Abstract

High energy photons can affect the dielectric response of AC powder electroluminescent devices (ACPELDs). In this paper, electroluminescent (EL), phosphor and dielectric films are photo-excited at peak wavelengths of 399 nm, 520 nm and 625 nm to identify the dielectric relaxation processes occurring in ACPELDs. The 399 nm illumination changes the frequency-dependent dielectric responses of both EL and phosphor films due to the photo-induced excitation of ZnS:Cu,Al phosphor particles. A higher illumination intensity increases the dipolar polarization in the resin matrix and enhances the Maxwell-Wagner-Sillars (MWS) effect at the particle/resin interfaces. Equivalent circuits relating to the relaxation processes present in the EL and phosphor films are derived. From the analyses of the circuit component values, a charge generation and accumulation process is proposed to explain these opto-impedance behaviors.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Color tunable hybrid AC powder electroluminescent devices with organic fluorescent materials

Shuai Zhang, Ronnie Jin Wah Teo, Haibin Su, Chuan Seng Tan, and Terence Kin Shun Wong
Opt. Mater. Express 6(9) 2879-2891 (2016)

Enhancing light emission in flexible AC electroluminescent devices by tetrapod-like zinc oxide whiskers

Li Wen, Nishuang Liu, Siliang Wang, Hui Zhang, Wanqiu Zhao, Zhichun Yang, Yumei Wang, Jun Su, Luying Li, Fei Long, Zhengguang Zou, and Yihua Gao
Opt. Express 24(20) 23419-23428 (2016)

References

  • View by:
  • |
  • |
  • |

  1. S. Roberts, “Dielectric changes of electroluminescent phosphor during illumination,” J. Opt. Soc. Am. 43(7), 590–592 (1953).
    [Crossref]
  2. I. Soudek, “The effect of irradiation on the dielectric losses of luminescent zinc-cadmium sulphide,” Czech. J. Phys. 7(1), 119–120 (1957).
    [Crossref]
  3. S. Kronenberg and C. A. Accardo, “Dielectric changes in inorganic phosphors,” Phys. Rev. 101(3), 989–992 (1956).
    [Crossref]
  4. S. Siddabattuni, T. P. Schuman, and F. Dogan, “Dielectric properties of polymer-particle nanocomposites influenced by electronic nature of filler surfaces,” ACS Appl. Mater. Interfaces 5(6), 1917–1927 (2013).
    [Crossref] [PubMed]
  5. M. Bredol and H. S. Dieckhoff, “Materials for powder-based AC-electroluminescence,” Materials (Basel) 3(2), 1353–1374 (2010).
    [Crossref]
  6. C. J. Winscom, P. G. Harris, and J. Silver, “Equivalent circuits and efficacy of single-layer ACPEL devices,” ECS J. Solid State Sci. Technol. 3(6), R104–R108 (2014).
    [Crossref]
  7. S. Zhang, R. J. W. Teo, H. Su, C. S. Tan, and T. K. S. Wong, “Color tunable hybrid AC powder electroluminescent devices with organic fluorescent materials,” Opt. Mater. Express 6(9), 2879–2891 (2016).
    [Crossref]
  8. D. K. Pradhan, R. N. P. Choudhary, and B. K. Samantaray, “Studies of dielectric and electrical properties of plasticized polymer nanocomposite electrolytes,” Mater. Chem. Phys. 115(2–3), 557–561 (2009).
    [Crossref]
  9. B. A. Boukamp, “A package for impedance/admittance data analysis,” Solid State Ion. 18(1), 136–140 (1986).
    [Crossref]
  10. S. Nakamura, G. Sawa, and M. Ieda, “Electrical conduction of nylon 6 at high temperature,” Jpn. J. Appl. Phys. 20(1), 47–53 (1981).
    [Crossref]
  11. F. Tian and Y. Ohki, “Charge transport and electrode polarization in epoxy resin at high temperatures,” J. Phys. D Appl. Phys. 47(4), 045311 (2014).
    [Crossref]
  12. J. C. Maxwell, A Treatise on Electricity and Magnetism (Clarendon Press, 1873).
  13. K. W. Wagner, “Erklärung der dielektrischen Nachwirkungsvorgänge auf Grund Maxwellscher Vorstellungen,” Arch. Elektrotech. 2(9), 371–387 (1914).
    [Crossref]
  14. R. W. Sillars, “The properties of a dielectric containing semiconducting particles of various shapes,” J. Inst. Electr. Eng. Jpn. 80(35), 139–155 (1937).
  15. F. S. Howell, R. A. Bose, P. B. Macedo, and C. T. Moynihan, “Electrical relaxation in a glass-forming molten salt,” J. Phys. Chem. 78(6), 639–648 (1974).
    [Crossref]
  16. V. Senthil, T. Badapanda, S. N. Kumar, P. Kumar, and S. Panigrahi, “Relaxation and conduction mechanism of PVA: BYZT polymer composites by impedance spectroscopy,” J. Polym. Res. 19(3), 9838 (2012).
    [Crossref]
  17. S. C. Tjong and Y. W. Mai, Physical Properties and Applications of Polymer Nanocomposites (Elsevier Science, 2010).
  18. Y. Y. Chen, J. G. Duh, B. S. Chiou, and C. G. Peng, “Luminescent mechanisms of ZnS:Cu:Cl and ZnS:Cu:Al phosphors,” Thin Solid Films 392(1), 50–55 (2001).
    [Crossref]
  19. F. Clabau, X. Rocquefelte, T. L. Mercier, P. Deniard, S. Jobic, and M. H. Whangbo, “Formulation of phosphorescence mechanisms in inorganic solids based on a new model of defect conglomeration,” Chem. Mater. 18(14), 3212–3220 (2006).
    [Crossref]
  20. R. Withnall, J. Silver, T. G. Ireland, G. R. Fern, and P. J. Marsh, “Structure and morphology of ACEL ZnS:Cu,Cl phosphor powder etched by hydrochloric acid,” J. Electrochem. Soc. 156(11), J326–J332 (2009).
    [Crossref]
  21. T. G. Ireland and J. Silver, “Studies on the orientation of ACEL ZnS:Cu particles in applied AC fields,” ECS J. Solid State Sci. Technol. 3(3), R25–R32 (2014).
    [Crossref]
  22. S. Zhang, H. Su, C. S. Tan, T. K. S. Wong, and R. J. W. Teo, “Dielectric relaxation in AC powder electroluminescent devices,” Solid State Commun. 250, 53–56 (2017).
    [Crossref]
  23. N. Fuse, H. Sato, Y. Ohki, and T. Tanaka, “Effects of nanofiller loading on the molecular motion and carrier transport in polyamide,” IEEE Trans. Dielectr. Electr. Insul. 16(2), 524–530 (2009).
    [Crossref]
  24. G. Nurk, H. Kasuk, K. Lust, A. Jänes, and E. Lust, “Adsorption kinetics of dodecyl sulfate anions on the bismuth (011̄) plane,” J. Electroanal. Chem. 553, 1–19 (2003).
    [Crossref]
  25. E. Warburg, “Ueber die Spitzenentladung 2 Mittheilung,” in Annalen der Physik und Chemie, J. A. Barth, ed. (1899).
  26. Y. Cha, M. Aureli, and M. Porfiri, “A physics-based model of the electrical impedance of ionic polymer metal composites,” J. Appl. Phys. 111(12), 124901 (2012).
    [Crossref]
  27. D. Qu, “Studies of the activated carbons used in double-layer supercapacitors,” J. Power Sources 109(2), 403–411 (2002).
    [Crossref]
  28. M. E. Orazem, I. Frateur, B. Tribollet, V. Vivier, S. Marcelin, N. Pébère, A. L. Bunge, E. A. White, D. P. Riemer, and M. Musiani, “Dielectric properties of materials showing constant-phase-element (CPE) impedance response,” J. Electrochem. Soc. 160(6), C215–C225 (2013).
    [Crossref]

2017 (1)

S. Zhang, H. Su, C. S. Tan, T. K. S. Wong, and R. J. W. Teo, “Dielectric relaxation in AC powder electroluminescent devices,” Solid State Commun. 250, 53–56 (2017).
[Crossref]

2016 (1)

2014 (3)

C. J. Winscom, P. G. Harris, and J. Silver, “Equivalent circuits and efficacy of single-layer ACPEL devices,” ECS J. Solid State Sci. Technol. 3(6), R104–R108 (2014).
[Crossref]

F. Tian and Y. Ohki, “Charge transport and electrode polarization in epoxy resin at high temperatures,” J. Phys. D Appl. Phys. 47(4), 045311 (2014).
[Crossref]

T. G. Ireland and J. Silver, “Studies on the orientation of ACEL ZnS:Cu particles in applied AC fields,” ECS J. Solid State Sci. Technol. 3(3), R25–R32 (2014).
[Crossref]

2013 (2)

M. E. Orazem, I. Frateur, B. Tribollet, V. Vivier, S. Marcelin, N. Pébère, A. L. Bunge, E. A. White, D. P. Riemer, and M. Musiani, “Dielectric properties of materials showing constant-phase-element (CPE) impedance response,” J. Electrochem. Soc. 160(6), C215–C225 (2013).
[Crossref]

S. Siddabattuni, T. P. Schuman, and F. Dogan, “Dielectric properties of polymer-particle nanocomposites influenced by electronic nature of filler surfaces,” ACS Appl. Mater. Interfaces 5(6), 1917–1927 (2013).
[Crossref] [PubMed]

2012 (2)

V. Senthil, T. Badapanda, S. N. Kumar, P. Kumar, and S. Panigrahi, “Relaxation and conduction mechanism of PVA: BYZT polymer composites by impedance spectroscopy,” J. Polym. Res. 19(3), 9838 (2012).
[Crossref]

Y. Cha, M. Aureli, and M. Porfiri, “A physics-based model of the electrical impedance of ionic polymer metal composites,” J. Appl. Phys. 111(12), 124901 (2012).
[Crossref]

2010 (1)

M. Bredol and H. S. Dieckhoff, “Materials for powder-based AC-electroluminescence,” Materials (Basel) 3(2), 1353–1374 (2010).
[Crossref]

2009 (3)

D. K. Pradhan, R. N. P. Choudhary, and B. K. Samantaray, “Studies of dielectric and electrical properties of plasticized polymer nanocomposite electrolytes,” Mater. Chem. Phys. 115(2–3), 557–561 (2009).
[Crossref]

N. Fuse, H. Sato, Y. Ohki, and T. Tanaka, “Effects of nanofiller loading on the molecular motion and carrier transport in polyamide,” IEEE Trans. Dielectr. Electr. Insul. 16(2), 524–530 (2009).
[Crossref]

R. Withnall, J. Silver, T. G. Ireland, G. R. Fern, and P. J. Marsh, “Structure and morphology of ACEL ZnS:Cu,Cl phosphor powder etched by hydrochloric acid,” J. Electrochem. Soc. 156(11), J326–J332 (2009).
[Crossref]

2006 (1)

F. Clabau, X. Rocquefelte, T. L. Mercier, P. Deniard, S. Jobic, and M. H. Whangbo, “Formulation of phosphorescence mechanisms in inorganic solids based on a new model of defect conglomeration,” Chem. Mater. 18(14), 3212–3220 (2006).
[Crossref]

2003 (1)

G. Nurk, H. Kasuk, K. Lust, A. Jänes, and E. Lust, “Adsorption kinetics of dodecyl sulfate anions on the bismuth (011̄) plane,” J. Electroanal. Chem. 553, 1–19 (2003).
[Crossref]

2002 (1)

D. Qu, “Studies of the activated carbons used in double-layer supercapacitors,” J. Power Sources 109(2), 403–411 (2002).
[Crossref]

2001 (1)

Y. Y. Chen, J. G. Duh, B. S. Chiou, and C. G. Peng, “Luminescent mechanisms of ZnS:Cu:Cl and ZnS:Cu:Al phosphors,” Thin Solid Films 392(1), 50–55 (2001).
[Crossref]

1986 (1)

B. A. Boukamp, “A package for impedance/admittance data analysis,” Solid State Ion. 18(1), 136–140 (1986).
[Crossref]

1981 (1)

S. Nakamura, G. Sawa, and M. Ieda, “Electrical conduction of nylon 6 at high temperature,” Jpn. J. Appl. Phys. 20(1), 47–53 (1981).
[Crossref]

1974 (1)

F. S. Howell, R. A. Bose, P. B. Macedo, and C. T. Moynihan, “Electrical relaxation in a glass-forming molten salt,” J. Phys. Chem. 78(6), 639–648 (1974).
[Crossref]

1957 (1)

I. Soudek, “The effect of irradiation on the dielectric losses of luminescent zinc-cadmium sulphide,” Czech. J. Phys. 7(1), 119–120 (1957).
[Crossref]

1956 (1)

S. Kronenberg and C. A. Accardo, “Dielectric changes in inorganic phosphors,” Phys. Rev. 101(3), 989–992 (1956).
[Crossref]

1953 (1)

1937 (1)

R. W. Sillars, “The properties of a dielectric containing semiconducting particles of various shapes,” J. Inst. Electr. Eng. Jpn. 80(35), 139–155 (1937).

1914 (1)

K. W. Wagner, “Erklärung der dielektrischen Nachwirkungsvorgänge auf Grund Maxwellscher Vorstellungen,” Arch. Elektrotech. 2(9), 371–387 (1914).
[Crossref]

Accardo, C. A.

S. Kronenberg and C. A. Accardo, “Dielectric changes in inorganic phosphors,” Phys. Rev. 101(3), 989–992 (1956).
[Crossref]

Aureli, M.

Y. Cha, M. Aureli, and M. Porfiri, “A physics-based model of the electrical impedance of ionic polymer metal composites,” J. Appl. Phys. 111(12), 124901 (2012).
[Crossref]

Badapanda, T.

V. Senthil, T. Badapanda, S. N. Kumar, P. Kumar, and S. Panigrahi, “Relaxation and conduction mechanism of PVA: BYZT polymer composites by impedance spectroscopy,” J. Polym. Res. 19(3), 9838 (2012).
[Crossref]

Bose, R. A.

F. S. Howell, R. A. Bose, P. B. Macedo, and C. T. Moynihan, “Electrical relaxation in a glass-forming molten salt,” J. Phys. Chem. 78(6), 639–648 (1974).
[Crossref]

Boukamp, B. A.

B. A. Boukamp, “A package for impedance/admittance data analysis,” Solid State Ion. 18(1), 136–140 (1986).
[Crossref]

Bredol, M.

M. Bredol and H. S. Dieckhoff, “Materials for powder-based AC-electroluminescence,” Materials (Basel) 3(2), 1353–1374 (2010).
[Crossref]

Bunge, A. L.

M. E. Orazem, I. Frateur, B. Tribollet, V. Vivier, S. Marcelin, N. Pébère, A. L. Bunge, E. A. White, D. P. Riemer, and M. Musiani, “Dielectric properties of materials showing constant-phase-element (CPE) impedance response,” J. Electrochem. Soc. 160(6), C215–C225 (2013).
[Crossref]

Cha, Y.

Y. Cha, M. Aureli, and M. Porfiri, “A physics-based model of the electrical impedance of ionic polymer metal composites,” J. Appl. Phys. 111(12), 124901 (2012).
[Crossref]

Chen, Y. Y.

Y. Y. Chen, J. G. Duh, B. S. Chiou, and C. G. Peng, “Luminescent mechanisms of ZnS:Cu:Cl and ZnS:Cu:Al phosphors,” Thin Solid Films 392(1), 50–55 (2001).
[Crossref]

Chiou, B. S.

Y. Y. Chen, J. G. Duh, B. S. Chiou, and C. G. Peng, “Luminescent mechanisms of ZnS:Cu:Cl and ZnS:Cu:Al phosphors,” Thin Solid Films 392(1), 50–55 (2001).
[Crossref]

Choudhary, R. N. P.

D. K. Pradhan, R. N. P. Choudhary, and B. K. Samantaray, “Studies of dielectric and electrical properties of plasticized polymer nanocomposite electrolytes,” Mater. Chem. Phys. 115(2–3), 557–561 (2009).
[Crossref]

Clabau, F.

F. Clabau, X. Rocquefelte, T. L. Mercier, P. Deniard, S. Jobic, and M. H. Whangbo, “Formulation of phosphorescence mechanisms in inorganic solids based on a new model of defect conglomeration,” Chem. Mater. 18(14), 3212–3220 (2006).
[Crossref]

Deniard, P.

F. Clabau, X. Rocquefelte, T. L. Mercier, P. Deniard, S. Jobic, and M. H. Whangbo, “Formulation of phosphorescence mechanisms in inorganic solids based on a new model of defect conglomeration,” Chem. Mater. 18(14), 3212–3220 (2006).
[Crossref]

Dieckhoff, H. S.

M. Bredol and H. S. Dieckhoff, “Materials for powder-based AC-electroluminescence,” Materials (Basel) 3(2), 1353–1374 (2010).
[Crossref]

Dogan, F.

S. Siddabattuni, T. P. Schuman, and F. Dogan, “Dielectric properties of polymer-particle nanocomposites influenced by electronic nature of filler surfaces,” ACS Appl. Mater. Interfaces 5(6), 1917–1927 (2013).
[Crossref] [PubMed]

Duh, J. G.

Y. Y. Chen, J. G. Duh, B. S. Chiou, and C. G. Peng, “Luminescent mechanisms of ZnS:Cu:Cl and ZnS:Cu:Al phosphors,” Thin Solid Films 392(1), 50–55 (2001).
[Crossref]

Fern, G. R.

R. Withnall, J. Silver, T. G. Ireland, G. R. Fern, and P. J. Marsh, “Structure and morphology of ACEL ZnS:Cu,Cl phosphor powder etched by hydrochloric acid,” J. Electrochem. Soc. 156(11), J326–J332 (2009).
[Crossref]

Frateur, I.

M. E. Orazem, I. Frateur, B. Tribollet, V. Vivier, S. Marcelin, N. Pébère, A. L. Bunge, E. A. White, D. P. Riemer, and M. Musiani, “Dielectric properties of materials showing constant-phase-element (CPE) impedance response,” J. Electrochem. Soc. 160(6), C215–C225 (2013).
[Crossref]

Fuse, N.

N. Fuse, H. Sato, Y. Ohki, and T. Tanaka, “Effects of nanofiller loading on the molecular motion and carrier transport in polyamide,” IEEE Trans. Dielectr. Electr. Insul. 16(2), 524–530 (2009).
[Crossref]

Harris, P. G.

C. J. Winscom, P. G. Harris, and J. Silver, “Equivalent circuits and efficacy of single-layer ACPEL devices,” ECS J. Solid State Sci. Technol. 3(6), R104–R108 (2014).
[Crossref]

Howell, F. S.

F. S. Howell, R. A. Bose, P. B. Macedo, and C. T. Moynihan, “Electrical relaxation in a glass-forming molten salt,” J. Phys. Chem. 78(6), 639–648 (1974).
[Crossref]

Ieda, M.

S. Nakamura, G. Sawa, and M. Ieda, “Electrical conduction of nylon 6 at high temperature,” Jpn. J. Appl. Phys. 20(1), 47–53 (1981).
[Crossref]

Ireland, T. G.

T. G. Ireland and J. Silver, “Studies on the orientation of ACEL ZnS:Cu particles in applied AC fields,” ECS J. Solid State Sci. Technol. 3(3), R25–R32 (2014).
[Crossref]

R. Withnall, J. Silver, T. G. Ireland, G. R. Fern, and P. J. Marsh, “Structure and morphology of ACEL ZnS:Cu,Cl phosphor powder etched by hydrochloric acid,” J. Electrochem. Soc. 156(11), J326–J332 (2009).
[Crossref]

Jänes, A.

G. Nurk, H. Kasuk, K. Lust, A. Jänes, and E. Lust, “Adsorption kinetics of dodecyl sulfate anions on the bismuth (011̄) plane,” J. Electroanal. Chem. 553, 1–19 (2003).
[Crossref]

Jobic, S.

F. Clabau, X. Rocquefelte, T. L. Mercier, P. Deniard, S. Jobic, and M. H. Whangbo, “Formulation of phosphorescence mechanisms in inorganic solids based on a new model of defect conglomeration,” Chem. Mater. 18(14), 3212–3220 (2006).
[Crossref]

Kasuk, H.

G. Nurk, H. Kasuk, K. Lust, A. Jänes, and E. Lust, “Adsorption kinetics of dodecyl sulfate anions on the bismuth (011̄) plane,” J. Electroanal. Chem. 553, 1–19 (2003).
[Crossref]

Kronenberg, S.

S. Kronenberg and C. A. Accardo, “Dielectric changes in inorganic phosphors,” Phys. Rev. 101(3), 989–992 (1956).
[Crossref]

Kumar, P.

V. Senthil, T. Badapanda, S. N. Kumar, P. Kumar, and S. Panigrahi, “Relaxation and conduction mechanism of PVA: BYZT polymer composites by impedance spectroscopy,” J. Polym. Res. 19(3), 9838 (2012).
[Crossref]

Kumar, S. N.

V. Senthil, T. Badapanda, S. N. Kumar, P. Kumar, and S. Panigrahi, “Relaxation and conduction mechanism of PVA: BYZT polymer composites by impedance spectroscopy,” J. Polym. Res. 19(3), 9838 (2012).
[Crossref]

Lust, E.

G. Nurk, H. Kasuk, K. Lust, A. Jänes, and E. Lust, “Adsorption kinetics of dodecyl sulfate anions on the bismuth (011̄) plane,” J. Electroanal. Chem. 553, 1–19 (2003).
[Crossref]

Lust, K.

G. Nurk, H. Kasuk, K. Lust, A. Jänes, and E. Lust, “Adsorption kinetics of dodecyl sulfate anions on the bismuth (011̄) plane,” J. Electroanal. Chem. 553, 1–19 (2003).
[Crossref]

Macedo, P. B.

F. S. Howell, R. A. Bose, P. B. Macedo, and C. T. Moynihan, “Electrical relaxation in a glass-forming molten salt,” J. Phys. Chem. 78(6), 639–648 (1974).
[Crossref]

Marcelin, S.

M. E. Orazem, I. Frateur, B. Tribollet, V. Vivier, S. Marcelin, N. Pébère, A. L. Bunge, E. A. White, D. P. Riemer, and M. Musiani, “Dielectric properties of materials showing constant-phase-element (CPE) impedance response,” J. Electrochem. Soc. 160(6), C215–C225 (2013).
[Crossref]

Marsh, P. J.

R. Withnall, J. Silver, T. G. Ireland, G. R. Fern, and P. J. Marsh, “Structure and morphology of ACEL ZnS:Cu,Cl phosphor powder etched by hydrochloric acid,” J. Electrochem. Soc. 156(11), J326–J332 (2009).
[Crossref]

Mercier, T. L.

F. Clabau, X. Rocquefelte, T. L. Mercier, P. Deniard, S. Jobic, and M. H. Whangbo, “Formulation of phosphorescence mechanisms in inorganic solids based on a new model of defect conglomeration,” Chem. Mater. 18(14), 3212–3220 (2006).
[Crossref]

Moynihan, C. T.

F. S. Howell, R. A. Bose, P. B. Macedo, and C. T. Moynihan, “Electrical relaxation in a glass-forming molten salt,” J. Phys. Chem. 78(6), 639–648 (1974).
[Crossref]

Musiani, M.

M. E. Orazem, I. Frateur, B. Tribollet, V. Vivier, S. Marcelin, N. Pébère, A. L. Bunge, E. A. White, D. P. Riemer, and M. Musiani, “Dielectric properties of materials showing constant-phase-element (CPE) impedance response,” J. Electrochem. Soc. 160(6), C215–C225 (2013).
[Crossref]

Nakamura, S.

S. Nakamura, G. Sawa, and M. Ieda, “Electrical conduction of nylon 6 at high temperature,” Jpn. J. Appl. Phys. 20(1), 47–53 (1981).
[Crossref]

Nurk, G.

G. Nurk, H. Kasuk, K. Lust, A. Jänes, and E. Lust, “Adsorption kinetics of dodecyl sulfate anions on the bismuth (011̄) plane,” J. Electroanal. Chem. 553, 1–19 (2003).
[Crossref]

Ohki, Y.

F. Tian and Y. Ohki, “Charge transport and electrode polarization in epoxy resin at high temperatures,” J. Phys. D Appl. Phys. 47(4), 045311 (2014).
[Crossref]

N. Fuse, H. Sato, Y. Ohki, and T. Tanaka, “Effects of nanofiller loading on the molecular motion and carrier transport in polyamide,” IEEE Trans. Dielectr. Electr. Insul. 16(2), 524–530 (2009).
[Crossref]

Orazem, M. E.

M. E. Orazem, I. Frateur, B. Tribollet, V. Vivier, S. Marcelin, N. Pébère, A. L. Bunge, E. A. White, D. P. Riemer, and M. Musiani, “Dielectric properties of materials showing constant-phase-element (CPE) impedance response,” J. Electrochem. Soc. 160(6), C215–C225 (2013).
[Crossref]

Panigrahi, S.

V. Senthil, T. Badapanda, S. N. Kumar, P. Kumar, and S. Panigrahi, “Relaxation and conduction mechanism of PVA: BYZT polymer composites by impedance spectroscopy,” J. Polym. Res. 19(3), 9838 (2012).
[Crossref]

Pébère, N.

M. E. Orazem, I. Frateur, B. Tribollet, V. Vivier, S. Marcelin, N. Pébère, A. L. Bunge, E. A. White, D. P. Riemer, and M. Musiani, “Dielectric properties of materials showing constant-phase-element (CPE) impedance response,” J. Electrochem. Soc. 160(6), C215–C225 (2013).
[Crossref]

Peng, C. G.

Y. Y. Chen, J. G. Duh, B. S. Chiou, and C. G. Peng, “Luminescent mechanisms of ZnS:Cu:Cl and ZnS:Cu:Al phosphors,” Thin Solid Films 392(1), 50–55 (2001).
[Crossref]

Porfiri, M.

Y. Cha, M. Aureli, and M. Porfiri, “A physics-based model of the electrical impedance of ionic polymer metal composites,” J. Appl. Phys. 111(12), 124901 (2012).
[Crossref]

Pradhan, D. K.

D. K. Pradhan, R. N. P. Choudhary, and B. K. Samantaray, “Studies of dielectric and electrical properties of plasticized polymer nanocomposite electrolytes,” Mater. Chem. Phys. 115(2–3), 557–561 (2009).
[Crossref]

Qu, D.

D. Qu, “Studies of the activated carbons used in double-layer supercapacitors,” J. Power Sources 109(2), 403–411 (2002).
[Crossref]

Riemer, D. P.

M. E. Orazem, I. Frateur, B. Tribollet, V. Vivier, S. Marcelin, N. Pébère, A. L. Bunge, E. A. White, D. P. Riemer, and M. Musiani, “Dielectric properties of materials showing constant-phase-element (CPE) impedance response,” J. Electrochem. Soc. 160(6), C215–C225 (2013).
[Crossref]

Roberts, S.

Rocquefelte, X.

F. Clabau, X. Rocquefelte, T. L. Mercier, P. Deniard, S. Jobic, and M. H. Whangbo, “Formulation of phosphorescence mechanisms in inorganic solids based on a new model of defect conglomeration,” Chem. Mater. 18(14), 3212–3220 (2006).
[Crossref]

Samantaray, B. K.

D. K. Pradhan, R. N. P. Choudhary, and B. K. Samantaray, “Studies of dielectric and electrical properties of plasticized polymer nanocomposite electrolytes,” Mater. Chem. Phys. 115(2–3), 557–561 (2009).
[Crossref]

Sato, H.

N. Fuse, H. Sato, Y. Ohki, and T. Tanaka, “Effects of nanofiller loading on the molecular motion and carrier transport in polyamide,” IEEE Trans. Dielectr. Electr. Insul. 16(2), 524–530 (2009).
[Crossref]

Sawa, G.

S. Nakamura, G. Sawa, and M. Ieda, “Electrical conduction of nylon 6 at high temperature,” Jpn. J. Appl. Phys. 20(1), 47–53 (1981).
[Crossref]

Schuman, T. P.

S. Siddabattuni, T. P. Schuman, and F. Dogan, “Dielectric properties of polymer-particle nanocomposites influenced by electronic nature of filler surfaces,” ACS Appl. Mater. Interfaces 5(6), 1917–1927 (2013).
[Crossref] [PubMed]

Senthil, V.

V. Senthil, T. Badapanda, S. N. Kumar, P. Kumar, and S. Panigrahi, “Relaxation and conduction mechanism of PVA: BYZT polymer composites by impedance spectroscopy,” J. Polym. Res. 19(3), 9838 (2012).
[Crossref]

Siddabattuni, S.

S. Siddabattuni, T. P. Schuman, and F. Dogan, “Dielectric properties of polymer-particle nanocomposites influenced by electronic nature of filler surfaces,” ACS Appl. Mater. Interfaces 5(6), 1917–1927 (2013).
[Crossref] [PubMed]

Sillars, R. W.

R. W. Sillars, “The properties of a dielectric containing semiconducting particles of various shapes,” J. Inst. Electr. Eng. Jpn. 80(35), 139–155 (1937).

Silver, J.

C. J. Winscom, P. G. Harris, and J. Silver, “Equivalent circuits and efficacy of single-layer ACPEL devices,” ECS J. Solid State Sci. Technol. 3(6), R104–R108 (2014).
[Crossref]

T. G. Ireland and J. Silver, “Studies on the orientation of ACEL ZnS:Cu particles in applied AC fields,” ECS J. Solid State Sci. Technol. 3(3), R25–R32 (2014).
[Crossref]

R. Withnall, J. Silver, T. G. Ireland, G. R. Fern, and P. J. Marsh, “Structure and morphology of ACEL ZnS:Cu,Cl phosphor powder etched by hydrochloric acid,” J. Electrochem. Soc. 156(11), J326–J332 (2009).
[Crossref]

Soudek, I.

I. Soudek, “The effect of irradiation on the dielectric losses of luminescent zinc-cadmium sulphide,” Czech. J. Phys. 7(1), 119–120 (1957).
[Crossref]

Su, H.

S. Zhang, H. Su, C. S. Tan, T. K. S. Wong, and R. J. W. Teo, “Dielectric relaxation in AC powder electroluminescent devices,” Solid State Commun. 250, 53–56 (2017).
[Crossref]

S. Zhang, R. J. W. Teo, H. Su, C. S. Tan, and T. K. S. Wong, “Color tunable hybrid AC powder electroluminescent devices with organic fluorescent materials,” Opt. Mater. Express 6(9), 2879–2891 (2016).
[Crossref]

Tan, C. S.

S. Zhang, H. Su, C. S. Tan, T. K. S. Wong, and R. J. W. Teo, “Dielectric relaxation in AC powder electroluminescent devices,” Solid State Commun. 250, 53–56 (2017).
[Crossref]

S. Zhang, R. J. W. Teo, H. Su, C. S. Tan, and T. K. S. Wong, “Color tunable hybrid AC powder electroluminescent devices with organic fluorescent materials,” Opt. Mater. Express 6(9), 2879–2891 (2016).
[Crossref]

Tanaka, T.

N. Fuse, H. Sato, Y. Ohki, and T. Tanaka, “Effects of nanofiller loading on the molecular motion and carrier transport in polyamide,” IEEE Trans. Dielectr. Electr. Insul. 16(2), 524–530 (2009).
[Crossref]

Teo, R. J. W.

S. Zhang, H. Su, C. S. Tan, T. K. S. Wong, and R. J. W. Teo, “Dielectric relaxation in AC powder electroluminescent devices,” Solid State Commun. 250, 53–56 (2017).
[Crossref]

S. Zhang, R. J. W. Teo, H. Su, C. S. Tan, and T. K. S. Wong, “Color tunable hybrid AC powder electroluminescent devices with organic fluorescent materials,” Opt. Mater. Express 6(9), 2879–2891 (2016).
[Crossref]

Tian, F.

F. Tian and Y. Ohki, “Charge transport and electrode polarization in epoxy resin at high temperatures,” J. Phys. D Appl. Phys. 47(4), 045311 (2014).
[Crossref]

Tribollet, B.

M. E. Orazem, I. Frateur, B. Tribollet, V. Vivier, S. Marcelin, N. Pébère, A. L. Bunge, E. A. White, D. P. Riemer, and M. Musiani, “Dielectric properties of materials showing constant-phase-element (CPE) impedance response,” J. Electrochem. Soc. 160(6), C215–C225 (2013).
[Crossref]

Vivier, V.

M. E. Orazem, I. Frateur, B. Tribollet, V. Vivier, S. Marcelin, N. Pébère, A. L. Bunge, E. A. White, D. P. Riemer, and M. Musiani, “Dielectric properties of materials showing constant-phase-element (CPE) impedance response,” J. Electrochem. Soc. 160(6), C215–C225 (2013).
[Crossref]

Wagner, K. W.

K. W. Wagner, “Erklärung der dielektrischen Nachwirkungsvorgänge auf Grund Maxwellscher Vorstellungen,” Arch. Elektrotech. 2(9), 371–387 (1914).
[Crossref]

Whangbo, M. H.

F. Clabau, X. Rocquefelte, T. L. Mercier, P. Deniard, S. Jobic, and M. H. Whangbo, “Formulation of phosphorescence mechanisms in inorganic solids based on a new model of defect conglomeration,” Chem. Mater. 18(14), 3212–3220 (2006).
[Crossref]

White, E. A.

M. E. Orazem, I. Frateur, B. Tribollet, V. Vivier, S. Marcelin, N. Pébère, A. L. Bunge, E. A. White, D. P. Riemer, and M. Musiani, “Dielectric properties of materials showing constant-phase-element (CPE) impedance response,” J. Electrochem. Soc. 160(6), C215–C225 (2013).
[Crossref]

Winscom, C. J.

C. J. Winscom, P. G. Harris, and J. Silver, “Equivalent circuits and efficacy of single-layer ACPEL devices,” ECS J. Solid State Sci. Technol. 3(6), R104–R108 (2014).
[Crossref]

Withnall, R.

R. Withnall, J. Silver, T. G. Ireland, G. R. Fern, and P. J. Marsh, “Structure and morphology of ACEL ZnS:Cu,Cl phosphor powder etched by hydrochloric acid,” J. Electrochem. Soc. 156(11), J326–J332 (2009).
[Crossref]

Wong, T. K. S.

S. Zhang, H. Su, C. S. Tan, T. K. S. Wong, and R. J. W. Teo, “Dielectric relaxation in AC powder electroluminescent devices,” Solid State Commun. 250, 53–56 (2017).
[Crossref]

S. Zhang, R. J. W. Teo, H. Su, C. S. Tan, and T. K. S. Wong, “Color tunable hybrid AC powder electroluminescent devices with organic fluorescent materials,” Opt. Mater. Express 6(9), 2879–2891 (2016).
[Crossref]

Zhang, S.

S. Zhang, H. Su, C. S. Tan, T. K. S. Wong, and R. J. W. Teo, “Dielectric relaxation in AC powder electroluminescent devices,” Solid State Commun. 250, 53–56 (2017).
[Crossref]

S. Zhang, R. J. W. Teo, H. Su, C. S. Tan, and T. K. S. Wong, “Color tunable hybrid AC powder electroluminescent devices with organic fluorescent materials,” Opt. Mater. Express 6(9), 2879–2891 (2016).
[Crossref]

ACS Appl. Mater. Interfaces (1)

S. Siddabattuni, T. P. Schuman, and F. Dogan, “Dielectric properties of polymer-particle nanocomposites influenced by electronic nature of filler surfaces,” ACS Appl. Mater. Interfaces 5(6), 1917–1927 (2013).
[Crossref] [PubMed]

Arch. Elektrotech. (1)

K. W. Wagner, “Erklärung der dielektrischen Nachwirkungsvorgänge auf Grund Maxwellscher Vorstellungen,” Arch. Elektrotech. 2(9), 371–387 (1914).
[Crossref]

Chem. Mater. (1)

F. Clabau, X. Rocquefelte, T. L. Mercier, P. Deniard, S. Jobic, and M. H. Whangbo, “Formulation of phosphorescence mechanisms in inorganic solids based on a new model of defect conglomeration,” Chem. Mater. 18(14), 3212–3220 (2006).
[Crossref]

Czech. J. Phys. (1)

I. Soudek, “The effect of irradiation on the dielectric losses of luminescent zinc-cadmium sulphide,” Czech. J. Phys. 7(1), 119–120 (1957).
[Crossref]

ECS J. Solid State Sci. Technol. (2)

C. J. Winscom, P. G. Harris, and J. Silver, “Equivalent circuits and efficacy of single-layer ACPEL devices,” ECS J. Solid State Sci. Technol. 3(6), R104–R108 (2014).
[Crossref]

T. G. Ireland and J. Silver, “Studies on the orientation of ACEL ZnS:Cu particles in applied AC fields,” ECS J. Solid State Sci. Technol. 3(3), R25–R32 (2014).
[Crossref]

IEEE Trans. Dielectr. Electr. Insul. (1)

N. Fuse, H. Sato, Y. Ohki, and T. Tanaka, “Effects of nanofiller loading on the molecular motion and carrier transport in polyamide,” IEEE Trans. Dielectr. Electr. Insul. 16(2), 524–530 (2009).
[Crossref]

J. Appl. Phys. (1)

Y. Cha, M. Aureli, and M. Porfiri, “A physics-based model of the electrical impedance of ionic polymer metal composites,” J. Appl. Phys. 111(12), 124901 (2012).
[Crossref]

J. Electroanal. Chem. (1)

G. Nurk, H. Kasuk, K. Lust, A. Jänes, and E. Lust, “Adsorption kinetics of dodecyl sulfate anions on the bismuth (011̄) plane,” J. Electroanal. Chem. 553, 1–19 (2003).
[Crossref]

J. Electrochem. Soc. (2)

R. Withnall, J. Silver, T. G. Ireland, G. R. Fern, and P. J. Marsh, “Structure and morphology of ACEL ZnS:Cu,Cl phosphor powder etched by hydrochloric acid,” J. Electrochem. Soc. 156(11), J326–J332 (2009).
[Crossref]

M. E. Orazem, I. Frateur, B. Tribollet, V. Vivier, S. Marcelin, N. Pébère, A. L. Bunge, E. A. White, D. P. Riemer, and M. Musiani, “Dielectric properties of materials showing constant-phase-element (CPE) impedance response,” J. Electrochem. Soc. 160(6), C215–C225 (2013).
[Crossref]

J. Inst. Electr. Eng. Jpn. (1)

R. W. Sillars, “The properties of a dielectric containing semiconducting particles of various shapes,” J. Inst. Electr. Eng. Jpn. 80(35), 139–155 (1937).

J. Opt. Soc. Am. (1)

J. Phys. Chem. (1)

F. S. Howell, R. A. Bose, P. B. Macedo, and C. T. Moynihan, “Electrical relaxation in a glass-forming molten salt,” J. Phys. Chem. 78(6), 639–648 (1974).
[Crossref]

J. Phys. D Appl. Phys. (1)

F. Tian and Y. Ohki, “Charge transport and electrode polarization in epoxy resin at high temperatures,” J. Phys. D Appl. Phys. 47(4), 045311 (2014).
[Crossref]

J. Polym. Res. (1)

V. Senthil, T. Badapanda, S. N. Kumar, P. Kumar, and S. Panigrahi, “Relaxation and conduction mechanism of PVA: BYZT polymer composites by impedance spectroscopy,” J. Polym. Res. 19(3), 9838 (2012).
[Crossref]

J. Power Sources (1)

D. Qu, “Studies of the activated carbons used in double-layer supercapacitors,” J. Power Sources 109(2), 403–411 (2002).
[Crossref]

Jpn. J. Appl. Phys. (1)

S. Nakamura, G. Sawa, and M. Ieda, “Electrical conduction of nylon 6 at high temperature,” Jpn. J. Appl. Phys. 20(1), 47–53 (1981).
[Crossref]

Mater. Chem. Phys. (1)

D. K. Pradhan, R. N. P. Choudhary, and B. K. Samantaray, “Studies of dielectric and electrical properties of plasticized polymer nanocomposite electrolytes,” Mater. Chem. Phys. 115(2–3), 557–561 (2009).
[Crossref]

Materials (Basel) (1)

M. Bredol and H. S. Dieckhoff, “Materials for powder-based AC-electroluminescence,” Materials (Basel) 3(2), 1353–1374 (2010).
[Crossref]

Opt. Mater. Express (1)

Phys. Rev. (1)

S. Kronenberg and C. A. Accardo, “Dielectric changes in inorganic phosphors,” Phys. Rev. 101(3), 989–992 (1956).
[Crossref]

Solid State Commun. (1)

S. Zhang, H. Su, C. S. Tan, T. K. S. Wong, and R. J. W. Teo, “Dielectric relaxation in AC powder electroluminescent devices,” Solid State Commun. 250, 53–56 (2017).
[Crossref]

Solid State Ion. (1)

B. A. Boukamp, “A package for impedance/admittance data analysis,” Solid State Ion. 18(1), 136–140 (1986).
[Crossref]

Thin Solid Films (1)

Y. Y. Chen, J. G. Duh, B. S. Chiou, and C. G. Peng, “Luminescent mechanisms of ZnS:Cu:Cl and ZnS:Cu:Al phosphors,” Thin Solid Films 392(1), 50–55 (2001).
[Crossref]

Other (3)

E. Warburg, “Ueber die Spitzenentladung 2 Mittheilung,” in Annalen der Physik und Chemie, J. A. Barth, ed. (1899).

J. C. Maxwell, A Treatise on Electricity and Magnetism (Clarendon Press, 1873).

S. C. Tjong and Y. W. Mai, Physical Properties and Applications of Polymer Nanocomposites (Elsevier Science, 2010).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Device structures of screen-printed (a) EL, (b) phosphor, (c) dielectric and (d) resin films.
Fig. 2
Fig. 2 (a) Imaginary permittivity ε”, (b) real permittivity ε’, (c) loss tangent tan δ and (d) imaginary electric modulus M” of the EL film as a function of frequency without illumination and with 399 nm, 520 nm and 625 nm illuminations.
Fig. 3
Fig. 3 (a) Imaginary permittivity ε”, (b) real permittivity ε’, (c) loss tangent tan δ and (d) imaginary electric modulus M” of the dielectric (BTO), phosphor (ZnS) and EL (ZnS/BTO) films without and with the 399nm illumination and resin film. The data of resin film in (a), (b) and (d) is scaled by 50, 50 and 1/1000 respectively.
Fig. 4
Fig. 4 Normalized PL emission when excited by 400 nm photons and PL excitation spectra with the emission wavelength fixed at 500 nm for green ZnS:Cu,Al phosphors. EL emission spectrum of the EL film operated at 110 V and 400 Hz. Spectra of the 399 nm, 520 nm and 625 nm LEDs. Inset: PL intensity as a function of time after the excitation source is switched off.
Fig. 5
Fig. 5 (a) Imaginary permittivity ε”, (b) real permittivity ε’, (c) loss tangent tan δ and (d) imaginary electric modulus M” of the phosphor film as a function of frequency with the 399 nm illumination of different intensities.
Fig. 6
Fig. 6 Imaginary part (Δε”) vs real part (Δε’) of relative permittivity for (a) EL and (b) phosphor films with the 399 nm illumination of different intensities. Experimental and simulated Nyquist plots of (c) EL and (d) phosphor films without illumination and with 4.9 mW/cm2 illumination together with the corresponding equivalent circuit models. High-energy photons excite the ZnS phosphor particles. Rs: series resistance of the electrodes; Rm and Cm: resistance and capacitance of the resin matrix; RZnS and CZnS: resistance and capacitance of the ZnS/resin interface; RBTO and CBTO: resistance and capacitance of the BaTiO3/resin interface; Re and CPEe: resistance and constant phase element representing EP; Zw: Warburg element.
Fig. 7
Fig. 7 Proposed mechanism for the opto-impedance behaviors of ACPELDs. (1) Incident photons with energy of higher than 2.95 eV penetrate through ITO/PET and are absorbed by ZnS phosphor particles; (2) electrons are excited from deep trap level just above valence band (VB) to conduction band (CB); (a) some electrons trapped in donor sites combine with holes trapped in acceptor sites and emit green phosphorescent lights; (b) some trapped charges drift and are accumulated at the BaTiO3/resin interfaces; (c) minority charges move to the resin matrix to form dipoles; (d) other charges are trapped at the ZnS/resin interfaces.
Fig. 8
Fig. 8 Real conductivity as a function of frequency from 10−2 to 105 Hz at 90 °C for dielectric, phosphor, EL and resin films.
Fig. 9
Fig. 9 Nyquist plots of the phosphor film at 110, 120, 130, and 140 °C.

Tables (2)

Tables Icon

Table 1 Simulated values of the equivalent circuit components of the EL film under the 399 nm illumination of different intensities

Tables Icon

Table 2 Simulated values of the equivalent circuit components of the phosphor film under the 399 nm illumination of different intensities

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

ε'= Z" 2πf C c (Z " 2 +Z ' 2 )
ε"= Z' 2πf C c (Z " 2 +Z ' 2 )
tanδ= Z" Z'
M"=2πf C c Z'
Z CPE = 1 Y 0e (j2πf) N e
C e = Y 0e 1/ N e R e (1 N e )/ N e

Metrics