Abstract

We demonstrate the lightning-rod resonance of a lollipop near-field transducer integrated in magnetic writer for heat-assisted magnetic recording by collecting the two-photon excited photoluminescence (TPL) signal when excited by a pulsed femto-second fiber laser tuned to the desired mode resonance. The lollipop transducer consists of a round disk and a protruding peg to take advantage of the lightning-rod effect. It is found that the TPL signal is extremely sensitive to the peg length where even a 3-5 nm deviation from the optimal peg length halves the TPL signal. This method conveniently quantifies the optical performance of an NFT device in situ as a function of geometry with a resolution of better than the light wavelength (λ) divided by 200.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Effective heat dissipation in an adiabatic near-field transducer for HAMR

Chuan Zhong, Patrick Flanigan, Nicolás Abadía, Frank Bello, Brian D. Jennings, Gwenael Atcheson, Jing Li, Jian-Yao Zheng, Jing Jing Wang, Richard Hobbs, David McCloskey, and John F. Donegan
Opt. Express 26(15) 18842-18854 (2018)

Nanoscale ridge aperture as near-field transducer for heat-assisted magnetic recording

Nan Zhou, Edward C. Kinzel, and Xianfan Xu
Appl. Opt. 50(31) G42-G46 (2011)

Split ring resonator as a nanoscale optical transducer for heat-assisted magnetic recording

Anurup Datta, Zhou Zeng, and Xianfan Xu
Opt. Express 27(20) 28264-28278 (2019)

References

  • View by:
  • |
  • |
  • |

  1. W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(5), 303 (2009).
    [Crossref]
  2. P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94(1), 017402 (2005).
    [Crossref] [PubMed]
  3. S. P. Powell, E. J. Black, T. E. Schlesinger, and J. A. Bain, “The influence of media optical properties on the efficiency of optical power delivery for heat assisted magnetic recording,” J. Appl. Phys. 109, 07B775 (2011).
  4. T. Matsumoto, F. Akagi, M. Mochizuki, H. Miyamoto, and B. Stipe, “Integrated head design using a nanobeak antenna for thermally assisted magnetic recording,” Opt. Express 20(17), 18946–18954 (2012).
    [Crossref] [PubMed]
  5. C. Peng, “Efficient excitation of a monopole optical transducer for near-field recording,” J. Appl. Phys. 112(4), 043108 (2012).
    [Crossref]
  6. E. Betzig, J. K. Trautman, R. Wolfe, E. M. Gyorgy, P. L. Finn, M. H. Kryder, and C. H. Chang, “Near-field magneto-optics and high density data storage,” Appl. Phys. Lett. 61(2), 142–144 (1992).
    [Crossref]
  7. F. Chen, A. Itagi, J. A. Bain, D. D. Stancil, T. E. Schlesinger, L. Stebounova, G. C. Walker, and B. B. Akhremitchev, “Imaging of optical field confinement in ridge waveguides fabricated on very-small-aperture laser,” Appl. Phys. Lett. 83(16), 3245–3247 (2003).
    [Crossref]
  8. E. X. Jin and X. Xu, “Obtaining super resolution light spot using surface plasmon assisted sharp ridge nanoaperture,” Appl. Phys. Lett. 86(11), 111106 (2005).
    [Crossref]
  9. C. Peng, E. X. Jin, T. W. Clinton, and M. A. Seigler, “Cutoff wavelength of ridge waveguide near field transducer for disk data storage,” Opt. Express 16(20), 16043–16051 (2008).
    [Crossref] [PubMed]
  10. B. C. Stipe, T. C. Strand, C. C. Poon, H. Balamane, T. D. Boone, J. A. Katine, J.-L. Li, V. Rawat, H. Nemoto, A. Hirotsune, O. Hellwig, R. Ruiz, E. Dobisz, D. S. Kercher, N. Robertson, T. R. Albrecht, and B. D. Terris, “Magnetic recording at 1.5 Pb m−2 using an integrated plasmonic antenna,” Nat. Photonics 4(7), 484–488 (2010).
    [Crossref]
  11. K. Şendur, C. Peng, and W. Challener, “Near-field radiation from a ridge waveguide transducer in the vicinity of a solid immersion lens,” Phys. Rev. Lett. 94(4), 043901 (2005).
    [Crossref] [PubMed]
  12. A. Q. Wu, Y. Kubota, T. Klemmer, T. Rausch, C. Peng, Y. Peng, D. Karns, X. Zhu, Y. Ding, E. K. C. Chang, Y. Zhao, H. Zhou, K. Gao, J.-U. Thiele, M. Seigler, G. Ju, and E. Gage, “HAMR areal density demonstration of 1+ Tbpsi on spinstand,” IEEE Trans. Magn. 49(2), 779–782 (2013).
    [Crossref]
  13. C. Peng, “Cross-polarization detecting surface-plasmon resonance of near-field transducer,” Appl. Phys. Lett. 104(6), 061114 (2014).
    [Crossref]
  14. C. Peng, “Surface-plasmon resonance of a planar lollipop near-field transducer,” Appl. Phys. Lett. 94(17), 10–13 (2009).
    [Crossref]
  15. A. Mooradian, “Photoluminescence of metals,” Phys. Rev. Lett. 22(5), 185–187 (1969).
    [Crossref]
  16. K. D. Ko, A. Kumar, K. H. Fung, R. Ambekar, G. L. Liu, N. X. Fang, and K. C. Toussaint., “Nonlinear optical response from arrays of Au bowtie nanoantennas,” Nano Lett. 11(1), 61–65 (2011).
    [Crossref] [PubMed]
  17. A. Bouhelier, R. Bachelot, G. Lerondel, S. Kostcheev, P. Royer, and G. P. Wiederrecht, “Surface plasmon characteristics of tunable photoluminescence in single gold nanorods,” Phys. Rev. Lett. 95(26), 267405 (2005).
    [Crossref] [PubMed]
  18. J. Beermann, S. M. Novikov, T. Søndergaard, A. Boltasseva, and S. I. Bozhevolnyi, “Two-photon mapping of localized field enhancements in thin nanostrip antennas,” Opt. Express 16(22), 17302–17309 (2008).
    [Crossref] [PubMed]
  19. R. A. Farrer, F. L. Butterfield, V. W. Chen, and J. T. Fourkas, “Highly efficient multiphoton-absorption-induced luminescence from gold nanoparticles,” Nano Lett. 5(6), 1139–1142 (2005).
    [Crossref] [PubMed]
  20. H. Kano and S. Kawata, “Two-photon-excited fluorescence enhanced by a surface plasmon,” Opt. Lett. 21(22), 1848–1850 (1996).
    [Crossref] [PubMed]
  21. T. Haug, P. Klemm, S. Bange, and J. M. Lupton, “Hot-electron intraband luminescence from single hot spots in noble-metal nanoparticle films,” Phys. Rev. Lett. 115(6), 067403 (2015).
    [Crossref] [PubMed]
  22. A. Bouhelier, M. R. Beversluis, and L. Novotny, “Characterization of nanoplasmonic structures by locally excited photoluminescence,” Appl. Phys. Lett. 83(24), 5041–5043 (2003).
    [Crossref]
  23. W. Challener, C. Mihalcea, C. Peng, and K. Pelhos, “Miniature planar solid immersion mirror with focused spot less than a quarter wavelength,” Opt. Express 13(18), 7189–7197 (2005).
    [Crossref] [PubMed]
  24. M. Jiang, S. Hao, and R. Komanduri, “On the advanced lapping process in the precision finishing of thin-film magnetic recording heads for rigid disc drives,” Appl. Phys., A Mater. Sci. Process. 77(7), 923–932 (2003).
    [Crossref]
  25. T. D. James, Z. Q. Teo, D. E. Gomez, T. J. Davis, and A. Roberts, “The plasmonic J-pole antenna,” Appl. Phys. Lett. 102(3), 033106 (2013).
    [Crossref]

2015 (1)

T. Haug, P. Klemm, S. Bange, and J. M. Lupton, “Hot-electron intraband luminescence from single hot spots in noble-metal nanoparticle films,” Phys. Rev. Lett. 115(6), 067403 (2015).
[Crossref] [PubMed]

2014 (1)

C. Peng, “Cross-polarization detecting surface-plasmon resonance of near-field transducer,” Appl. Phys. Lett. 104(6), 061114 (2014).
[Crossref]

2013 (2)

A. Q. Wu, Y. Kubota, T. Klemmer, T. Rausch, C. Peng, Y. Peng, D. Karns, X. Zhu, Y. Ding, E. K. C. Chang, Y. Zhao, H. Zhou, K. Gao, J.-U. Thiele, M. Seigler, G. Ju, and E. Gage, “HAMR areal density demonstration of 1+ Tbpsi on spinstand,” IEEE Trans. Magn. 49(2), 779–782 (2013).
[Crossref]

T. D. James, Z. Q. Teo, D. E. Gomez, T. J. Davis, and A. Roberts, “The plasmonic J-pole antenna,” Appl. Phys. Lett. 102(3), 033106 (2013).
[Crossref]

2012 (2)

2011 (2)

S. P. Powell, E. J. Black, T. E. Schlesinger, and J. A. Bain, “The influence of media optical properties on the efficiency of optical power delivery for heat assisted magnetic recording,” J. Appl. Phys. 109, 07B775 (2011).

K. D. Ko, A. Kumar, K. H. Fung, R. Ambekar, G. L. Liu, N. X. Fang, and K. C. Toussaint., “Nonlinear optical response from arrays of Au bowtie nanoantennas,” Nano Lett. 11(1), 61–65 (2011).
[Crossref] [PubMed]

2010 (1)

B. C. Stipe, T. C. Strand, C. C. Poon, H. Balamane, T. D. Boone, J. A. Katine, J.-L. Li, V. Rawat, H. Nemoto, A. Hirotsune, O. Hellwig, R. Ruiz, E. Dobisz, D. S. Kercher, N. Robertson, T. R. Albrecht, and B. D. Terris, “Magnetic recording at 1.5 Pb m−2 using an integrated plasmonic antenna,” Nat. Photonics 4(7), 484–488 (2010).
[Crossref]

2009 (2)

C. Peng, “Surface-plasmon resonance of a planar lollipop near-field transducer,” Appl. Phys. Lett. 94(17), 10–13 (2009).
[Crossref]

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(5), 303 (2009).
[Crossref]

2008 (2)

2005 (6)

R. A. Farrer, F. L. Butterfield, V. W. Chen, and J. T. Fourkas, “Highly efficient multiphoton-absorption-induced luminescence from gold nanoparticles,” Nano Lett. 5(6), 1139–1142 (2005).
[Crossref] [PubMed]

A. Bouhelier, R. Bachelot, G. Lerondel, S. Kostcheev, P. Royer, and G. P. Wiederrecht, “Surface plasmon characteristics of tunable photoluminescence in single gold nanorods,” Phys. Rev. Lett. 95(26), 267405 (2005).
[Crossref] [PubMed]

K. Şendur, C. Peng, and W. Challener, “Near-field radiation from a ridge waveguide transducer in the vicinity of a solid immersion lens,” Phys. Rev. Lett. 94(4), 043901 (2005).
[Crossref] [PubMed]

E. X. Jin and X. Xu, “Obtaining super resolution light spot using surface plasmon assisted sharp ridge nanoaperture,” Appl. Phys. Lett. 86(11), 111106 (2005).
[Crossref]

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94(1), 017402 (2005).
[Crossref] [PubMed]

W. Challener, C. Mihalcea, C. Peng, and K. Pelhos, “Miniature planar solid immersion mirror with focused spot less than a quarter wavelength,” Opt. Express 13(18), 7189–7197 (2005).
[Crossref] [PubMed]

2003 (3)

M. Jiang, S. Hao, and R. Komanduri, “On the advanced lapping process in the precision finishing of thin-film magnetic recording heads for rigid disc drives,” Appl. Phys., A Mater. Sci. Process. 77(7), 923–932 (2003).
[Crossref]

A. Bouhelier, M. R. Beversluis, and L. Novotny, “Characterization of nanoplasmonic structures by locally excited photoluminescence,” Appl. Phys. Lett. 83(24), 5041–5043 (2003).
[Crossref]

F. Chen, A. Itagi, J. A. Bain, D. D. Stancil, T. E. Schlesinger, L. Stebounova, G. C. Walker, and B. B. Akhremitchev, “Imaging of optical field confinement in ridge waveguides fabricated on very-small-aperture laser,” Appl. Phys. Lett. 83(16), 3245–3247 (2003).
[Crossref]

1996 (1)

1992 (1)

E. Betzig, J. K. Trautman, R. Wolfe, E. M. Gyorgy, P. L. Finn, M. H. Kryder, and C. H. Chang, “Near-field magneto-optics and high density data storage,” Appl. Phys. Lett. 61(2), 142–144 (1992).
[Crossref]

1969 (1)

A. Mooradian, “Photoluminescence of metals,” Phys. Rev. Lett. 22(5), 185–187 (1969).
[Crossref]

Akagi, F.

Akhremitchev, B. B.

F. Chen, A. Itagi, J. A. Bain, D. D. Stancil, T. E. Schlesinger, L. Stebounova, G. C. Walker, and B. B. Akhremitchev, “Imaging of optical field confinement in ridge waveguides fabricated on very-small-aperture laser,” Appl. Phys. Lett. 83(16), 3245–3247 (2003).
[Crossref]

Albrecht, T. R.

B. C. Stipe, T. C. Strand, C. C. Poon, H. Balamane, T. D. Boone, J. A. Katine, J.-L. Li, V. Rawat, H. Nemoto, A. Hirotsune, O. Hellwig, R. Ruiz, E. Dobisz, D. S. Kercher, N. Robertson, T. R. Albrecht, and B. D. Terris, “Magnetic recording at 1.5 Pb m−2 using an integrated plasmonic antenna,” Nat. Photonics 4(7), 484–488 (2010).
[Crossref]

Ambekar, R.

K. D. Ko, A. Kumar, K. H. Fung, R. Ambekar, G. L. Liu, N. X. Fang, and K. C. Toussaint., “Nonlinear optical response from arrays of Au bowtie nanoantennas,” Nano Lett. 11(1), 61–65 (2011).
[Crossref] [PubMed]

Bachelot, R.

A. Bouhelier, R. Bachelot, G. Lerondel, S. Kostcheev, P. Royer, and G. P. Wiederrecht, “Surface plasmon characteristics of tunable photoluminescence in single gold nanorods,” Phys. Rev. Lett. 95(26), 267405 (2005).
[Crossref] [PubMed]

Bain, J. A.

S. P. Powell, E. J. Black, T. E. Schlesinger, and J. A. Bain, “The influence of media optical properties on the efficiency of optical power delivery for heat assisted magnetic recording,” J. Appl. Phys. 109, 07B775 (2011).

F. Chen, A. Itagi, J. A. Bain, D. D. Stancil, T. E. Schlesinger, L. Stebounova, G. C. Walker, and B. B. Akhremitchev, “Imaging of optical field confinement in ridge waveguides fabricated on very-small-aperture laser,” Appl. Phys. Lett. 83(16), 3245–3247 (2003).
[Crossref]

Balamane, H.

B. C. Stipe, T. C. Strand, C. C. Poon, H. Balamane, T. D. Boone, J. A. Katine, J.-L. Li, V. Rawat, H. Nemoto, A. Hirotsune, O. Hellwig, R. Ruiz, E. Dobisz, D. S. Kercher, N. Robertson, T. R. Albrecht, and B. D. Terris, “Magnetic recording at 1.5 Pb m−2 using an integrated plasmonic antenna,” Nat. Photonics 4(7), 484–488 (2010).
[Crossref]

Bange, S.

T. Haug, P. Klemm, S. Bange, and J. M. Lupton, “Hot-electron intraband luminescence from single hot spots in noble-metal nanoparticle films,” Phys. Rev. Lett. 115(6), 067403 (2015).
[Crossref] [PubMed]

Beermann, J.

Betzig, E.

E. Betzig, J. K. Trautman, R. Wolfe, E. M. Gyorgy, P. L. Finn, M. H. Kryder, and C. H. Chang, “Near-field magneto-optics and high density data storage,” Appl. Phys. Lett. 61(2), 142–144 (1992).
[Crossref]

Beversluis, M. R.

A. Bouhelier, M. R. Beversluis, and L. Novotny, “Characterization of nanoplasmonic structures by locally excited photoluminescence,” Appl. Phys. Lett. 83(24), 5041–5043 (2003).
[Crossref]

Black, E. J.

S. P. Powell, E. J. Black, T. E. Schlesinger, and J. A. Bain, “The influence of media optical properties on the efficiency of optical power delivery for heat assisted magnetic recording,” J. Appl. Phys. 109, 07B775 (2011).

Boltasseva, A.

Boone, T. D.

B. C. Stipe, T. C. Strand, C. C. Poon, H. Balamane, T. D. Boone, J. A. Katine, J.-L. Li, V. Rawat, H. Nemoto, A. Hirotsune, O. Hellwig, R. Ruiz, E. Dobisz, D. S. Kercher, N. Robertson, T. R. Albrecht, and B. D. Terris, “Magnetic recording at 1.5 Pb m−2 using an integrated plasmonic antenna,” Nat. Photonics 4(7), 484–488 (2010).
[Crossref]

Bouhelier, A.

A. Bouhelier, R. Bachelot, G. Lerondel, S. Kostcheev, P. Royer, and G. P. Wiederrecht, “Surface plasmon characteristics of tunable photoluminescence in single gold nanorods,” Phys. Rev. Lett. 95(26), 267405 (2005).
[Crossref] [PubMed]

A. Bouhelier, M. R. Beversluis, and L. Novotny, “Characterization of nanoplasmonic structures by locally excited photoluminescence,” Appl. Phys. Lett. 83(24), 5041–5043 (2003).
[Crossref]

Bozhevolnyi, S. I.

Butterfield, F. L.

R. A. Farrer, F. L. Butterfield, V. W. Chen, and J. T. Fourkas, “Highly efficient multiphoton-absorption-induced luminescence from gold nanoparticles,” Nano Lett. 5(6), 1139–1142 (2005).
[Crossref] [PubMed]

Challener, W.

W. Challener, C. Mihalcea, C. Peng, and K. Pelhos, “Miniature planar solid immersion mirror with focused spot less than a quarter wavelength,” Opt. Express 13(18), 7189–7197 (2005).
[Crossref] [PubMed]

K. Şendur, C. Peng, and W. Challener, “Near-field radiation from a ridge waveguide transducer in the vicinity of a solid immersion lens,” Phys. Rev. Lett. 94(4), 043901 (2005).
[Crossref] [PubMed]

Challener, W. A.

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(5), 303 (2009).
[Crossref]

Chang, C. H.

E. Betzig, J. K. Trautman, R. Wolfe, E. M. Gyorgy, P. L. Finn, M. H. Kryder, and C. H. Chang, “Near-field magneto-optics and high density data storage,” Appl. Phys. Lett. 61(2), 142–144 (1992).
[Crossref]

Chang, E. K. C.

A. Q. Wu, Y. Kubota, T. Klemmer, T. Rausch, C. Peng, Y. Peng, D. Karns, X. Zhu, Y. Ding, E. K. C. Chang, Y. Zhao, H. Zhou, K. Gao, J.-U. Thiele, M. Seigler, G. Ju, and E. Gage, “HAMR areal density demonstration of 1+ Tbpsi on spinstand,” IEEE Trans. Magn. 49(2), 779–782 (2013).
[Crossref]

Chen, F.

F. Chen, A. Itagi, J. A. Bain, D. D. Stancil, T. E. Schlesinger, L. Stebounova, G. C. Walker, and B. B. Akhremitchev, “Imaging of optical field confinement in ridge waveguides fabricated on very-small-aperture laser,” Appl. Phys. Lett. 83(16), 3245–3247 (2003).
[Crossref]

Chen, V. W.

R. A. Farrer, F. L. Butterfield, V. W. Chen, and J. T. Fourkas, “Highly efficient multiphoton-absorption-induced luminescence from gold nanoparticles,” Nano Lett. 5(6), 1139–1142 (2005).
[Crossref] [PubMed]

Clinton, T. W.

Davis, T. J.

T. D. James, Z. Q. Teo, D. E. Gomez, T. J. Davis, and A. Roberts, “The plasmonic J-pole antenna,” Appl. Phys. Lett. 102(3), 033106 (2013).
[Crossref]

Ding, Y.

A. Q. Wu, Y. Kubota, T. Klemmer, T. Rausch, C. Peng, Y. Peng, D. Karns, X. Zhu, Y. Ding, E. K. C. Chang, Y. Zhao, H. Zhou, K. Gao, J.-U. Thiele, M. Seigler, G. Ju, and E. Gage, “HAMR areal density demonstration of 1+ Tbpsi on spinstand,” IEEE Trans. Magn. 49(2), 779–782 (2013).
[Crossref]

Dobisz, E.

B. C. Stipe, T. C. Strand, C. C. Poon, H. Balamane, T. D. Boone, J. A. Katine, J.-L. Li, V. Rawat, H. Nemoto, A. Hirotsune, O. Hellwig, R. Ruiz, E. Dobisz, D. S. Kercher, N. Robertson, T. R. Albrecht, and B. D. Terris, “Magnetic recording at 1.5 Pb m−2 using an integrated plasmonic antenna,” Nat. Photonics 4(7), 484–488 (2010).
[Crossref]

Fang, N. X.

K. D. Ko, A. Kumar, K. H. Fung, R. Ambekar, G. L. Liu, N. X. Fang, and K. C. Toussaint., “Nonlinear optical response from arrays of Au bowtie nanoantennas,” Nano Lett. 11(1), 61–65 (2011).
[Crossref] [PubMed]

Farrer, R. A.

R. A. Farrer, F. L. Butterfield, V. W. Chen, and J. T. Fourkas, “Highly efficient multiphoton-absorption-induced luminescence from gold nanoparticles,” Nano Lett. 5(6), 1139–1142 (2005).
[Crossref] [PubMed]

Finn, P. L.

E. Betzig, J. K. Trautman, R. Wolfe, E. M. Gyorgy, P. L. Finn, M. H. Kryder, and C. H. Chang, “Near-field magneto-optics and high density data storage,” Appl. Phys. Lett. 61(2), 142–144 (1992).
[Crossref]

Fourkas, J. T.

R. A. Farrer, F. L. Butterfield, V. W. Chen, and J. T. Fourkas, “Highly efficient multiphoton-absorption-induced luminescence from gold nanoparticles,” Nano Lett. 5(6), 1139–1142 (2005).
[Crossref] [PubMed]

Fromm, D. P.

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94(1), 017402 (2005).
[Crossref] [PubMed]

Fung, K. H.

K. D. Ko, A. Kumar, K. H. Fung, R. Ambekar, G. L. Liu, N. X. Fang, and K. C. Toussaint., “Nonlinear optical response from arrays of Au bowtie nanoantennas,” Nano Lett. 11(1), 61–65 (2011).
[Crossref] [PubMed]

Gage, E.

A. Q. Wu, Y. Kubota, T. Klemmer, T. Rausch, C. Peng, Y. Peng, D. Karns, X. Zhu, Y. Ding, E. K. C. Chang, Y. Zhao, H. Zhou, K. Gao, J.-U. Thiele, M. Seigler, G. Ju, and E. Gage, “HAMR areal density demonstration of 1+ Tbpsi on spinstand,” IEEE Trans. Magn. 49(2), 779–782 (2013).
[Crossref]

Gage, E. C.

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(5), 303 (2009).
[Crossref]

Gao, K.

A. Q. Wu, Y. Kubota, T. Klemmer, T. Rausch, C. Peng, Y. Peng, D. Karns, X. Zhu, Y. Ding, E. K. C. Chang, Y. Zhao, H. Zhou, K. Gao, J.-U. Thiele, M. Seigler, G. Ju, and E. Gage, “HAMR areal density demonstration of 1+ Tbpsi on spinstand,” IEEE Trans. Magn. 49(2), 779–782 (2013).
[Crossref]

Gokemeijer, N. J.

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(5), 303 (2009).
[Crossref]

Gomez, D. E.

T. D. James, Z. Q. Teo, D. E. Gomez, T. J. Davis, and A. Roberts, “The plasmonic J-pole antenna,” Appl. Phys. Lett. 102(3), 033106 (2013).
[Crossref]

Gyorgy, E. M.

E. Betzig, J. K. Trautman, R. Wolfe, E. M. Gyorgy, P. L. Finn, M. H. Kryder, and C. H. Chang, “Near-field magneto-optics and high density data storage,” Appl. Phys. Lett. 61(2), 142–144 (1992).
[Crossref]

Hao, S.

M. Jiang, S. Hao, and R. Komanduri, “On the advanced lapping process in the precision finishing of thin-film magnetic recording heads for rigid disc drives,” Appl. Phys., A Mater. Sci. Process. 77(7), 923–932 (2003).
[Crossref]

Haug, T.

T. Haug, P. Klemm, S. Bange, and J. M. Lupton, “Hot-electron intraband luminescence from single hot spots in noble-metal nanoparticle films,” Phys. Rev. Lett. 115(6), 067403 (2015).
[Crossref] [PubMed]

Hellwig, O.

B. C. Stipe, T. C. Strand, C. C. Poon, H. Balamane, T. D. Boone, J. A. Katine, J.-L. Li, V. Rawat, H. Nemoto, A. Hirotsune, O. Hellwig, R. Ruiz, E. Dobisz, D. S. Kercher, N. Robertson, T. R. Albrecht, and B. D. Terris, “Magnetic recording at 1.5 Pb m−2 using an integrated plasmonic antenna,” Nat. Photonics 4(7), 484–488 (2010).
[Crossref]

Hirotsune, A.

B. C. Stipe, T. C. Strand, C. C. Poon, H. Balamane, T. D. Boone, J. A. Katine, J.-L. Li, V. Rawat, H. Nemoto, A. Hirotsune, O. Hellwig, R. Ruiz, E. Dobisz, D. S. Kercher, N. Robertson, T. R. Albrecht, and B. D. Terris, “Magnetic recording at 1.5 Pb m−2 using an integrated plasmonic antenna,” Nat. Photonics 4(7), 484–488 (2010).
[Crossref]

Hsia, Y.-T.

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(5), 303 (2009).
[Crossref]

Itagi, A.

F. Chen, A. Itagi, J. A. Bain, D. D. Stancil, T. E. Schlesinger, L. Stebounova, G. C. Walker, and B. B. Akhremitchev, “Imaging of optical field confinement in ridge waveguides fabricated on very-small-aperture laser,” Appl. Phys. Lett. 83(16), 3245–3247 (2003).
[Crossref]

Itagi, A. V.

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(5), 303 (2009).
[Crossref]

James, T. D.

T. D. James, Z. Q. Teo, D. E. Gomez, T. J. Davis, and A. Roberts, “The plasmonic J-pole antenna,” Appl. Phys. Lett. 102(3), 033106 (2013).
[Crossref]

Jiang, M.

M. Jiang, S. Hao, and R. Komanduri, “On the advanced lapping process in the precision finishing of thin-film magnetic recording heads for rigid disc drives,” Appl. Phys., A Mater. Sci. Process. 77(7), 923–932 (2003).
[Crossref]

Jin, E. X.

C. Peng, E. X. Jin, T. W. Clinton, and M. A. Seigler, “Cutoff wavelength of ridge waveguide near field transducer for disk data storage,” Opt. Express 16(20), 16043–16051 (2008).
[Crossref] [PubMed]

E. X. Jin and X. Xu, “Obtaining super resolution light spot using surface plasmon assisted sharp ridge nanoaperture,” Appl. Phys. Lett. 86(11), 111106 (2005).
[Crossref]

Ju, G.

A. Q. Wu, Y. Kubota, T. Klemmer, T. Rausch, C. Peng, Y. Peng, D. Karns, X. Zhu, Y. Ding, E. K. C. Chang, Y. Zhao, H. Zhou, K. Gao, J.-U. Thiele, M. Seigler, G. Ju, and E. Gage, “HAMR areal density demonstration of 1+ Tbpsi on spinstand,” IEEE Trans. Magn. 49(2), 779–782 (2013).
[Crossref]

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(5), 303 (2009).
[Crossref]

Kano, H.

Karns, D.

A. Q. Wu, Y. Kubota, T. Klemmer, T. Rausch, C. Peng, Y. Peng, D. Karns, X. Zhu, Y. Ding, E. K. C. Chang, Y. Zhao, H. Zhou, K. Gao, J.-U. Thiele, M. Seigler, G. Ju, and E. Gage, “HAMR areal density demonstration of 1+ Tbpsi on spinstand,” IEEE Trans. Magn. 49(2), 779–782 (2013).
[Crossref]

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(5), 303 (2009).
[Crossref]

Katine, J. A.

B. C. Stipe, T. C. Strand, C. C. Poon, H. Balamane, T. D. Boone, J. A. Katine, J.-L. Li, V. Rawat, H. Nemoto, A. Hirotsune, O. Hellwig, R. Ruiz, E. Dobisz, D. S. Kercher, N. Robertson, T. R. Albrecht, and B. D. Terris, “Magnetic recording at 1.5 Pb m−2 using an integrated plasmonic antenna,” Nat. Photonics 4(7), 484–488 (2010).
[Crossref]

Kawata, S.

Kercher, D. S.

B. C. Stipe, T. C. Strand, C. C. Poon, H. Balamane, T. D. Boone, J. A. Katine, J.-L. Li, V. Rawat, H. Nemoto, A. Hirotsune, O. Hellwig, R. Ruiz, E. Dobisz, D. S. Kercher, N. Robertson, T. R. Albrecht, and B. D. Terris, “Magnetic recording at 1.5 Pb m−2 using an integrated plasmonic antenna,” Nat. Photonics 4(7), 484–488 (2010).
[Crossref]

Kino, G. S.

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94(1), 017402 (2005).
[Crossref] [PubMed]

Klemm, P.

T. Haug, P. Klemm, S. Bange, and J. M. Lupton, “Hot-electron intraband luminescence from single hot spots in noble-metal nanoparticle films,” Phys. Rev. Lett. 115(6), 067403 (2015).
[Crossref] [PubMed]

Klemmer, T.

A. Q. Wu, Y. Kubota, T. Klemmer, T. Rausch, C. Peng, Y. Peng, D. Karns, X. Zhu, Y. Ding, E. K. C. Chang, Y. Zhao, H. Zhou, K. Gao, J.-U. Thiele, M. Seigler, G. Ju, and E. Gage, “HAMR areal density demonstration of 1+ Tbpsi on spinstand,” IEEE Trans. Magn. 49(2), 779–782 (2013).
[Crossref]

Ko, K. D.

K. D. Ko, A. Kumar, K. H. Fung, R. Ambekar, G. L. Liu, N. X. Fang, and K. C. Toussaint., “Nonlinear optical response from arrays of Au bowtie nanoantennas,” Nano Lett. 11(1), 61–65 (2011).
[Crossref] [PubMed]

Komanduri, R.

M. Jiang, S. Hao, and R. Komanduri, “On the advanced lapping process in the precision finishing of thin-film magnetic recording heads for rigid disc drives,” Appl. Phys., A Mater. Sci. Process. 77(7), 923–932 (2003).
[Crossref]

Kostcheev, S.

A. Bouhelier, R. Bachelot, G. Lerondel, S. Kostcheev, P. Royer, and G. P. Wiederrecht, “Surface plasmon characteristics of tunable photoluminescence in single gold nanorods,” Phys. Rev. Lett. 95(26), 267405 (2005).
[Crossref] [PubMed]

Kryder, M. H.

E. Betzig, J. K. Trautman, R. Wolfe, E. M. Gyorgy, P. L. Finn, M. H. Kryder, and C. H. Chang, “Near-field magneto-optics and high density data storage,” Appl. Phys. Lett. 61(2), 142–144 (1992).
[Crossref]

Kubota, Y.

A. Q. Wu, Y. Kubota, T. Klemmer, T. Rausch, C. Peng, Y. Peng, D. Karns, X. Zhu, Y. Ding, E. K. C. Chang, Y. Zhao, H. Zhou, K. Gao, J.-U. Thiele, M. Seigler, G. Ju, and E. Gage, “HAMR areal density demonstration of 1+ Tbpsi on spinstand,” IEEE Trans. Magn. 49(2), 779–782 (2013).
[Crossref]

Kumar, A.

K. D. Ko, A. Kumar, K. H. Fung, R. Ambekar, G. L. Liu, N. X. Fang, and K. C. Toussaint., “Nonlinear optical response from arrays of Au bowtie nanoantennas,” Nano Lett. 11(1), 61–65 (2011).
[Crossref] [PubMed]

Lerondel, G.

A. Bouhelier, R. Bachelot, G. Lerondel, S. Kostcheev, P. Royer, and G. P. Wiederrecht, “Surface plasmon characteristics of tunable photoluminescence in single gold nanorods,” Phys. Rev. Lett. 95(26), 267405 (2005).
[Crossref] [PubMed]

Li, J.-L.

B. C. Stipe, T. C. Strand, C. C. Poon, H. Balamane, T. D. Boone, J. A. Katine, J.-L. Li, V. Rawat, H. Nemoto, A. Hirotsune, O. Hellwig, R. Ruiz, E. Dobisz, D. S. Kercher, N. Robertson, T. R. Albrecht, and B. D. Terris, “Magnetic recording at 1.5 Pb m−2 using an integrated plasmonic antenna,” Nat. Photonics 4(7), 484–488 (2010).
[Crossref]

Liu, G. L.

K. D. Ko, A. Kumar, K. H. Fung, R. Ambekar, G. L. Liu, N. X. Fang, and K. C. Toussaint., “Nonlinear optical response from arrays of Au bowtie nanoantennas,” Nano Lett. 11(1), 61–65 (2011).
[Crossref] [PubMed]

Lupton, J. M.

T. Haug, P. Klemm, S. Bange, and J. M. Lupton, “Hot-electron intraband luminescence from single hot spots in noble-metal nanoparticle films,” Phys. Rev. Lett. 115(6), 067403 (2015).
[Crossref] [PubMed]

Matsumoto, T.

Mihalcea, C.

Miyamoto, H.

Mochizuki, M.

Moerner, W. E.

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94(1), 017402 (2005).
[Crossref] [PubMed]

Mooradian, A.

A. Mooradian, “Photoluminescence of metals,” Phys. Rev. Lett. 22(5), 185–187 (1969).
[Crossref]

Nemoto, H.

B. C. Stipe, T. C. Strand, C. C. Poon, H. Balamane, T. D. Boone, J. A. Katine, J.-L. Li, V. Rawat, H. Nemoto, A. Hirotsune, O. Hellwig, R. Ruiz, E. Dobisz, D. S. Kercher, N. Robertson, T. R. Albrecht, and B. D. Terris, “Magnetic recording at 1.5 Pb m−2 using an integrated plasmonic antenna,” Nat. Photonics 4(7), 484–488 (2010).
[Crossref]

Novikov, S. M.

Novotny, L.

A. Bouhelier, M. R. Beversluis, and L. Novotny, “Characterization of nanoplasmonic structures by locally excited photoluminescence,” Appl. Phys. Lett. 83(24), 5041–5043 (2003).
[Crossref]

Pelhos, K.

Peng, C.

C. Peng, “Cross-polarization detecting surface-plasmon resonance of near-field transducer,” Appl. Phys. Lett. 104(6), 061114 (2014).
[Crossref]

A. Q. Wu, Y. Kubota, T. Klemmer, T. Rausch, C. Peng, Y. Peng, D. Karns, X. Zhu, Y. Ding, E. K. C. Chang, Y. Zhao, H. Zhou, K. Gao, J.-U. Thiele, M. Seigler, G. Ju, and E. Gage, “HAMR areal density demonstration of 1+ Tbpsi on spinstand,” IEEE Trans. Magn. 49(2), 779–782 (2013).
[Crossref]

C. Peng, “Efficient excitation of a monopole optical transducer for near-field recording,” J. Appl. Phys. 112(4), 043108 (2012).
[Crossref]

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(5), 303 (2009).
[Crossref]

C. Peng, “Surface-plasmon resonance of a planar lollipop near-field transducer,” Appl. Phys. Lett. 94(17), 10–13 (2009).
[Crossref]

C. Peng, E. X. Jin, T. W. Clinton, and M. A. Seigler, “Cutoff wavelength of ridge waveguide near field transducer for disk data storage,” Opt. Express 16(20), 16043–16051 (2008).
[Crossref] [PubMed]

K. Şendur, C. Peng, and W. Challener, “Near-field radiation from a ridge waveguide transducer in the vicinity of a solid immersion lens,” Phys. Rev. Lett. 94(4), 043901 (2005).
[Crossref] [PubMed]

W. Challener, C. Mihalcea, C. Peng, and K. Pelhos, “Miniature planar solid immersion mirror with focused spot less than a quarter wavelength,” Opt. Express 13(18), 7189–7197 (2005).
[Crossref] [PubMed]

Peng, W.

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(5), 303 (2009).
[Crossref]

Peng, Y.

A. Q. Wu, Y. Kubota, T. Klemmer, T. Rausch, C. Peng, Y. Peng, D. Karns, X. Zhu, Y. Ding, E. K. C. Chang, Y. Zhao, H. Zhou, K. Gao, J.-U. Thiele, M. Seigler, G. Ju, and E. Gage, “HAMR areal density demonstration of 1+ Tbpsi on spinstand,” IEEE Trans. Magn. 49(2), 779–782 (2013).
[Crossref]

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(5), 303 (2009).
[Crossref]

Poon, C. C.

B. C. Stipe, T. C. Strand, C. C. Poon, H. Balamane, T. D. Boone, J. A. Katine, J.-L. Li, V. Rawat, H. Nemoto, A. Hirotsune, O. Hellwig, R. Ruiz, E. Dobisz, D. S. Kercher, N. Robertson, T. R. Albrecht, and B. D. Terris, “Magnetic recording at 1.5 Pb m−2 using an integrated plasmonic antenna,” Nat. Photonics 4(7), 484–488 (2010).
[Crossref]

Powell, S. P.

S. P. Powell, E. J. Black, T. E. Schlesinger, and J. A. Bain, “The influence of media optical properties on the efficiency of optical power delivery for heat assisted magnetic recording,” J. Appl. Phys. 109, 07B775 (2011).

Rausch, T.

A. Q. Wu, Y. Kubota, T. Klemmer, T. Rausch, C. Peng, Y. Peng, D. Karns, X. Zhu, Y. Ding, E. K. C. Chang, Y. Zhao, H. Zhou, K. Gao, J.-U. Thiele, M. Seigler, G. Ju, and E. Gage, “HAMR areal density demonstration of 1+ Tbpsi on spinstand,” IEEE Trans. Magn. 49(2), 779–782 (2013).
[Crossref]

Rawat, V.

B. C. Stipe, T. C. Strand, C. C. Poon, H. Balamane, T. D. Boone, J. A. Katine, J.-L. Li, V. Rawat, H. Nemoto, A. Hirotsune, O. Hellwig, R. Ruiz, E. Dobisz, D. S. Kercher, N. Robertson, T. R. Albrecht, and B. D. Terris, “Magnetic recording at 1.5 Pb m−2 using an integrated plasmonic antenna,” Nat. Photonics 4(7), 484–488 (2010).
[Crossref]

Roberts, A.

T. D. James, Z. Q. Teo, D. E. Gomez, T. J. Davis, and A. Roberts, “The plasmonic J-pole antenna,” Appl. Phys. Lett. 102(3), 033106 (2013).
[Crossref]

Robertson, N.

B. C. Stipe, T. C. Strand, C. C. Poon, H. Balamane, T. D. Boone, J. A. Katine, J.-L. Li, V. Rawat, H. Nemoto, A. Hirotsune, O. Hellwig, R. Ruiz, E. Dobisz, D. S. Kercher, N. Robertson, T. R. Albrecht, and B. D. Terris, “Magnetic recording at 1.5 Pb m−2 using an integrated plasmonic antenna,” Nat. Photonics 4(7), 484–488 (2010).
[Crossref]

Rottmayer, R. E.

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(5), 303 (2009).
[Crossref]

Royer, P.

A. Bouhelier, R. Bachelot, G. Lerondel, S. Kostcheev, P. Royer, and G. P. Wiederrecht, “Surface plasmon characteristics of tunable photoluminescence in single gold nanorods,” Phys. Rev. Lett. 95(26), 267405 (2005).
[Crossref] [PubMed]

Ruiz, R.

B. C. Stipe, T. C. Strand, C. C. Poon, H. Balamane, T. D. Boone, J. A. Katine, J.-L. Li, V. Rawat, H. Nemoto, A. Hirotsune, O. Hellwig, R. Ruiz, E. Dobisz, D. S. Kercher, N. Robertson, T. R. Albrecht, and B. D. Terris, “Magnetic recording at 1.5 Pb m−2 using an integrated plasmonic antenna,” Nat. Photonics 4(7), 484–488 (2010).
[Crossref]

Schlesinger, T. E.

S. P. Powell, E. J. Black, T. E. Schlesinger, and J. A. Bain, “The influence of media optical properties on the efficiency of optical power delivery for heat assisted magnetic recording,” J. Appl. Phys. 109, 07B775 (2011).

F. Chen, A. Itagi, J. A. Bain, D. D. Stancil, T. E. Schlesinger, L. Stebounova, G. C. Walker, and B. B. Akhremitchev, “Imaging of optical field confinement in ridge waveguides fabricated on very-small-aperture laser,” Appl. Phys. Lett. 83(16), 3245–3247 (2003).
[Crossref]

Schuck, P. J.

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94(1), 017402 (2005).
[Crossref] [PubMed]

Seigler, M.

A. Q. Wu, Y. Kubota, T. Klemmer, T. Rausch, C. Peng, Y. Peng, D. Karns, X. Zhu, Y. Ding, E. K. C. Chang, Y. Zhao, H. Zhou, K. Gao, J.-U. Thiele, M. Seigler, G. Ju, and E. Gage, “HAMR areal density demonstration of 1+ Tbpsi on spinstand,” IEEE Trans. Magn. 49(2), 779–782 (2013).
[Crossref]

Seigler, M. A.

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(5), 303 (2009).
[Crossref]

C. Peng, E. X. Jin, T. W. Clinton, and M. A. Seigler, “Cutoff wavelength of ridge waveguide near field transducer for disk data storage,” Opt. Express 16(20), 16043–16051 (2008).
[Crossref] [PubMed]

Sendur, K.

K. Şendur, C. Peng, and W. Challener, “Near-field radiation from a ridge waveguide transducer in the vicinity of a solid immersion lens,” Phys. Rev. Lett. 94(4), 043901 (2005).
[Crossref] [PubMed]

Søndergaard, T.

Stancil, D. D.

F. Chen, A. Itagi, J. A. Bain, D. D. Stancil, T. E. Schlesinger, L. Stebounova, G. C. Walker, and B. B. Akhremitchev, “Imaging of optical field confinement in ridge waveguides fabricated on very-small-aperture laser,” Appl. Phys. Lett. 83(16), 3245–3247 (2003).
[Crossref]

Stebounova, L.

F. Chen, A. Itagi, J. A. Bain, D. D. Stancil, T. E. Schlesinger, L. Stebounova, G. C. Walker, and B. B. Akhremitchev, “Imaging of optical field confinement in ridge waveguides fabricated on very-small-aperture laser,” Appl. Phys. Lett. 83(16), 3245–3247 (2003).
[Crossref]

Stipe, B.

Stipe, B. C.

B. C. Stipe, T. C. Strand, C. C. Poon, H. Balamane, T. D. Boone, J. A. Katine, J.-L. Li, V. Rawat, H. Nemoto, A. Hirotsune, O. Hellwig, R. Ruiz, E. Dobisz, D. S. Kercher, N. Robertson, T. R. Albrecht, and B. D. Terris, “Magnetic recording at 1.5 Pb m−2 using an integrated plasmonic antenna,” Nat. Photonics 4(7), 484–488 (2010).
[Crossref]

Strand, T. C.

B. C. Stipe, T. C. Strand, C. C. Poon, H. Balamane, T. D. Boone, J. A. Katine, J.-L. Li, V. Rawat, H. Nemoto, A. Hirotsune, O. Hellwig, R. Ruiz, E. Dobisz, D. S. Kercher, N. Robertson, T. R. Albrecht, and B. D. Terris, “Magnetic recording at 1.5 Pb m−2 using an integrated plasmonic antenna,” Nat. Photonics 4(7), 484–488 (2010).
[Crossref]

Sundaramurthy, A.

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94(1), 017402 (2005).
[Crossref] [PubMed]

Teo, Z. Q.

T. D. James, Z. Q. Teo, D. E. Gomez, T. J. Davis, and A. Roberts, “The plasmonic J-pole antenna,” Appl. Phys. Lett. 102(3), 033106 (2013).
[Crossref]

Terris, B. D.

B. C. Stipe, T. C. Strand, C. C. Poon, H. Balamane, T. D. Boone, J. A. Katine, J.-L. Li, V. Rawat, H. Nemoto, A. Hirotsune, O. Hellwig, R. Ruiz, E. Dobisz, D. S. Kercher, N. Robertson, T. R. Albrecht, and B. D. Terris, “Magnetic recording at 1.5 Pb m−2 using an integrated plasmonic antenna,” Nat. Photonics 4(7), 484–488 (2010).
[Crossref]

Thiele, J.-U.

A. Q. Wu, Y. Kubota, T. Klemmer, T. Rausch, C. Peng, Y. Peng, D. Karns, X. Zhu, Y. Ding, E. K. C. Chang, Y. Zhao, H. Zhou, K. Gao, J.-U. Thiele, M. Seigler, G. Ju, and E. Gage, “HAMR areal density demonstration of 1+ Tbpsi on spinstand,” IEEE Trans. Magn. 49(2), 779–782 (2013).
[Crossref]

Toussaint, K. C.

K. D. Ko, A. Kumar, K. H. Fung, R. Ambekar, G. L. Liu, N. X. Fang, and K. C. Toussaint., “Nonlinear optical response from arrays of Au bowtie nanoantennas,” Nano Lett. 11(1), 61–65 (2011).
[Crossref] [PubMed]

Trautman, J. K.

E. Betzig, J. K. Trautman, R. Wolfe, E. M. Gyorgy, P. L. Finn, M. H. Kryder, and C. H. Chang, “Near-field magneto-optics and high density data storage,” Appl. Phys. Lett. 61(2), 142–144 (1992).
[Crossref]

Walker, G. C.

F. Chen, A. Itagi, J. A. Bain, D. D. Stancil, T. E. Schlesinger, L. Stebounova, G. C. Walker, and B. B. Akhremitchev, “Imaging of optical field confinement in ridge waveguides fabricated on very-small-aperture laser,” Appl. Phys. Lett. 83(16), 3245–3247 (2003).
[Crossref]

Wiederrecht, G. P.

A. Bouhelier, R. Bachelot, G. Lerondel, S. Kostcheev, P. Royer, and G. P. Wiederrecht, “Surface plasmon characteristics of tunable photoluminescence in single gold nanorods,” Phys. Rev. Lett. 95(26), 267405 (2005).
[Crossref] [PubMed]

Wolfe, R.

E. Betzig, J. K. Trautman, R. Wolfe, E. M. Gyorgy, P. L. Finn, M. H. Kryder, and C. H. Chang, “Near-field magneto-optics and high density data storage,” Appl. Phys. Lett. 61(2), 142–144 (1992).
[Crossref]

Wu, A. Q.

A. Q. Wu, Y. Kubota, T. Klemmer, T. Rausch, C. Peng, Y. Peng, D. Karns, X. Zhu, Y. Ding, E. K. C. Chang, Y. Zhao, H. Zhou, K. Gao, J.-U. Thiele, M. Seigler, G. Ju, and E. Gage, “HAMR areal density demonstration of 1+ Tbpsi on spinstand,” IEEE Trans. Magn. 49(2), 779–782 (2013).
[Crossref]

Xu, X.

E. X. Jin and X. Xu, “Obtaining super resolution light spot using surface plasmon assisted sharp ridge nanoaperture,” Appl. Phys. Lett. 86(11), 111106 (2005).
[Crossref]

Yang, X.

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(5), 303 (2009).
[Crossref]

Zhao, Y.

A. Q. Wu, Y. Kubota, T. Klemmer, T. Rausch, C. Peng, Y. Peng, D. Karns, X. Zhu, Y. Ding, E. K. C. Chang, Y. Zhao, H. Zhou, K. Gao, J.-U. Thiele, M. Seigler, G. Ju, and E. Gage, “HAMR areal density demonstration of 1+ Tbpsi on spinstand,” IEEE Trans. Magn. 49(2), 779–782 (2013).
[Crossref]

Zhou, H.

A. Q. Wu, Y. Kubota, T. Klemmer, T. Rausch, C. Peng, Y. Peng, D. Karns, X. Zhu, Y. Ding, E. K. C. Chang, Y. Zhao, H. Zhou, K. Gao, J.-U. Thiele, M. Seigler, G. Ju, and E. Gage, “HAMR areal density demonstration of 1+ Tbpsi on spinstand,” IEEE Trans. Magn. 49(2), 779–782 (2013).
[Crossref]

Zhu, X.

A. Q. Wu, Y. Kubota, T. Klemmer, T. Rausch, C. Peng, Y. Peng, D. Karns, X. Zhu, Y. Ding, E. K. C. Chang, Y. Zhao, H. Zhou, K. Gao, J.-U. Thiele, M. Seigler, G. Ju, and E. Gage, “HAMR areal density demonstration of 1+ Tbpsi on spinstand,” IEEE Trans. Magn. 49(2), 779–782 (2013).
[Crossref]

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(5), 303 (2009).
[Crossref]

Appl. Phys. Lett. (7)

E. Betzig, J. K. Trautman, R. Wolfe, E. M. Gyorgy, P. L. Finn, M. H. Kryder, and C. H. Chang, “Near-field magneto-optics and high density data storage,” Appl. Phys. Lett. 61(2), 142–144 (1992).
[Crossref]

F. Chen, A. Itagi, J. A. Bain, D. D. Stancil, T. E. Schlesinger, L. Stebounova, G. C. Walker, and B. B. Akhremitchev, “Imaging of optical field confinement in ridge waveguides fabricated on very-small-aperture laser,” Appl. Phys. Lett. 83(16), 3245–3247 (2003).
[Crossref]

E. X. Jin and X. Xu, “Obtaining super resolution light spot using surface plasmon assisted sharp ridge nanoaperture,” Appl. Phys. Lett. 86(11), 111106 (2005).
[Crossref]

C. Peng, “Cross-polarization detecting surface-plasmon resonance of near-field transducer,” Appl. Phys. Lett. 104(6), 061114 (2014).
[Crossref]

C. Peng, “Surface-plasmon resonance of a planar lollipop near-field transducer,” Appl. Phys. Lett. 94(17), 10–13 (2009).
[Crossref]

A. Bouhelier, M. R. Beversluis, and L. Novotny, “Characterization of nanoplasmonic structures by locally excited photoluminescence,” Appl. Phys. Lett. 83(24), 5041–5043 (2003).
[Crossref]

T. D. James, Z. Q. Teo, D. E. Gomez, T. J. Davis, and A. Roberts, “The plasmonic J-pole antenna,” Appl. Phys. Lett. 102(3), 033106 (2013).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (1)

M. Jiang, S. Hao, and R. Komanduri, “On the advanced lapping process in the precision finishing of thin-film magnetic recording heads for rigid disc drives,” Appl. Phys., A Mater. Sci. Process. 77(7), 923–932 (2003).
[Crossref]

IEEE Trans. Magn. (1)

A. Q. Wu, Y. Kubota, T. Klemmer, T. Rausch, C. Peng, Y. Peng, D. Karns, X. Zhu, Y. Ding, E. K. C. Chang, Y. Zhao, H. Zhou, K. Gao, J.-U. Thiele, M. Seigler, G. Ju, and E. Gage, “HAMR areal density demonstration of 1+ Tbpsi on spinstand,” IEEE Trans. Magn. 49(2), 779–782 (2013).
[Crossref]

J. Appl. Phys. (2)

S. P. Powell, E. J. Black, T. E. Schlesinger, and J. A. Bain, “The influence of media optical properties on the efficiency of optical power delivery for heat assisted magnetic recording,” J. Appl. Phys. 109, 07B775 (2011).

C. Peng, “Efficient excitation of a monopole optical transducer for near-field recording,” J. Appl. Phys. 112(4), 043108 (2012).
[Crossref]

Nano Lett. (2)

R. A. Farrer, F. L. Butterfield, V. W. Chen, and J. T. Fourkas, “Highly efficient multiphoton-absorption-induced luminescence from gold nanoparticles,” Nano Lett. 5(6), 1139–1142 (2005).
[Crossref] [PubMed]

K. D. Ko, A. Kumar, K. H. Fung, R. Ambekar, G. L. Liu, N. X. Fang, and K. C. Toussaint., “Nonlinear optical response from arrays of Au bowtie nanoantennas,” Nano Lett. 11(1), 61–65 (2011).
[Crossref] [PubMed]

Nat. Photonics (2)

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(5), 303 (2009).
[Crossref]

B. C. Stipe, T. C. Strand, C. C. Poon, H. Balamane, T. D. Boone, J. A. Katine, J.-L. Li, V. Rawat, H. Nemoto, A. Hirotsune, O. Hellwig, R. Ruiz, E. Dobisz, D. S. Kercher, N. Robertson, T. R. Albrecht, and B. D. Terris, “Magnetic recording at 1.5 Pb m−2 using an integrated plasmonic antenna,” Nat. Photonics 4(7), 484–488 (2010).
[Crossref]

Opt. Express (4)

Opt. Lett. (1)

Phys. Rev. Lett. (5)

K. Şendur, C. Peng, and W. Challener, “Near-field radiation from a ridge waveguide transducer in the vicinity of a solid immersion lens,” Phys. Rev. Lett. 94(4), 043901 (2005).
[Crossref] [PubMed]

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94(1), 017402 (2005).
[Crossref] [PubMed]

A. Bouhelier, R. Bachelot, G. Lerondel, S. Kostcheev, P. Royer, and G. P. Wiederrecht, “Surface plasmon characteristics of tunable photoluminescence in single gold nanorods,” Phys. Rev. Lett. 95(26), 267405 (2005).
[Crossref] [PubMed]

A. Mooradian, “Photoluminescence of metals,” Phys. Rev. Lett. 22(5), 185–187 (1969).
[Crossref]

T. Haug, P. Klemm, S. Bange, and J. M. Lupton, “Hot-electron intraband luminescence from single hot spots in noble-metal nanoparticle films,” Phys. Rev. Lett. 115(6), 067403 (2015).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Diagram of device and cross-sectional transmission-electron-microscope (TEM) image of a near-field transducer (NFT). (a) A planar solid immersion mirror is used to focus a transverse-electric (TE) waveguide mode onto the transducer. (b) The NFT transducer is placed 20 nm away from the core and is in the cladding, connecting with the magnetic pole by a heat-sink. The slab waveguide is composed of a 125 nm thick Ta2O5 core and Al2O3 cladding. (c) TEM image of the gold NFT with 250 nm disk and 60-nm peg width. The red double-headed arrow indicates the peg length dimension.
Fig. 2
Fig. 2 (a) Apparatus for measuring photoluminescence signal. NBS: neutral beam splitter, HWP: half waveplate; PMT: photo-multipler tube, BS: beam splitter. (b) Photoluminescence signal versus transmission in log-log plot. Squares represent measurement and the solid line is a linear fit to the experimental data.
Fig. 3
Fig. 3 Optical images of light at the exiting surface of device. (a) Transmission. The shortwave pass filter is not inserted so all the transmitted light is observed. CCD gain = 1, exposure time < 1/500 sec. (b) photoluminescence from one device without a NFT. CCD gain = 4, exposure time = 2 sec, incident (average) power = 3.6 mW. (c – d) photoluminescence from two devices with a near-field transducer. CCD gain = 4, exposure time = 2 sec, incident power = 0.8 mW.
Fig. 4
Fig. 4 (a) Photoluminescence signal versus peg length, obtained on bars from the same wafer lot with 70-nm slope lapping. Peg length is rounded to nearest nanometer. Error bars represent a 95% confidence interval of the mean. Incident average laser power = 150 μW. The solid line is fit with Gaussian, which provides a guide to eye. (b) Far-field radiation pattern of the photoluminescence from one device of high TPL signal

Metrics