (1)

H. Zheng, B. Chen, H. Yu, J. Zhang, J. Sun, X. Li, M. Sun, B. Tian, S. Fu, H. Zhong, B. Dong, R. Hua, and H. Xia, “Microwave-assisted hydrothermal synthesis and temperature sensing application of Er3+/Yb3+ doped NaY(WO4)2 microstructures,” J. Colloid Interface Sci. 420, 27–34 (2014).
[Crossref] [PubMed]

J. Lumin. (1)

L. L. Tong, X. P. Li, R. N. Hua, X. J. Li, H. Zheng, J. S. Sun, J. S. Zhang, L. H. Cheng, and B. J. Chen, “Comparative study on upconversion luminescence and temperature sensing of α- and β-NaYF4: Yb3+/Er3+ nano-/micro-nanocrystals derived from a microwave-assisted hydrothermal route,” J. Lumin. 167, 386–390 (2015).
[Crossref]

J. Nanosci. Nanotechnol. (1)

L. Tong, X. Li, R. Hua, Y. Tianxiang Peng, X. Wang, Zhang, and B. Chen, “Anomalous temperature-dependent upconversion luminescence of β-NaYF4:Yb3+/Er3+ nanocrystals synthesized by a microwave-assisted hydrothermal method,” J. Nanosci. Nanotechnol. 16(1), 816–821 (2016).
[Crossref] [PubMed]

Nano Lett. (1)

K. Yang, S. Zhang, G. Zhang, X. Sun, S. T. Lee, and Z. Liu, “Graphene in mice: ultrahigh in vivo tumor uptake and efficient photothermal therapy,” Nano Lett. 10(9), 3318–3323 (2010).
[Crossref] [PubMed]

Nanoscale (1)

E. C. Ximendes, U. Rocha, C. Jacinto, K. U. Kumar, D. Bravo, F. J. López, E. Martín Rodríguez, J. García-Solé, and D. Jaque, “Self-monitored photothermal nanoparticles based on core-shell engineering,” Nanoscale 8(5), 3057–3066 (2016).
[Crossref] [PubMed]

Nanoscale Res. Lett. (1)

H. Liu, W. Tang, C. Li, P. Lv, Z. Wang, Y. Liu, C. Zhang, Y. Bao, H. Chen, X. Meng, Y. Song, X. Xia, F. Pan, D. Cui, and Y. Shi, “CdSe/ZnS quantum dots-labeled mesenchymal stem cells for targeted fluorescence imaging of pancreas tissues and therapy of type 1 diabetic rats,” Nanoscale Res. Lett. 10(1), 265 (2015).
[Crossref] [PubMed]

Opt. Mater. Express (1)

RSC Advances (2)

H. Zheng, B. J. Chen, H. Q. Yu, J. S. Zhang, J. S. Sun, X. P. Li, M. Sun, B. N. Tian, H. Zhong, S. B. Fu, R. N. Hua, and H. P. Xia, “Temperature sensing and optical heating in Er3+ single-doped and Er3+/Yb3+ codoped NaY(WO4)2 particles,” RSC Advances 4(88), 47556–47563 (2014).
[Crossref]

Y. Tian, B. N. Tian, C. E. Cui, P. Huang, L. Wang, and B. J. Chen, “Size-dependent upconversion luminescence and temperature sensing behavior of spherical Gd2O3:Yb3+/Er3+ phosphor,” RSC Advances 5(19), 14123–14128 (2015).
[Crossref]

Sensor. Actuat. Biol. Chem. (1)

H. Zheng, B. J. Chen, H. Q. Yu, X. P. Li, J. S. Zhang, J. S. Sun, L. L. Tong, Z. L. Wu, H. Zhong, R. N. Hua, and H. P. Xia, “Rod-shaped NaY(MoO4)2:Sm3+/Yb3+ nanoheaters for photothermal conversion: Influence of doping concentration and excitation power density,” Sensor. Actuat. Biol. Chem. 234, 286–293 (2016).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 (a) XRD pattern of NaYF4:Sm3+/Yb3+@NaYF4:Er3+/Yb3+ core-shell structured nanocrystals, (b) standard pattern for β-NaYF4 powders reported in JCPDS card No.28-1192.
Fig. 2
Fig. 2 (a) SEM images for NaYF4:Sm3+/Yb3+ nanoparticles, (b) NaYF4:Sm3+/Yb3+@NaYF4:Er3+/Yb3+ core shell structure.
Fig. 3
Fig. 3 (a) TEM images for NaYF4:Sm3+/Yb3+, (b) NaYF4:Sm3+/Yb3+@NaYF4:Er3+/Yb3+ nanocrystals.
Fig. 4
Fig. 4 (a) Particle size distributions for NaYF4:Sm3+/Yb3+, (b) NaYF4:Sm3+/Yb3+@NaYF4:Er3+/Yb3+ nanocrystals. The solid curves show the Gaussian fits.
Fig. 5
Fig. 5 Temperature dependent upconversion emission spectra of NaYF4:Sm3+/Yb3+@NaYF4:Er3+/Yb3+ nanocrystals excited by 980 nm laser at 11.4 W/cm2. Inset illustrates the time-dependent emission intensity ratio of 525 nm to 545 nm measured at room temperature.
Fig. 6
Fig. 6 Dependencies of FIR (●) and sensitivity (■) on temperature for NaYF4:Sm3+/Yb3+@NaYF4:Er3+/Yb3+ core-shell structure.
Fig. 7
Fig. 7 Temperature dependence of NaYF4:Sm3+/Yb3+@NaYF4:Er3+/Yb3+ core-shell structure on excitation power density and irradiation time of 980nm laser: 19.8 W/cm2 (△), 31.6 W/cm2 (○) and 38.1 W/cm2 (□).
Fig. 8
Fig. 8 Time and power density dependences of the system weight (alcohol and NaYF4: Sm3+/Yb3+ @NaYF4: Er3+/Yb3+ nanocrystals).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

F I R = I H I S = C exp ( Δ E k T )
S = d ( F I R ) d T = C exp ( Δ E k T ) ( Δ E k T 2 )

Metrics