Abstract

In this paper, the possibility of shaping the gain/absorption spectrum in tunable hyperbolic metamaterial (THMM) composed of subsequent layers of graphene and active/passive material by external biasing is demonstrated. For the first time it has been shown that resonance transitions between different dispersion regimes, i.e., Type I HMM→elliptic, elliptic→Type II HMM, elliptic→Type I HMM, are accompanied by interesting optical effects, such as anisotropic effective gain/absorption enhancement or electromagnetic transparency, all controllable by external voltage. We believe that this kind of tunable metamaterial could lay the foundation for a new class of active/passive media with controllable gain/absorption or electromagnetic transparency.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Tunable graphene-based hyperbolic metamaterial operating in SCLU telecom bands

Bartosz Janaszek, Anna Tyszka-Zawadzka, and Paweł Szczepański
Opt. Express 24(21) 24129-24136 (2016)

Tunable spectral and spatial filters for the mid-infrared based on hyperbolic metamaterials

Marcin Kieliszczyk, Bartosz Janaszek, Anna Tyszka-Zawadzka, and Paweł Szczepański
Appl. Opt. 57(5) 1182-1187 (2018)

Tunable slow light in graphene-based hyperbolic metamaterial waveguide operating in SCLU telecom bands

Anna Tyszka-Zawadzka, Bartosz Janaszek, and Paweł Szczepański
Opt. Express 25(7) 7263-7272 (2017)

References

  • View by:
  • |
  • |
  • |

  1. Y. Guo, W. Newman, C. L. Cortes, and Z. Jacob, “Applications of Hyperbolic Metamaterial Substrates,” Adv. Optoelectron. 2012, 452502 (2012).
    [Crossref]
  2. H. Wang, H. Zhao, H. Su, G. Hu, and J. Zhang, “Active tuning of epsilon-near-zero point of hyperbolic metamaterial at visible and near-infrared regimes,” Appl. Phys. Express 9(9), 092201 (2016).
    [Crossref]
  3. M. A. Vincenti, D. De Ceglia, A. Ciattoni, and M. Scalora, “Singularity-driven second- and third-harmonic generation at-near-zero crossing points,” Phys. Rev. A 84(6), 063826 (2011).
    [Crossref]
  4. C. Argyropoulos, G. D’Aguanno, and A. Alǔ, “Giant second-harmonic generation efficiency and ideal phase matching with a double ε-near-zero cross-slit metamaterial,” Phys. Rev. B 89(23), 235401 (2014).
    [Crossref]
  5. J. Park, J.-H. Kang, X. Liu, and M. L. Brongersma, “Electrically Tunable Epsilon-Near-Zero (ENZ) Metafilm Absorbers,” Sci. Rep. 5(1), 15754 (2015).
    [Crossref] [PubMed]
  6. A. Marini and F. J. de Abajo, “Self-organization of frozen light in near-zero-index media with cubic nonlinearity,” Sci. Rep. 6(1), 20088 (2016).
    [Crossref] [PubMed]
  7. M. G. Silveirinha and N. Engheta, “Theory of supercoupling, squeezing wave energy, and field confinement in narrow channels and tight bends using ε- near-zero metamaterials,” Phys. Rev. B 76(24), 245109 (2007).
    [Crossref]
  8. A. Alǔ, M. G. Silveirinha, A. Salandrino, and N. Engheta, “Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern,” Phys. Rev. B 75(15), 155410 (2007).
    [Crossref]
  9. L. Ferrari, C. Wu, D. Lepage, X. Zhang, and Z. Liu, “Hyperbolic metamaterials and their applications,” Prog. Quantum Electron. 40, 1–40 (2015).
    [Crossref]
  10. Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
    [Crossref] [PubMed]
  11. Y. He, S. He, and X. Yang, “Optical field enhancement in nanoscale slot waveguides of hyperbolic metamaterials,” Opt. Lett. 37(14), 2907–2909 (2012).
    [Crossref] [PubMed]
  12. K. V. Sreekanth, T. Biaglow, and G. Strangi, “Directional spontaneous emission enhancement in hyperbolic metamaterials,” J. Appl. Phys. 114(13), 134306 (2013).
    [Crossref]
  13. L. Ferrari, D. Lu, D. Lepage, and Z. Liu, “Enhanced spontaneous emission inside hyperbolic metamaterials,” Opt. Express 22(4), 4301–4306 (2014).
    [Crossref] [PubMed]
  14. W. D. Newman, C. L. Cortes, and Z. Jacob, “Enhanced and directional single-photon emission in hyperbolic metamaterials,” J. Opt. Soc. Am. B 30(4), 766–775 (2013).
    [Crossref]
  15. N. Vasilantonakis, G. A. Wurtz, V. A. Podolskiy, and A. V. Zayats, “Refractive index sensing with hyperbolic metamaterials: strategies for biosensing and nonlinearity enhancement,” Opt. Express 23(11), 14329–14343 (2015).
    [Crossref] [PubMed]
  16. S. Ishii, M. Y. Shalaginov, V. E. Babicheva, A. Boltasseva, and A. V. Kildishev, “Plasmonic waveguides cladded by hyperbolic metamaterials,” Opt. Lett. 39(16), 4663–4666 (2014).
    [Crossref] [PubMed]
  17. Y. Guo, C. L. Cortes, S. Molesky, and Z. Jacob, “Broadband super-Planckian thermal emission from hyperbolic metamaterials,” Appl. Phys. Lett. 101(13), 131106 (2012).
    [Crossref]
  18. Z. Jacob, I. I. Smolyaninov, and E. E. Narimanov, “Broadband Purcell effect: Radiative decay engineering with metamaterials,” Appl. Phys. Lett. 100(18), 181105 (2012).
    [Crossref]
  19. A. Faraon, P. E. Barclay, C. Santori, K.-M. C. Fu, and R. G. Beausoleil, “Resonant enhancement of the zero-phonon emission from a colour centre in a diamond cavity,” Nat. Photonics 5(5), 301–305 (2011).
    [Crossref]
  20. A. Faraon, C. Santori, Z. Huang, V. M. Acosta, and R. G. Beausoleil, “Coupling of Nitrogen-Vacancy Centers to Photonic Crystal Cavities in Monocrystalline Diamond,” Phys. Rev. Lett. 109(3), 033604 (2012).
    [Crossref] [PubMed]
  21. J. T. Choy, B. J. M. Hausmann, T. M. Babinec, I. Bulu, M. Khan, P. Maletinsky, A. Yacoby, and M. Loncar, “Enhanced single-photon emission from a diamond–silver aperture,” Nat. Photonics 5(12), 738–743 (2011).
    [Crossref]
  22. O. Hess, J. B. Pendry, S. A. Maier, R. F. Oulton, J. M. Hamm, and K. L. Tsakmakidis, “Active nanoplasmonic metamaterials,” Nat. Mater. 11(7), 573–584 (2012).
    [Crossref] [PubMed]
  23. A. Pusch, S. Wuestner, J. M. Hamm, K. L. Tsakmakidis, and O. Hess, “Coherent amplification and noise in gain-enhanced nanoplasmonic metamaterials: a Maxwell-Bloch Langevin approach,” ACS Nano 6(3), 2420–2431 (2012).
    [Crossref] [PubMed]
  24. J. Zhang, H. Jiang, B. Gralak, S. Enoch, G. Tayeb, and M. Lequime, “Compensation of loss to approach −1 effective index by gain in metal-dielectric stacks,” Eur. Phys. J. Appl. Phys. 46(3), 1–6 (2008).
    [Crossref]
  25. J. S. T. Smalley, F. Vallini, B. Kanté, and Y. Fainman, “Modal amplification in active waveguides with hyperbolic dispersion at telecommunication frequencies,” Opt. Express 22(17), 21088–21105 (2014).
    [Crossref] [PubMed]
  26. R. Chandrasekar, Z. Wang, X. Meng, A. Lagutchev, Y. L. Kim, A. Wei, A. Boltasseva, and V. M. Shalaev, “Lasing action with gold nanorod hyperbolic metamaterials,” in Conference on Lasers and Electro-Optics CLEO: Applications and Technology (2016), paper JTh4A.4.
    [Crossref]
  27. A. Andryieuski and A. V. Lavrinenko, “Graphene metamaterials based tunable terahertz absorber: effective surface conductivity approach,” Opt. Express 21(7), 9144–9155 (2013).
    [Crossref] [PubMed]
  28. R. Ning, S. Liu, H. Zhang, B. Bian, and X. Kong, “A wide-angle broadband absorber in graphene-based hyperbolic metamaterials,” Eur. Phys. J. Appl. Phys. 68(2), 20401 (2014).
    [Crossref]
  29. R. Ning, S. Liu, H. Zhang, B. Bian, and X. Kong, “Tunable absorption in graphene-based hyperbolic metamaterials for mid-infrared range,” Physica B 457, 144–148 (2015).
    [Crossref]
  30. R. Ning, S. Liu, H. Zhang, and Z. Jiao, “Dual-gated tunable absorption in graphene-based hyperbolic metamaterials,” AIP Adv. 5(6), 067106 (2015).
    [Crossref]
  31. M. A. Othman, C. Guclu, and F. Capolino, “Graphene-based tunable hyperbolic metamaterials and enhanced near-field absorption,” Opt. Express 21(6), 7614–7632 (2013).
    [Crossref] [PubMed]
  32. A. Al Sayem, A. Shahriar, M. R. C. Mahdy, and M. S. Rahman, “Control of reflection through epsilon near zero graphene based anisotropic metamaterial,” in Proceedings of IEEE Conference on Electrical and Computer Engineering (IEEE,2014), pp. 812–815.
  33. M. A. K. Othman, C. Guclu, and F. Capolino, “Graphene-dielectric composite metamaterials: evolution from elliptic to hyperbolic wavevector dispersion and the transverse epsilon-near-zero condition,” J. Nanophotonics 7(1), 073089 (2013).
    [Crossref]
  34. M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
    [Crossref] [PubMed]
  35. A. Tyszka-Zawadzka, B. Janaszek, and P. Szczepański, “Tunable slow light in graphene-based hyperbolic metamaterial waveguide operating in SCLU telecom bands,” Optics Express, in press (2017).
  36. B. Janaszek, A. Tyszka-Zawadzka, and P. Szczepański, “Tunable graphene-based hyperbolic metamaterial operating in SCLU telecom bands,” Opt. Express 24(21), 24129–24136 (2016).
    [Crossref] [PubMed]
  37. S. Prayakarao, B. Mendoza, A. Devine, C. Kyaw, R. B. van Dover, V. Liberman, and M. A. Noginov, “Tunable VO2/Au hyperbolic metamaterial,” Appl. Phys. Lett. 109(6), 061105 (2016).
    [Crossref]
  38. G. T. Paradakis and H. A. Atwater, “Field-effect induced tunability in hyperbolic metamaterials,” Phys. Rev. B 92(18), 184101 (2015).
    [Crossref]
  39. Z. Cao, X. Xiang, C. Yang, Y. Zhang, Z. Peng, and L. Xuan, “Analysis of tunable characteristics of liquid-crystal-based hyperbolic metamaterials,” Liq. Cryst. 43(12), 1753–1759 (2016).
    [Crossref]
  40. H. N. S. Krishnamoorthy, Y. Zhou, S. Ramanathan, E. Narimanov, and V. M. Menon, “Tunable hyperbolic metamaterials utilizing phase change heterostructures,” Appl. Phys. Lett. 104(12), 121101 (2014).
    [Crossref]
  41. W. Li, Z. Liu, X. Zhang, and X. Jiang, “Switchable hyperbolic metamaterials with magnetic control,” Appl. Phys. Lett. 100(16), 161108 (2012).
    [Crossref]
  42. L. A. Falkovsky and A. A. Varlamov, “Space-time dispersion of graphene conductivity,” Eur. Phys. J. B 56(4), 281–284 (2007).
    [Crossref]
  43. Y. Xiang, J. Guo, X. Dai, S. Wen, and D. Tang, “Engineered surface Bloch waves in graphene-based hyperbolic metamaterials,” Opt. Express 22(3), 3054–3062 (2014).
    [Crossref] [PubMed]
  44. R. Mroczyński, N. Kwietniewski, M. Ćwil, P. Hoffmann, R. B. Beck, and J. Jakubowski, “Improvement of electro-physical properties of ultra-thin PECVD silicon oxynitride layers by high-temperature annealing,” Vacuum 82(10), 1013–1019 (2008).
    [Crossref]
  45. I. H. Malitson, “Interspecimen comparison of the refractive index of fused silica,” J. Opt. Soc. Am. 55(10), 1205–1209 (1965).
    [Crossref]
  46. D. E. McCumber, “Einstein relations connecting broadband emission and absorption spectra,” Phys. Rev. 136(4A), A954–A957 (1964).
    [Crossref]
  47. S. D. Jackson and T. A. King, “Theoretical modeling of Tm-doped silica fiber lasers,” J. Lightwave Technol. 17(5), 948–956 (1999).
    [Crossref]
  48. P. Peterka, I. Kasik, A. Dhar, B. Dussardier, and W. Blanc, “Theoretical modeling of fiber laser at 810 nm based on thulium-doped silica fibers with enhanced 3H4 level lifetime,” Opt. Express 19(3), 2773–2781 (2011).
    [Crossref] [PubMed]
  49. I. V. Iorsh, I. S. Mukhin, I. V. Shadrivov, P. A. Belov, and Y. S. Kivshar, “Hyperbolic metamaterials based on multilayer graphene structures,” Phys. Rev. B 87(7), 075416 (2013).
    [Crossref]
  50. Y.-C. Chang, C.-H. Liu, C.-H. Liu, S. Zhang, S. R. Marder, E. E. Narimanov, Z. Zhong, and T. B. Norris, “Realization of mid-infrared graphene hyperbolic metamaterials,” Nat. Commun. 7(10568), 10568 (2016).
    [Crossref] [PubMed]

2016 (6)

H. Wang, H. Zhao, H. Su, G. Hu, and J. Zhang, “Active tuning of epsilon-near-zero point of hyperbolic metamaterial at visible and near-infrared regimes,” Appl. Phys. Express 9(9), 092201 (2016).
[Crossref]

A. Marini and F. J. de Abajo, “Self-organization of frozen light in near-zero-index media with cubic nonlinearity,” Sci. Rep. 6(1), 20088 (2016).
[Crossref] [PubMed]

Z. Cao, X. Xiang, C. Yang, Y. Zhang, Z. Peng, and L. Xuan, “Analysis of tunable characteristics of liquid-crystal-based hyperbolic metamaterials,” Liq. Cryst. 43(12), 1753–1759 (2016).
[Crossref]

B. Janaszek, A. Tyszka-Zawadzka, and P. Szczepański, “Tunable graphene-based hyperbolic metamaterial operating in SCLU telecom bands,” Opt. Express 24(21), 24129–24136 (2016).
[Crossref] [PubMed]

S. Prayakarao, B. Mendoza, A. Devine, C. Kyaw, R. B. van Dover, V. Liberman, and M. A. Noginov, “Tunable VO2/Au hyperbolic metamaterial,” Appl. Phys. Lett. 109(6), 061105 (2016).
[Crossref]

Y.-C. Chang, C.-H. Liu, C.-H. Liu, S. Zhang, S. R. Marder, E. E. Narimanov, Z. Zhong, and T. B. Norris, “Realization of mid-infrared graphene hyperbolic metamaterials,” Nat. Commun. 7(10568), 10568 (2016).
[Crossref] [PubMed]

2015 (6)

G. T. Paradakis and H. A. Atwater, “Field-effect induced tunability in hyperbolic metamaterials,” Phys. Rev. B 92(18), 184101 (2015).
[Crossref]

R. Ning, S. Liu, H. Zhang, B. Bian, and X. Kong, “Tunable absorption in graphene-based hyperbolic metamaterials for mid-infrared range,” Physica B 457, 144–148 (2015).
[Crossref]

R. Ning, S. Liu, H. Zhang, and Z. Jiao, “Dual-gated tunable absorption in graphene-based hyperbolic metamaterials,” AIP Adv. 5(6), 067106 (2015).
[Crossref]

L. Ferrari, C. Wu, D. Lepage, X. Zhang, and Z. Liu, “Hyperbolic metamaterials and their applications,” Prog. Quantum Electron. 40, 1–40 (2015).
[Crossref]

J. Park, J.-H. Kang, X. Liu, and M. L. Brongersma, “Electrically Tunable Epsilon-Near-Zero (ENZ) Metafilm Absorbers,” Sci. Rep. 5(1), 15754 (2015).
[Crossref] [PubMed]

N. Vasilantonakis, G. A. Wurtz, V. A. Podolskiy, and A. V. Zayats, “Refractive index sensing with hyperbolic metamaterials: strategies for biosensing and nonlinearity enhancement,” Opt. Express 23(11), 14329–14343 (2015).
[Crossref] [PubMed]

2014 (7)

S. Ishii, M. Y. Shalaginov, V. E. Babicheva, A. Boltasseva, and A. V. Kildishev, “Plasmonic waveguides cladded by hyperbolic metamaterials,” Opt. Lett. 39(16), 4663–4666 (2014).
[Crossref] [PubMed]

L. Ferrari, D. Lu, D. Lepage, and Z. Liu, “Enhanced spontaneous emission inside hyperbolic metamaterials,” Opt. Express 22(4), 4301–4306 (2014).
[Crossref] [PubMed]

C. Argyropoulos, G. D’Aguanno, and A. Alǔ, “Giant second-harmonic generation efficiency and ideal phase matching with a double ε-near-zero cross-slit metamaterial,” Phys. Rev. B 89(23), 235401 (2014).
[Crossref]

H. N. S. Krishnamoorthy, Y. Zhou, S. Ramanathan, E. Narimanov, and V. M. Menon, “Tunable hyperbolic metamaterials utilizing phase change heterostructures,” Appl. Phys. Lett. 104(12), 121101 (2014).
[Crossref]

J. S. T. Smalley, F. Vallini, B. Kanté, and Y. Fainman, “Modal amplification in active waveguides with hyperbolic dispersion at telecommunication frequencies,” Opt. Express 22(17), 21088–21105 (2014).
[Crossref] [PubMed]

R. Ning, S. Liu, H. Zhang, B. Bian, and X. Kong, “A wide-angle broadband absorber in graphene-based hyperbolic metamaterials,” Eur. Phys. J. Appl. Phys. 68(2), 20401 (2014).
[Crossref]

Y. Xiang, J. Guo, X. Dai, S. Wen, and D. Tang, “Engineered surface Bloch waves in graphene-based hyperbolic metamaterials,” Opt. Express 22(3), 3054–3062 (2014).
[Crossref] [PubMed]

2013 (6)

I. V. Iorsh, I. S. Mukhin, I. V. Shadrivov, P. A. Belov, and Y. S. Kivshar, “Hyperbolic metamaterials based on multilayer graphene structures,” Phys. Rev. B 87(7), 075416 (2013).
[Crossref]

K. V. Sreekanth, T. Biaglow, and G. Strangi, “Directional spontaneous emission enhancement in hyperbolic metamaterials,” J. Appl. Phys. 114(13), 134306 (2013).
[Crossref]

A. Andryieuski and A. V. Lavrinenko, “Graphene metamaterials based tunable terahertz absorber: effective surface conductivity approach,” Opt. Express 21(7), 9144–9155 (2013).
[Crossref] [PubMed]

M. A. Othman, C. Guclu, and F. Capolino, “Graphene-based tunable hyperbolic metamaterials and enhanced near-field absorption,” Opt. Express 21(6), 7614–7632 (2013).
[Crossref] [PubMed]

M. A. K. Othman, C. Guclu, and F. Capolino, “Graphene-dielectric composite metamaterials: evolution from elliptic to hyperbolic wavevector dispersion and the transverse epsilon-near-zero condition,” J. Nanophotonics 7(1), 073089 (2013).
[Crossref]

W. D. Newman, C. L. Cortes, and Z. Jacob, “Enhanced and directional single-photon emission in hyperbolic metamaterials,” J. Opt. Soc. Am. B 30(4), 766–775 (2013).
[Crossref]

2012 (8)

Y. He, S. He, and X. Yang, “Optical field enhancement in nanoscale slot waveguides of hyperbolic metamaterials,” Opt. Lett. 37(14), 2907–2909 (2012).
[Crossref] [PubMed]

Y. Guo, C. L. Cortes, S. Molesky, and Z. Jacob, “Broadband super-Planckian thermal emission from hyperbolic metamaterials,” Appl. Phys. Lett. 101(13), 131106 (2012).
[Crossref]

Z. Jacob, I. I. Smolyaninov, and E. E. Narimanov, “Broadband Purcell effect: Radiative decay engineering with metamaterials,” Appl. Phys. Lett. 100(18), 181105 (2012).
[Crossref]

Y. Guo, W. Newman, C. L. Cortes, and Z. Jacob, “Applications of Hyperbolic Metamaterial Substrates,” Adv. Optoelectron. 2012, 452502 (2012).
[Crossref]

W. Li, Z. Liu, X. Zhang, and X. Jiang, “Switchable hyperbolic metamaterials with magnetic control,” Appl. Phys. Lett. 100(16), 161108 (2012).
[Crossref]

A. Faraon, C. Santori, Z. Huang, V. M. Acosta, and R. G. Beausoleil, “Coupling of Nitrogen-Vacancy Centers to Photonic Crystal Cavities in Monocrystalline Diamond,” Phys. Rev. Lett. 109(3), 033604 (2012).
[Crossref] [PubMed]

O. Hess, J. B. Pendry, S. A. Maier, R. F. Oulton, J. M. Hamm, and K. L. Tsakmakidis, “Active nanoplasmonic metamaterials,” Nat. Mater. 11(7), 573–584 (2012).
[Crossref] [PubMed]

A. Pusch, S. Wuestner, J. M. Hamm, K. L. Tsakmakidis, and O. Hess, “Coherent amplification and noise in gain-enhanced nanoplasmonic metamaterials: a Maxwell-Bloch Langevin approach,” ACS Nano 6(3), 2420–2431 (2012).
[Crossref] [PubMed]

2011 (5)

J. T. Choy, B. J. M. Hausmann, T. M. Babinec, I. Bulu, M. Khan, P. Maletinsky, A. Yacoby, and M. Loncar, “Enhanced single-photon emission from a diamond–silver aperture,” Nat. Photonics 5(12), 738–743 (2011).
[Crossref]

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

M. A. Vincenti, D. De Ceglia, A. Ciattoni, and M. Scalora, “Singularity-driven second- and third-harmonic generation at-near-zero crossing points,” Phys. Rev. A 84(6), 063826 (2011).
[Crossref]

A. Faraon, P. E. Barclay, C. Santori, K.-M. C. Fu, and R. G. Beausoleil, “Resonant enhancement of the zero-phonon emission from a colour centre in a diamond cavity,” Nat. Photonics 5(5), 301–305 (2011).
[Crossref]

P. Peterka, I. Kasik, A. Dhar, B. Dussardier, and W. Blanc, “Theoretical modeling of fiber laser at 810 nm based on thulium-doped silica fibers with enhanced 3H4 level lifetime,” Opt. Express 19(3), 2773–2781 (2011).
[Crossref] [PubMed]

2008 (2)

R. Mroczyński, N. Kwietniewski, M. Ćwil, P. Hoffmann, R. B. Beck, and J. Jakubowski, “Improvement of electro-physical properties of ultra-thin PECVD silicon oxynitride layers by high-temperature annealing,” Vacuum 82(10), 1013–1019 (2008).
[Crossref]

J. Zhang, H. Jiang, B. Gralak, S. Enoch, G. Tayeb, and M. Lequime, “Compensation of loss to approach −1 effective index by gain in metal-dielectric stacks,” Eur. Phys. J. Appl. Phys. 46(3), 1–6 (2008).
[Crossref]

2007 (4)

L. A. Falkovsky and A. A. Varlamov, “Space-time dispersion of graphene conductivity,” Eur. Phys. J. B 56(4), 281–284 (2007).
[Crossref]

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
[Crossref] [PubMed]

M. G. Silveirinha and N. Engheta, “Theory of supercoupling, squeezing wave energy, and field confinement in narrow channels and tight bends using ε- near-zero metamaterials,” Phys. Rev. B 76(24), 245109 (2007).
[Crossref]

A. Alǔ, M. G. Silveirinha, A. Salandrino, and N. Engheta, “Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern,” Phys. Rev. B 75(15), 155410 (2007).
[Crossref]

1999 (1)

1965 (1)

1964 (1)

D. E. McCumber, “Einstein relations connecting broadband emission and absorption spectra,” Phys. Rev. 136(4A), A954–A957 (1964).
[Crossref]

Acosta, V. M.

A. Faraon, C. Santori, Z. Huang, V. M. Acosta, and R. G. Beausoleil, “Coupling of Nitrogen-Vacancy Centers to Photonic Crystal Cavities in Monocrystalline Diamond,” Phys. Rev. Lett. 109(3), 033604 (2012).
[Crossref] [PubMed]

Alu, A.

C. Argyropoulos, G. D’Aguanno, and A. Alǔ, “Giant second-harmonic generation efficiency and ideal phase matching with a double ε-near-zero cross-slit metamaterial,” Phys. Rev. B 89(23), 235401 (2014).
[Crossref]

A. Alǔ, M. G. Silveirinha, A. Salandrino, and N. Engheta, “Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern,” Phys. Rev. B 75(15), 155410 (2007).
[Crossref]

Andryieuski, A.

Argyropoulos, C.

C. Argyropoulos, G. D’Aguanno, and A. Alǔ, “Giant second-harmonic generation efficiency and ideal phase matching with a double ε-near-zero cross-slit metamaterial,” Phys. Rev. B 89(23), 235401 (2014).
[Crossref]

Atwater, H. A.

G. T. Paradakis and H. A. Atwater, “Field-effect induced tunability in hyperbolic metamaterials,” Phys. Rev. B 92(18), 184101 (2015).
[Crossref]

Babicheva, V. E.

Babinec, T. M.

J. T. Choy, B. J. M. Hausmann, T. M. Babinec, I. Bulu, M. Khan, P. Maletinsky, A. Yacoby, and M. Loncar, “Enhanced single-photon emission from a diamond–silver aperture,” Nat. Photonics 5(12), 738–743 (2011).
[Crossref]

Barclay, P. E.

A. Faraon, P. E. Barclay, C. Santori, K.-M. C. Fu, and R. G. Beausoleil, “Resonant enhancement of the zero-phonon emission from a colour centre in a diamond cavity,” Nat. Photonics 5(5), 301–305 (2011).
[Crossref]

Beausoleil, R. G.

A. Faraon, C. Santori, Z. Huang, V. M. Acosta, and R. G. Beausoleil, “Coupling of Nitrogen-Vacancy Centers to Photonic Crystal Cavities in Monocrystalline Diamond,” Phys. Rev. Lett. 109(3), 033604 (2012).
[Crossref] [PubMed]

A. Faraon, P. E. Barclay, C. Santori, K.-M. C. Fu, and R. G. Beausoleil, “Resonant enhancement of the zero-phonon emission from a colour centre in a diamond cavity,” Nat. Photonics 5(5), 301–305 (2011).
[Crossref]

Beck, R. B.

R. Mroczyński, N. Kwietniewski, M. Ćwil, P. Hoffmann, R. B. Beck, and J. Jakubowski, “Improvement of electro-physical properties of ultra-thin PECVD silicon oxynitride layers by high-temperature annealing,” Vacuum 82(10), 1013–1019 (2008).
[Crossref]

Belov, P. A.

I. V. Iorsh, I. S. Mukhin, I. V. Shadrivov, P. A. Belov, and Y. S. Kivshar, “Hyperbolic metamaterials based on multilayer graphene structures,” Phys. Rev. B 87(7), 075416 (2013).
[Crossref]

Biaglow, T.

K. V. Sreekanth, T. Biaglow, and G. Strangi, “Directional spontaneous emission enhancement in hyperbolic metamaterials,” J. Appl. Phys. 114(13), 134306 (2013).
[Crossref]

Bian, B.

R. Ning, S. Liu, H. Zhang, B. Bian, and X. Kong, “Tunable absorption in graphene-based hyperbolic metamaterials for mid-infrared range,” Physica B 457, 144–148 (2015).
[Crossref]

R. Ning, S. Liu, H. Zhang, B. Bian, and X. Kong, “A wide-angle broadband absorber in graphene-based hyperbolic metamaterials,” Eur. Phys. J. Appl. Phys. 68(2), 20401 (2014).
[Crossref]

Blanc, W.

Boltasseva, A.

S. Ishii, M. Y. Shalaginov, V. E. Babicheva, A. Boltasseva, and A. V. Kildishev, “Plasmonic waveguides cladded by hyperbolic metamaterials,” Opt. Lett. 39(16), 4663–4666 (2014).
[Crossref] [PubMed]

R. Chandrasekar, Z. Wang, X. Meng, A. Lagutchev, Y. L. Kim, A. Wei, A. Boltasseva, and V. M. Shalaev, “Lasing action with gold nanorod hyperbolic metamaterials,” in Conference on Lasers and Electro-Optics CLEO: Applications and Technology (2016), paper JTh4A.4.
[Crossref]

Brongersma, M. L.

J. Park, J.-H. Kang, X. Liu, and M. L. Brongersma, “Electrically Tunable Epsilon-Near-Zero (ENZ) Metafilm Absorbers,” Sci. Rep. 5(1), 15754 (2015).
[Crossref] [PubMed]

Bulu, I.

J. T. Choy, B. J. M. Hausmann, T. M. Babinec, I. Bulu, M. Khan, P. Maletinsky, A. Yacoby, and M. Loncar, “Enhanced single-photon emission from a diamond–silver aperture,” Nat. Photonics 5(12), 738–743 (2011).
[Crossref]

Cao, Z.

Z. Cao, X. Xiang, C. Yang, Y. Zhang, Z. Peng, and L. Xuan, “Analysis of tunable characteristics of liquid-crystal-based hyperbolic metamaterials,” Liq. Cryst. 43(12), 1753–1759 (2016).
[Crossref]

Capolino, F.

M. A. Othman, C. Guclu, and F. Capolino, “Graphene-based tunable hyperbolic metamaterials and enhanced near-field absorption,” Opt. Express 21(6), 7614–7632 (2013).
[Crossref] [PubMed]

M. A. K. Othman, C. Guclu, and F. Capolino, “Graphene-dielectric composite metamaterials: evolution from elliptic to hyperbolic wavevector dispersion and the transverse epsilon-near-zero condition,” J. Nanophotonics 7(1), 073089 (2013).
[Crossref]

Chandrasekar, R.

R. Chandrasekar, Z. Wang, X. Meng, A. Lagutchev, Y. L. Kim, A. Wei, A. Boltasseva, and V. M. Shalaev, “Lasing action with gold nanorod hyperbolic metamaterials,” in Conference on Lasers and Electro-Optics CLEO: Applications and Technology (2016), paper JTh4A.4.
[Crossref]

Chang, Y.-C.

Y.-C. Chang, C.-H. Liu, C.-H. Liu, S. Zhang, S. R. Marder, E. E. Narimanov, Z. Zhong, and T. B. Norris, “Realization of mid-infrared graphene hyperbolic metamaterials,” Nat. Commun. 7(10568), 10568 (2016).
[Crossref] [PubMed]

Choy, J. T.

J. T. Choy, B. J. M. Hausmann, T. M. Babinec, I. Bulu, M. Khan, P. Maletinsky, A. Yacoby, and M. Loncar, “Enhanced single-photon emission from a diamond–silver aperture,” Nat. Photonics 5(12), 738–743 (2011).
[Crossref]

Ciattoni, A.

M. A. Vincenti, D. De Ceglia, A. Ciattoni, and M. Scalora, “Singularity-driven second- and third-harmonic generation at-near-zero crossing points,” Phys. Rev. A 84(6), 063826 (2011).
[Crossref]

Cortes, C. L.

W. D. Newman, C. L. Cortes, and Z. Jacob, “Enhanced and directional single-photon emission in hyperbolic metamaterials,” J. Opt. Soc. Am. B 30(4), 766–775 (2013).
[Crossref]

Y. Guo, W. Newman, C. L. Cortes, and Z. Jacob, “Applications of Hyperbolic Metamaterial Substrates,” Adv. Optoelectron. 2012, 452502 (2012).
[Crossref]

Y. Guo, C. L. Cortes, S. Molesky, and Z. Jacob, “Broadband super-Planckian thermal emission from hyperbolic metamaterials,” Appl. Phys. Lett. 101(13), 131106 (2012).
[Crossref]

Cwil, M.

R. Mroczyński, N. Kwietniewski, M. Ćwil, P. Hoffmann, R. B. Beck, and J. Jakubowski, “Improvement of electro-physical properties of ultra-thin PECVD silicon oxynitride layers by high-temperature annealing,” Vacuum 82(10), 1013–1019 (2008).
[Crossref]

D’Aguanno, G.

C. Argyropoulos, G. D’Aguanno, and A. Alǔ, “Giant second-harmonic generation efficiency and ideal phase matching with a double ε-near-zero cross-slit metamaterial,” Phys. Rev. B 89(23), 235401 (2014).
[Crossref]

Dai, X.

de Abajo, F. J.

A. Marini and F. J. de Abajo, “Self-organization of frozen light in near-zero-index media with cubic nonlinearity,” Sci. Rep. 6(1), 20088 (2016).
[Crossref] [PubMed]

De Ceglia, D.

M. A. Vincenti, D. De Ceglia, A. Ciattoni, and M. Scalora, “Singularity-driven second- and third-harmonic generation at-near-zero crossing points,” Phys. Rev. A 84(6), 063826 (2011).
[Crossref]

Devine, A.

S. Prayakarao, B. Mendoza, A. Devine, C. Kyaw, R. B. van Dover, V. Liberman, and M. A. Noginov, “Tunable VO2/Au hyperbolic metamaterial,” Appl. Phys. Lett. 109(6), 061105 (2016).
[Crossref]

Dhar, A.

Dussardier, B.

Engheta, N.

A. Alǔ, M. G. Silveirinha, A. Salandrino, and N. Engheta, “Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern,” Phys. Rev. B 75(15), 155410 (2007).
[Crossref]

M. G. Silveirinha and N. Engheta, “Theory of supercoupling, squeezing wave energy, and field confinement in narrow channels and tight bends using ε- near-zero metamaterials,” Phys. Rev. B 76(24), 245109 (2007).
[Crossref]

Enoch, S.

J. Zhang, H. Jiang, B. Gralak, S. Enoch, G. Tayeb, and M. Lequime, “Compensation of loss to approach −1 effective index by gain in metal-dielectric stacks,” Eur. Phys. J. Appl. Phys. 46(3), 1–6 (2008).
[Crossref]

Fainman, Y.

Falkovsky, L. A.

L. A. Falkovsky and A. A. Varlamov, “Space-time dispersion of graphene conductivity,” Eur. Phys. J. B 56(4), 281–284 (2007).
[Crossref]

Faraon, A.

A. Faraon, C. Santori, Z. Huang, V. M. Acosta, and R. G. Beausoleil, “Coupling of Nitrogen-Vacancy Centers to Photonic Crystal Cavities in Monocrystalline Diamond,” Phys. Rev. Lett. 109(3), 033604 (2012).
[Crossref] [PubMed]

A. Faraon, P. E. Barclay, C. Santori, K.-M. C. Fu, and R. G. Beausoleil, “Resonant enhancement of the zero-phonon emission from a colour centre in a diamond cavity,” Nat. Photonics 5(5), 301–305 (2011).
[Crossref]

Ferrari, L.

L. Ferrari, C. Wu, D. Lepage, X. Zhang, and Z. Liu, “Hyperbolic metamaterials and their applications,” Prog. Quantum Electron. 40, 1–40 (2015).
[Crossref]

L. Ferrari, D. Lu, D. Lepage, and Z. Liu, “Enhanced spontaneous emission inside hyperbolic metamaterials,” Opt. Express 22(4), 4301–4306 (2014).
[Crossref] [PubMed]

Fu, K.-M. C.

A. Faraon, P. E. Barclay, C. Santori, K.-M. C. Fu, and R. G. Beausoleil, “Resonant enhancement of the zero-phonon emission from a colour centre in a diamond cavity,” Nat. Photonics 5(5), 301–305 (2011).
[Crossref]

Geng, B.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Gralak, B.

J. Zhang, H. Jiang, B. Gralak, S. Enoch, G. Tayeb, and M. Lequime, “Compensation of loss to approach −1 effective index by gain in metal-dielectric stacks,” Eur. Phys. J. Appl. Phys. 46(3), 1–6 (2008).
[Crossref]

Guclu, C.

M. A. Othman, C. Guclu, and F. Capolino, “Graphene-based tunable hyperbolic metamaterials and enhanced near-field absorption,” Opt. Express 21(6), 7614–7632 (2013).
[Crossref] [PubMed]

M. A. K. Othman, C. Guclu, and F. Capolino, “Graphene-dielectric composite metamaterials: evolution from elliptic to hyperbolic wavevector dispersion and the transverse epsilon-near-zero condition,” J. Nanophotonics 7(1), 073089 (2013).
[Crossref]

Guo, J.

Guo, Y.

Y. Guo, W. Newman, C. L. Cortes, and Z. Jacob, “Applications of Hyperbolic Metamaterial Substrates,” Adv. Optoelectron. 2012, 452502 (2012).
[Crossref]

Y. Guo, C. L. Cortes, S. Molesky, and Z. Jacob, “Broadband super-Planckian thermal emission from hyperbolic metamaterials,” Appl. Phys. Lett. 101(13), 131106 (2012).
[Crossref]

Hamm, J. M.

A. Pusch, S. Wuestner, J. M. Hamm, K. L. Tsakmakidis, and O. Hess, “Coherent amplification and noise in gain-enhanced nanoplasmonic metamaterials: a Maxwell-Bloch Langevin approach,” ACS Nano 6(3), 2420–2431 (2012).
[Crossref] [PubMed]

O. Hess, J. B. Pendry, S. A. Maier, R. F. Oulton, J. M. Hamm, and K. L. Tsakmakidis, “Active nanoplasmonic metamaterials,” Nat. Mater. 11(7), 573–584 (2012).
[Crossref] [PubMed]

Hausmann, B. J. M.

J. T. Choy, B. J. M. Hausmann, T. M. Babinec, I. Bulu, M. Khan, P. Maletinsky, A. Yacoby, and M. Loncar, “Enhanced single-photon emission from a diamond–silver aperture,” Nat. Photonics 5(12), 738–743 (2011).
[Crossref]

He, S.

He, Y.

Hess, O.

O. Hess, J. B. Pendry, S. A. Maier, R. F. Oulton, J. M. Hamm, and K. L. Tsakmakidis, “Active nanoplasmonic metamaterials,” Nat. Mater. 11(7), 573–584 (2012).
[Crossref] [PubMed]

A. Pusch, S. Wuestner, J. M. Hamm, K. L. Tsakmakidis, and O. Hess, “Coherent amplification and noise in gain-enhanced nanoplasmonic metamaterials: a Maxwell-Bloch Langevin approach,” ACS Nano 6(3), 2420–2431 (2012).
[Crossref] [PubMed]

Hoffmann, P.

R. Mroczyński, N. Kwietniewski, M. Ćwil, P. Hoffmann, R. B. Beck, and J. Jakubowski, “Improvement of electro-physical properties of ultra-thin PECVD silicon oxynitride layers by high-temperature annealing,” Vacuum 82(10), 1013–1019 (2008).
[Crossref]

Hu, G.

H. Wang, H. Zhao, H. Su, G. Hu, and J. Zhang, “Active tuning of epsilon-near-zero point of hyperbolic metamaterial at visible and near-infrared regimes,” Appl. Phys. Express 9(9), 092201 (2016).
[Crossref]

Huang, Z.

A. Faraon, C. Santori, Z. Huang, V. M. Acosta, and R. G. Beausoleil, “Coupling of Nitrogen-Vacancy Centers to Photonic Crystal Cavities in Monocrystalline Diamond,” Phys. Rev. Lett. 109(3), 033604 (2012).
[Crossref] [PubMed]

Iorsh, I. V.

I. V. Iorsh, I. S. Mukhin, I. V. Shadrivov, P. A. Belov, and Y. S. Kivshar, “Hyperbolic metamaterials based on multilayer graphene structures,” Phys. Rev. B 87(7), 075416 (2013).
[Crossref]

Ishii, S.

Jackson, S. D.

Jacob, Z.

W. D. Newman, C. L. Cortes, and Z. Jacob, “Enhanced and directional single-photon emission in hyperbolic metamaterials,” J. Opt. Soc. Am. B 30(4), 766–775 (2013).
[Crossref]

Y. Guo, C. L. Cortes, S. Molesky, and Z. Jacob, “Broadband super-Planckian thermal emission from hyperbolic metamaterials,” Appl. Phys. Lett. 101(13), 131106 (2012).
[Crossref]

Y. Guo, W. Newman, C. L. Cortes, and Z. Jacob, “Applications of Hyperbolic Metamaterial Substrates,” Adv. Optoelectron. 2012, 452502 (2012).
[Crossref]

Z. Jacob, I. I. Smolyaninov, and E. E. Narimanov, “Broadband Purcell effect: Radiative decay engineering with metamaterials,” Appl. Phys. Lett. 100(18), 181105 (2012).
[Crossref]

Jakubowski, J.

R. Mroczyński, N. Kwietniewski, M. Ćwil, P. Hoffmann, R. B. Beck, and J. Jakubowski, “Improvement of electro-physical properties of ultra-thin PECVD silicon oxynitride layers by high-temperature annealing,” Vacuum 82(10), 1013–1019 (2008).
[Crossref]

Janaszek, B.

Jiang, H.

J. Zhang, H. Jiang, B. Gralak, S. Enoch, G. Tayeb, and M. Lequime, “Compensation of loss to approach −1 effective index by gain in metal-dielectric stacks,” Eur. Phys. J. Appl. Phys. 46(3), 1–6 (2008).
[Crossref]

Jiang, X.

W. Li, Z. Liu, X. Zhang, and X. Jiang, “Switchable hyperbolic metamaterials with magnetic control,” Appl. Phys. Lett. 100(16), 161108 (2012).
[Crossref]

Jiao, Z.

R. Ning, S. Liu, H. Zhang, and Z. Jiao, “Dual-gated tunable absorption in graphene-based hyperbolic metamaterials,” AIP Adv. 5(6), 067106 (2015).
[Crossref]

Ju, L.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Kang, J.-H.

J. Park, J.-H. Kang, X. Liu, and M. L. Brongersma, “Electrically Tunable Epsilon-Near-Zero (ENZ) Metafilm Absorbers,” Sci. Rep. 5(1), 15754 (2015).
[Crossref] [PubMed]

Kanté, B.

Kasik, I.

Khan, M.

J. T. Choy, B. J. M. Hausmann, T. M. Babinec, I. Bulu, M. Khan, P. Maletinsky, A. Yacoby, and M. Loncar, “Enhanced single-photon emission from a diamond–silver aperture,” Nat. Photonics 5(12), 738–743 (2011).
[Crossref]

Kildishev, A. V.

Kim, Y. L.

R. Chandrasekar, Z. Wang, X. Meng, A. Lagutchev, Y. L. Kim, A. Wei, A. Boltasseva, and V. M. Shalaev, “Lasing action with gold nanorod hyperbolic metamaterials,” in Conference on Lasers and Electro-Optics CLEO: Applications and Technology (2016), paper JTh4A.4.
[Crossref]

King, T. A.

Kivshar, Y. S.

I. V. Iorsh, I. S. Mukhin, I. V. Shadrivov, P. A. Belov, and Y. S. Kivshar, “Hyperbolic metamaterials based on multilayer graphene structures,” Phys. Rev. B 87(7), 075416 (2013).
[Crossref]

Kong, X.

R. Ning, S. Liu, H. Zhang, B. Bian, and X. Kong, “Tunable absorption in graphene-based hyperbolic metamaterials for mid-infrared range,” Physica B 457, 144–148 (2015).
[Crossref]

R. Ning, S. Liu, H. Zhang, B. Bian, and X. Kong, “A wide-angle broadband absorber in graphene-based hyperbolic metamaterials,” Eur. Phys. J. Appl. Phys. 68(2), 20401 (2014).
[Crossref]

Krishnamoorthy, H. N. S.

H. N. S. Krishnamoorthy, Y. Zhou, S. Ramanathan, E. Narimanov, and V. M. Menon, “Tunable hyperbolic metamaterials utilizing phase change heterostructures,” Appl. Phys. Lett. 104(12), 121101 (2014).
[Crossref]

Kwietniewski, N.

R. Mroczyński, N. Kwietniewski, M. Ćwil, P. Hoffmann, R. B. Beck, and J. Jakubowski, “Improvement of electro-physical properties of ultra-thin PECVD silicon oxynitride layers by high-temperature annealing,” Vacuum 82(10), 1013–1019 (2008).
[Crossref]

Kyaw, C.

S. Prayakarao, B. Mendoza, A. Devine, C. Kyaw, R. B. van Dover, V. Liberman, and M. A. Noginov, “Tunable VO2/Au hyperbolic metamaterial,” Appl. Phys. Lett. 109(6), 061105 (2016).
[Crossref]

Lagutchev, A.

R. Chandrasekar, Z. Wang, X. Meng, A. Lagutchev, Y. L. Kim, A. Wei, A. Boltasseva, and V. M. Shalaev, “Lasing action with gold nanorod hyperbolic metamaterials,” in Conference on Lasers and Electro-Optics CLEO: Applications and Technology (2016), paper JTh4A.4.
[Crossref]

Lavrinenko, A. V.

Lee, H.

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
[Crossref] [PubMed]

Lepage, D.

L. Ferrari, C. Wu, D. Lepage, X. Zhang, and Z. Liu, “Hyperbolic metamaterials and their applications,” Prog. Quantum Electron. 40, 1–40 (2015).
[Crossref]

L. Ferrari, D. Lu, D. Lepage, and Z. Liu, “Enhanced spontaneous emission inside hyperbolic metamaterials,” Opt. Express 22(4), 4301–4306 (2014).
[Crossref] [PubMed]

Lequime, M.

J. Zhang, H. Jiang, B. Gralak, S. Enoch, G. Tayeb, and M. Lequime, “Compensation of loss to approach −1 effective index by gain in metal-dielectric stacks,” Eur. Phys. J. Appl. Phys. 46(3), 1–6 (2008).
[Crossref]

Li, W.

W. Li, Z. Liu, X. Zhang, and X. Jiang, “Switchable hyperbolic metamaterials with magnetic control,” Appl. Phys. Lett. 100(16), 161108 (2012).
[Crossref]

Liberman, V.

S. Prayakarao, B. Mendoza, A. Devine, C. Kyaw, R. B. van Dover, V. Liberman, and M. A. Noginov, “Tunable VO2/Au hyperbolic metamaterial,” Appl. Phys. Lett. 109(6), 061105 (2016).
[Crossref]

Liu, C.-H.

Y.-C. Chang, C.-H. Liu, C.-H. Liu, S. Zhang, S. R. Marder, E. E. Narimanov, Z. Zhong, and T. B. Norris, “Realization of mid-infrared graphene hyperbolic metamaterials,” Nat. Commun. 7(10568), 10568 (2016).
[Crossref] [PubMed]

Y.-C. Chang, C.-H. Liu, C.-H. Liu, S. Zhang, S. R. Marder, E. E. Narimanov, Z. Zhong, and T. B. Norris, “Realization of mid-infrared graphene hyperbolic metamaterials,” Nat. Commun. 7(10568), 10568 (2016).
[Crossref] [PubMed]

Liu, M.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Liu, S.

R. Ning, S. Liu, H. Zhang, B. Bian, and X. Kong, “Tunable absorption in graphene-based hyperbolic metamaterials for mid-infrared range,” Physica B 457, 144–148 (2015).
[Crossref]

R. Ning, S. Liu, H. Zhang, and Z. Jiao, “Dual-gated tunable absorption in graphene-based hyperbolic metamaterials,” AIP Adv. 5(6), 067106 (2015).
[Crossref]

R. Ning, S. Liu, H. Zhang, B. Bian, and X. Kong, “A wide-angle broadband absorber in graphene-based hyperbolic metamaterials,” Eur. Phys. J. Appl. Phys. 68(2), 20401 (2014).
[Crossref]

Liu, X.

J. Park, J.-H. Kang, X. Liu, and M. L. Brongersma, “Electrically Tunable Epsilon-Near-Zero (ENZ) Metafilm Absorbers,” Sci. Rep. 5(1), 15754 (2015).
[Crossref] [PubMed]

Liu, Z.

L. Ferrari, C. Wu, D. Lepage, X. Zhang, and Z. Liu, “Hyperbolic metamaterials and their applications,” Prog. Quantum Electron. 40, 1–40 (2015).
[Crossref]

L. Ferrari, D. Lu, D. Lepage, and Z. Liu, “Enhanced spontaneous emission inside hyperbolic metamaterials,” Opt. Express 22(4), 4301–4306 (2014).
[Crossref] [PubMed]

W. Li, Z. Liu, X. Zhang, and X. Jiang, “Switchable hyperbolic metamaterials with magnetic control,” Appl. Phys. Lett. 100(16), 161108 (2012).
[Crossref]

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
[Crossref] [PubMed]

Loncar, M.

J. T. Choy, B. J. M. Hausmann, T. M. Babinec, I. Bulu, M. Khan, P. Maletinsky, A. Yacoby, and M. Loncar, “Enhanced single-photon emission from a diamond–silver aperture,” Nat. Photonics 5(12), 738–743 (2011).
[Crossref]

Lu, D.

Maier, S. A.

O. Hess, J. B. Pendry, S. A. Maier, R. F. Oulton, J. M. Hamm, and K. L. Tsakmakidis, “Active nanoplasmonic metamaterials,” Nat. Mater. 11(7), 573–584 (2012).
[Crossref] [PubMed]

Maletinsky, P.

J. T. Choy, B. J. M. Hausmann, T. M. Babinec, I. Bulu, M. Khan, P. Maletinsky, A. Yacoby, and M. Loncar, “Enhanced single-photon emission from a diamond–silver aperture,” Nat. Photonics 5(12), 738–743 (2011).
[Crossref]

Malitson, I. H.

Marder, S. R.

Y.-C. Chang, C.-H. Liu, C.-H. Liu, S. Zhang, S. R. Marder, E. E. Narimanov, Z. Zhong, and T. B. Norris, “Realization of mid-infrared graphene hyperbolic metamaterials,” Nat. Commun. 7(10568), 10568 (2016).
[Crossref] [PubMed]

Marini, A.

A. Marini and F. J. de Abajo, “Self-organization of frozen light in near-zero-index media with cubic nonlinearity,” Sci. Rep. 6(1), 20088 (2016).
[Crossref] [PubMed]

McCumber, D. E.

D. E. McCumber, “Einstein relations connecting broadband emission and absorption spectra,” Phys. Rev. 136(4A), A954–A957 (1964).
[Crossref]

Mendoza, B.

S. Prayakarao, B. Mendoza, A. Devine, C. Kyaw, R. B. van Dover, V. Liberman, and M. A. Noginov, “Tunable VO2/Au hyperbolic metamaterial,” Appl. Phys. Lett. 109(6), 061105 (2016).
[Crossref]

Meng, X.

R. Chandrasekar, Z. Wang, X. Meng, A. Lagutchev, Y. L. Kim, A. Wei, A. Boltasseva, and V. M. Shalaev, “Lasing action with gold nanorod hyperbolic metamaterials,” in Conference on Lasers and Electro-Optics CLEO: Applications and Technology (2016), paper JTh4A.4.
[Crossref]

Menon, V. M.

H. N. S. Krishnamoorthy, Y. Zhou, S. Ramanathan, E. Narimanov, and V. M. Menon, “Tunable hyperbolic metamaterials utilizing phase change heterostructures,” Appl. Phys. Lett. 104(12), 121101 (2014).
[Crossref]

Molesky, S.

Y. Guo, C. L. Cortes, S. Molesky, and Z. Jacob, “Broadband super-Planckian thermal emission from hyperbolic metamaterials,” Appl. Phys. Lett. 101(13), 131106 (2012).
[Crossref]

Mroczynski, R.

R. Mroczyński, N. Kwietniewski, M. Ćwil, P. Hoffmann, R. B. Beck, and J. Jakubowski, “Improvement of electro-physical properties of ultra-thin PECVD silicon oxynitride layers by high-temperature annealing,” Vacuum 82(10), 1013–1019 (2008).
[Crossref]

Mukhin, I. S.

I. V. Iorsh, I. S. Mukhin, I. V. Shadrivov, P. A. Belov, and Y. S. Kivshar, “Hyperbolic metamaterials based on multilayer graphene structures,” Phys. Rev. B 87(7), 075416 (2013).
[Crossref]

Narimanov, E.

H. N. S. Krishnamoorthy, Y. Zhou, S. Ramanathan, E. Narimanov, and V. M. Menon, “Tunable hyperbolic metamaterials utilizing phase change heterostructures,” Appl. Phys. Lett. 104(12), 121101 (2014).
[Crossref]

Narimanov, E. E.

Y.-C. Chang, C.-H. Liu, C.-H. Liu, S. Zhang, S. R. Marder, E. E. Narimanov, Z. Zhong, and T. B. Norris, “Realization of mid-infrared graphene hyperbolic metamaterials,” Nat. Commun. 7(10568), 10568 (2016).
[Crossref] [PubMed]

Z. Jacob, I. I. Smolyaninov, and E. E. Narimanov, “Broadband Purcell effect: Radiative decay engineering with metamaterials,” Appl. Phys. Lett. 100(18), 181105 (2012).
[Crossref]

Newman, W.

Y. Guo, W. Newman, C. L. Cortes, and Z. Jacob, “Applications of Hyperbolic Metamaterial Substrates,” Adv. Optoelectron. 2012, 452502 (2012).
[Crossref]

Newman, W. D.

Ning, R.

R. Ning, S. Liu, H. Zhang, and Z. Jiao, “Dual-gated tunable absorption in graphene-based hyperbolic metamaterials,” AIP Adv. 5(6), 067106 (2015).
[Crossref]

R. Ning, S. Liu, H. Zhang, B. Bian, and X. Kong, “Tunable absorption in graphene-based hyperbolic metamaterials for mid-infrared range,” Physica B 457, 144–148 (2015).
[Crossref]

R. Ning, S. Liu, H. Zhang, B. Bian, and X. Kong, “A wide-angle broadband absorber in graphene-based hyperbolic metamaterials,” Eur. Phys. J. Appl. Phys. 68(2), 20401 (2014).
[Crossref]

Noginov, M. A.

S. Prayakarao, B. Mendoza, A. Devine, C. Kyaw, R. B. van Dover, V. Liberman, and M. A. Noginov, “Tunable VO2/Au hyperbolic metamaterial,” Appl. Phys. Lett. 109(6), 061105 (2016).
[Crossref]

Norris, T. B.

Y.-C. Chang, C.-H. Liu, C.-H. Liu, S. Zhang, S. R. Marder, E. E. Narimanov, Z. Zhong, and T. B. Norris, “Realization of mid-infrared graphene hyperbolic metamaterials,” Nat. Commun. 7(10568), 10568 (2016).
[Crossref] [PubMed]

Othman, M. A.

Othman, M. A. K.

M. A. K. Othman, C. Guclu, and F. Capolino, “Graphene-dielectric composite metamaterials: evolution from elliptic to hyperbolic wavevector dispersion and the transverse epsilon-near-zero condition,” J. Nanophotonics 7(1), 073089 (2013).
[Crossref]

Oulton, R. F.

O. Hess, J. B. Pendry, S. A. Maier, R. F. Oulton, J. M. Hamm, and K. L. Tsakmakidis, “Active nanoplasmonic metamaterials,” Nat. Mater. 11(7), 573–584 (2012).
[Crossref] [PubMed]

Paradakis, G. T.

G. T. Paradakis and H. A. Atwater, “Field-effect induced tunability in hyperbolic metamaterials,” Phys. Rev. B 92(18), 184101 (2015).
[Crossref]

Park, J.

J. Park, J.-H. Kang, X. Liu, and M. L. Brongersma, “Electrically Tunable Epsilon-Near-Zero (ENZ) Metafilm Absorbers,” Sci. Rep. 5(1), 15754 (2015).
[Crossref] [PubMed]

Pendry, J. B.

O. Hess, J. B. Pendry, S. A. Maier, R. F. Oulton, J. M. Hamm, and K. L. Tsakmakidis, “Active nanoplasmonic metamaterials,” Nat. Mater. 11(7), 573–584 (2012).
[Crossref] [PubMed]

Peng, Z.

Z. Cao, X. Xiang, C. Yang, Y. Zhang, Z. Peng, and L. Xuan, “Analysis of tunable characteristics of liquid-crystal-based hyperbolic metamaterials,” Liq. Cryst. 43(12), 1753–1759 (2016).
[Crossref]

Peterka, P.

Podolskiy, V. A.

Prayakarao, S.

S. Prayakarao, B. Mendoza, A. Devine, C. Kyaw, R. B. van Dover, V. Liberman, and M. A. Noginov, “Tunable VO2/Au hyperbolic metamaterial,” Appl. Phys. Lett. 109(6), 061105 (2016).
[Crossref]

Pusch, A.

A. Pusch, S. Wuestner, J. M. Hamm, K. L. Tsakmakidis, and O. Hess, “Coherent amplification and noise in gain-enhanced nanoplasmonic metamaterials: a Maxwell-Bloch Langevin approach,” ACS Nano 6(3), 2420–2431 (2012).
[Crossref] [PubMed]

Ramanathan, S.

H. N. S. Krishnamoorthy, Y. Zhou, S. Ramanathan, E. Narimanov, and V. M. Menon, “Tunable hyperbolic metamaterials utilizing phase change heterostructures,” Appl. Phys. Lett. 104(12), 121101 (2014).
[Crossref]

Salandrino, A.

A. Alǔ, M. G. Silveirinha, A. Salandrino, and N. Engheta, “Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern,” Phys. Rev. B 75(15), 155410 (2007).
[Crossref]

Santori, C.

A. Faraon, C. Santori, Z. Huang, V. M. Acosta, and R. G. Beausoleil, “Coupling of Nitrogen-Vacancy Centers to Photonic Crystal Cavities in Monocrystalline Diamond,” Phys. Rev. Lett. 109(3), 033604 (2012).
[Crossref] [PubMed]

A. Faraon, P. E. Barclay, C. Santori, K.-M. C. Fu, and R. G. Beausoleil, “Resonant enhancement of the zero-phonon emission from a colour centre in a diamond cavity,” Nat. Photonics 5(5), 301–305 (2011).
[Crossref]

Scalora, M.

M. A. Vincenti, D. De Ceglia, A. Ciattoni, and M. Scalora, “Singularity-driven second- and third-harmonic generation at-near-zero crossing points,” Phys. Rev. A 84(6), 063826 (2011).
[Crossref]

Shadrivov, I. V.

I. V. Iorsh, I. S. Mukhin, I. V. Shadrivov, P. A. Belov, and Y. S. Kivshar, “Hyperbolic metamaterials based on multilayer graphene structures,” Phys. Rev. B 87(7), 075416 (2013).
[Crossref]

Shalaev, V. M.

R. Chandrasekar, Z. Wang, X. Meng, A. Lagutchev, Y. L. Kim, A. Wei, A. Boltasseva, and V. M. Shalaev, “Lasing action with gold nanorod hyperbolic metamaterials,” in Conference on Lasers and Electro-Optics CLEO: Applications and Technology (2016), paper JTh4A.4.
[Crossref]

Shalaginov, M. Y.

Silveirinha, M. G.

A. Alǔ, M. G. Silveirinha, A. Salandrino, and N. Engheta, “Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern,” Phys. Rev. B 75(15), 155410 (2007).
[Crossref]

M. G. Silveirinha and N. Engheta, “Theory of supercoupling, squeezing wave energy, and field confinement in narrow channels and tight bends using ε- near-zero metamaterials,” Phys. Rev. B 76(24), 245109 (2007).
[Crossref]

Smalley, J. S. T.

Smolyaninov, I. I.

Z. Jacob, I. I. Smolyaninov, and E. E. Narimanov, “Broadband Purcell effect: Radiative decay engineering with metamaterials,” Appl. Phys. Lett. 100(18), 181105 (2012).
[Crossref]

Sreekanth, K. V.

K. V. Sreekanth, T. Biaglow, and G. Strangi, “Directional spontaneous emission enhancement in hyperbolic metamaterials,” J. Appl. Phys. 114(13), 134306 (2013).
[Crossref]

Strangi, G.

K. V. Sreekanth, T. Biaglow, and G. Strangi, “Directional spontaneous emission enhancement in hyperbolic metamaterials,” J. Appl. Phys. 114(13), 134306 (2013).
[Crossref]

Su, H.

H. Wang, H. Zhao, H. Su, G. Hu, and J. Zhang, “Active tuning of epsilon-near-zero point of hyperbolic metamaterial at visible and near-infrared regimes,” Appl. Phys. Express 9(9), 092201 (2016).
[Crossref]

Sun, C.

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
[Crossref] [PubMed]

Szczepanski, P.

Tang, D.

Tayeb, G.

J. Zhang, H. Jiang, B. Gralak, S. Enoch, G. Tayeb, and M. Lequime, “Compensation of loss to approach −1 effective index by gain in metal-dielectric stacks,” Eur. Phys. J. Appl. Phys. 46(3), 1–6 (2008).
[Crossref]

Tsakmakidis, K. L.

A. Pusch, S. Wuestner, J. M. Hamm, K. L. Tsakmakidis, and O. Hess, “Coherent amplification and noise in gain-enhanced nanoplasmonic metamaterials: a Maxwell-Bloch Langevin approach,” ACS Nano 6(3), 2420–2431 (2012).
[Crossref] [PubMed]

O. Hess, J. B. Pendry, S. A. Maier, R. F. Oulton, J. M. Hamm, and K. L. Tsakmakidis, “Active nanoplasmonic metamaterials,” Nat. Mater. 11(7), 573–584 (2012).
[Crossref] [PubMed]

Tyszka-Zawadzka, A.

Ulin-Avila, E.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Vallini, F.

van Dover, R. B.

S. Prayakarao, B. Mendoza, A. Devine, C. Kyaw, R. B. van Dover, V. Liberman, and M. A. Noginov, “Tunable VO2/Au hyperbolic metamaterial,” Appl. Phys. Lett. 109(6), 061105 (2016).
[Crossref]

Varlamov, A. A.

L. A. Falkovsky and A. A. Varlamov, “Space-time dispersion of graphene conductivity,” Eur. Phys. J. B 56(4), 281–284 (2007).
[Crossref]

Vasilantonakis, N.

Vincenti, M. A.

M. A. Vincenti, D. De Ceglia, A. Ciattoni, and M. Scalora, “Singularity-driven second- and third-harmonic generation at-near-zero crossing points,” Phys. Rev. A 84(6), 063826 (2011).
[Crossref]

Wang, F.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Wang, H.

H. Wang, H. Zhao, H. Su, G. Hu, and J. Zhang, “Active tuning of epsilon-near-zero point of hyperbolic metamaterial at visible and near-infrared regimes,” Appl. Phys. Express 9(9), 092201 (2016).
[Crossref]

Wang, Z.

R. Chandrasekar, Z. Wang, X. Meng, A. Lagutchev, Y. L. Kim, A. Wei, A. Boltasseva, and V. M. Shalaev, “Lasing action with gold nanorod hyperbolic metamaterials,” in Conference on Lasers and Electro-Optics CLEO: Applications and Technology (2016), paper JTh4A.4.
[Crossref]

Wei, A.

R. Chandrasekar, Z. Wang, X. Meng, A. Lagutchev, Y. L. Kim, A. Wei, A. Boltasseva, and V. M. Shalaev, “Lasing action with gold nanorod hyperbolic metamaterials,” in Conference on Lasers and Electro-Optics CLEO: Applications and Technology (2016), paper JTh4A.4.
[Crossref]

Wen, S.

Wu, C.

L. Ferrari, C. Wu, D. Lepage, X. Zhang, and Z. Liu, “Hyperbolic metamaterials and their applications,” Prog. Quantum Electron. 40, 1–40 (2015).
[Crossref]

Wuestner, S.

A. Pusch, S. Wuestner, J. M. Hamm, K. L. Tsakmakidis, and O. Hess, “Coherent amplification and noise in gain-enhanced nanoplasmonic metamaterials: a Maxwell-Bloch Langevin approach,” ACS Nano 6(3), 2420–2431 (2012).
[Crossref] [PubMed]

Wurtz, G. A.

Xiang, X.

Z. Cao, X. Xiang, C. Yang, Y. Zhang, Z. Peng, and L. Xuan, “Analysis of tunable characteristics of liquid-crystal-based hyperbolic metamaterials,” Liq. Cryst. 43(12), 1753–1759 (2016).
[Crossref]

Xiang, Y.

Xiong, Y.

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
[Crossref] [PubMed]

Xuan, L.

Z. Cao, X. Xiang, C. Yang, Y. Zhang, Z. Peng, and L. Xuan, “Analysis of tunable characteristics of liquid-crystal-based hyperbolic metamaterials,” Liq. Cryst. 43(12), 1753–1759 (2016).
[Crossref]

Yacoby, A.

J. T. Choy, B. J. M. Hausmann, T. M. Babinec, I. Bulu, M. Khan, P. Maletinsky, A. Yacoby, and M. Loncar, “Enhanced single-photon emission from a diamond–silver aperture,” Nat. Photonics 5(12), 738–743 (2011).
[Crossref]

Yang, C.

Z. Cao, X. Xiang, C. Yang, Y. Zhang, Z. Peng, and L. Xuan, “Analysis of tunable characteristics of liquid-crystal-based hyperbolic metamaterials,” Liq. Cryst. 43(12), 1753–1759 (2016).
[Crossref]

Yang, X.

Yin, X.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Zayats, A. V.

Zentgraf, T.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Zhang, H.

R. Ning, S. Liu, H. Zhang, B. Bian, and X. Kong, “Tunable absorption in graphene-based hyperbolic metamaterials for mid-infrared range,” Physica B 457, 144–148 (2015).
[Crossref]

R. Ning, S. Liu, H. Zhang, and Z. Jiao, “Dual-gated tunable absorption in graphene-based hyperbolic metamaterials,” AIP Adv. 5(6), 067106 (2015).
[Crossref]

R. Ning, S. Liu, H. Zhang, B. Bian, and X. Kong, “A wide-angle broadband absorber in graphene-based hyperbolic metamaterials,” Eur. Phys. J. Appl. Phys. 68(2), 20401 (2014).
[Crossref]

Zhang, J.

H. Wang, H. Zhao, H. Su, G. Hu, and J. Zhang, “Active tuning of epsilon-near-zero point of hyperbolic metamaterial at visible and near-infrared regimes,” Appl. Phys. Express 9(9), 092201 (2016).
[Crossref]

J. Zhang, H. Jiang, B. Gralak, S. Enoch, G. Tayeb, and M. Lequime, “Compensation of loss to approach −1 effective index by gain in metal-dielectric stacks,” Eur. Phys. J. Appl. Phys. 46(3), 1–6 (2008).
[Crossref]

Zhang, S.

Y.-C. Chang, C.-H. Liu, C.-H. Liu, S. Zhang, S. R. Marder, E. E. Narimanov, Z. Zhong, and T. B. Norris, “Realization of mid-infrared graphene hyperbolic metamaterials,” Nat. Commun. 7(10568), 10568 (2016).
[Crossref] [PubMed]

Zhang, X.

L. Ferrari, C. Wu, D. Lepage, X. Zhang, and Z. Liu, “Hyperbolic metamaterials and their applications,” Prog. Quantum Electron. 40, 1–40 (2015).
[Crossref]

W. Li, Z. Liu, X. Zhang, and X. Jiang, “Switchable hyperbolic metamaterials with magnetic control,” Appl. Phys. Lett. 100(16), 161108 (2012).
[Crossref]

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
[Crossref] [PubMed]

Zhang, Y.

Z. Cao, X. Xiang, C. Yang, Y. Zhang, Z. Peng, and L. Xuan, “Analysis of tunable characteristics of liquid-crystal-based hyperbolic metamaterials,” Liq. Cryst. 43(12), 1753–1759 (2016).
[Crossref]

Zhao, H.

H. Wang, H. Zhao, H. Su, G. Hu, and J. Zhang, “Active tuning of epsilon-near-zero point of hyperbolic metamaterial at visible and near-infrared regimes,” Appl. Phys. Express 9(9), 092201 (2016).
[Crossref]

Zhong, Z.

Y.-C. Chang, C.-H. Liu, C.-H. Liu, S. Zhang, S. R. Marder, E. E. Narimanov, Z. Zhong, and T. B. Norris, “Realization of mid-infrared graphene hyperbolic metamaterials,” Nat. Commun. 7(10568), 10568 (2016).
[Crossref] [PubMed]

Zhou, Y.

H. N. S. Krishnamoorthy, Y. Zhou, S. Ramanathan, E. Narimanov, and V. M. Menon, “Tunable hyperbolic metamaterials utilizing phase change heterostructures,” Appl. Phys. Lett. 104(12), 121101 (2014).
[Crossref]

ACS Nano (1)

A. Pusch, S. Wuestner, J. M. Hamm, K. L. Tsakmakidis, and O. Hess, “Coherent amplification and noise in gain-enhanced nanoplasmonic metamaterials: a Maxwell-Bloch Langevin approach,” ACS Nano 6(3), 2420–2431 (2012).
[Crossref] [PubMed]

Adv. Optoelectron. (1)

Y. Guo, W. Newman, C. L. Cortes, and Z. Jacob, “Applications of Hyperbolic Metamaterial Substrates,” Adv. Optoelectron. 2012, 452502 (2012).
[Crossref]

AIP Adv. (1)

R. Ning, S. Liu, H. Zhang, and Z. Jiao, “Dual-gated tunable absorption in graphene-based hyperbolic metamaterials,” AIP Adv. 5(6), 067106 (2015).
[Crossref]

Appl. Phys. Express (1)

H. Wang, H. Zhao, H. Su, G. Hu, and J. Zhang, “Active tuning of epsilon-near-zero point of hyperbolic metamaterial at visible and near-infrared regimes,” Appl. Phys. Express 9(9), 092201 (2016).
[Crossref]

Appl. Phys. Lett. (5)

Y. Guo, C. L. Cortes, S. Molesky, and Z. Jacob, “Broadband super-Planckian thermal emission from hyperbolic metamaterials,” Appl. Phys. Lett. 101(13), 131106 (2012).
[Crossref]

Z. Jacob, I. I. Smolyaninov, and E. E. Narimanov, “Broadband Purcell effect: Radiative decay engineering with metamaterials,” Appl. Phys. Lett. 100(18), 181105 (2012).
[Crossref]

S. Prayakarao, B. Mendoza, A. Devine, C. Kyaw, R. B. van Dover, V. Liberman, and M. A. Noginov, “Tunable VO2/Au hyperbolic metamaterial,” Appl. Phys. Lett. 109(6), 061105 (2016).
[Crossref]

H. N. S. Krishnamoorthy, Y. Zhou, S. Ramanathan, E. Narimanov, and V. M. Menon, “Tunable hyperbolic metamaterials utilizing phase change heterostructures,” Appl. Phys. Lett. 104(12), 121101 (2014).
[Crossref]

W. Li, Z. Liu, X. Zhang, and X. Jiang, “Switchable hyperbolic metamaterials with magnetic control,” Appl. Phys. Lett. 100(16), 161108 (2012).
[Crossref]

Eur. Phys. J. Appl. Phys. (2)

R. Ning, S. Liu, H. Zhang, B. Bian, and X. Kong, “A wide-angle broadband absorber in graphene-based hyperbolic metamaterials,” Eur. Phys. J. Appl. Phys. 68(2), 20401 (2014).
[Crossref]

J. Zhang, H. Jiang, B. Gralak, S. Enoch, G. Tayeb, and M. Lequime, “Compensation of loss to approach −1 effective index by gain in metal-dielectric stacks,” Eur. Phys. J. Appl. Phys. 46(3), 1–6 (2008).
[Crossref]

Eur. Phys. J. B (1)

L. A. Falkovsky and A. A. Varlamov, “Space-time dispersion of graphene conductivity,” Eur. Phys. J. B 56(4), 281–284 (2007).
[Crossref]

J. Appl. Phys. (1)

K. V. Sreekanth, T. Biaglow, and G. Strangi, “Directional spontaneous emission enhancement in hyperbolic metamaterials,” J. Appl. Phys. 114(13), 134306 (2013).
[Crossref]

J. Lightwave Technol. (1)

J. Nanophotonics (1)

M. A. K. Othman, C. Guclu, and F. Capolino, “Graphene-dielectric composite metamaterials: evolution from elliptic to hyperbolic wavevector dispersion and the transverse epsilon-near-zero condition,” J. Nanophotonics 7(1), 073089 (2013).
[Crossref]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (1)

Liq. Cryst. (1)

Z. Cao, X. Xiang, C. Yang, Y. Zhang, Z. Peng, and L. Xuan, “Analysis of tunable characteristics of liquid-crystal-based hyperbolic metamaterials,” Liq. Cryst. 43(12), 1753–1759 (2016).
[Crossref]

Nat. Commun. (1)

Y.-C. Chang, C.-H. Liu, C.-H. Liu, S. Zhang, S. R. Marder, E. E. Narimanov, Z. Zhong, and T. B. Norris, “Realization of mid-infrared graphene hyperbolic metamaterials,” Nat. Commun. 7(10568), 10568 (2016).
[Crossref] [PubMed]

Nat. Mater. (1)

O. Hess, J. B. Pendry, S. A. Maier, R. F. Oulton, J. M. Hamm, and K. L. Tsakmakidis, “Active nanoplasmonic metamaterials,” Nat. Mater. 11(7), 573–584 (2012).
[Crossref] [PubMed]

Nat. Photonics (2)

J. T. Choy, B. J. M. Hausmann, T. M. Babinec, I. Bulu, M. Khan, P. Maletinsky, A. Yacoby, and M. Loncar, “Enhanced single-photon emission from a diamond–silver aperture,” Nat. Photonics 5(12), 738–743 (2011).
[Crossref]

A. Faraon, P. E. Barclay, C. Santori, K.-M. C. Fu, and R. G. Beausoleil, “Resonant enhancement of the zero-phonon emission from a colour centre in a diamond cavity,” Nat. Photonics 5(5), 301–305 (2011).
[Crossref]

Nature (1)

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Opt. Express (8)

P. Peterka, I. Kasik, A. Dhar, B. Dussardier, and W. Blanc, “Theoretical modeling of fiber laser at 810 nm based on thulium-doped silica fibers with enhanced 3H4 level lifetime,” Opt. Express 19(3), 2773–2781 (2011).
[Crossref] [PubMed]

M. A. Othman, C. Guclu, and F. Capolino, “Graphene-based tunable hyperbolic metamaterials and enhanced near-field absorption,” Opt. Express 21(6), 7614–7632 (2013).
[Crossref] [PubMed]

A. Andryieuski and A. V. Lavrinenko, “Graphene metamaterials based tunable terahertz absorber: effective surface conductivity approach,” Opt. Express 21(7), 9144–9155 (2013).
[Crossref] [PubMed]

Y. Xiang, J. Guo, X. Dai, S. Wen, and D. Tang, “Engineered surface Bloch waves in graphene-based hyperbolic metamaterials,” Opt. Express 22(3), 3054–3062 (2014).
[Crossref] [PubMed]

L. Ferrari, D. Lu, D. Lepage, and Z. Liu, “Enhanced spontaneous emission inside hyperbolic metamaterials,” Opt. Express 22(4), 4301–4306 (2014).
[Crossref] [PubMed]

J. S. T. Smalley, F. Vallini, B. Kanté, and Y. Fainman, “Modal amplification in active waveguides with hyperbolic dispersion at telecommunication frequencies,” Opt. Express 22(17), 21088–21105 (2014).
[Crossref] [PubMed]

N. Vasilantonakis, G. A. Wurtz, V. A. Podolskiy, and A. V. Zayats, “Refractive index sensing with hyperbolic metamaterials: strategies for biosensing and nonlinearity enhancement,” Opt. Express 23(11), 14329–14343 (2015).
[Crossref] [PubMed]

B. Janaszek, A. Tyszka-Zawadzka, and P. Szczepański, “Tunable graphene-based hyperbolic metamaterial operating in SCLU telecom bands,” Opt. Express 24(21), 24129–24136 (2016).
[Crossref] [PubMed]

Opt. Lett. (2)

Phys. Rev. (1)

D. E. McCumber, “Einstein relations connecting broadband emission and absorption spectra,” Phys. Rev. 136(4A), A954–A957 (1964).
[Crossref]

Phys. Rev. A (1)

M. A. Vincenti, D. De Ceglia, A. Ciattoni, and M. Scalora, “Singularity-driven second- and third-harmonic generation at-near-zero crossing points,” Phys. Rev. A 84(6), 063826 (2011).
[Crossref]

Phys. Rev. B (5)

C. Argyropoulos, G. D’Aguanno, and A. Alǔ, “Giant second-harmonic generation efficiency and ideal phase matching with a double ε-near-zero cross-slit metamaterial,” Phys. Rev. B 89(23), 235401 (2014).
[Crossref]

M. G. Silveirinha and N. Engheta, “Theory of supercoupling, squeezing wave energy, and field confinement in narrow channels and tight bends using ε- near-zero metamaterials,” Phys. Rev. B 76(24), 245109 (2007).
[Crossref]

A. Alǔ, M. G. Silveirinha, A. Salandrino, and N. Engheta, “Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern,” Phys. Rev. B 75(15), 155410 (2007).
[Crossref]

I. V. Iorsh, I. S. Mukhin, I. V. Shadrivov, P. A. Belov, and Y. S. Kivshar, “Hyperbolic metamaterials based on multilayer graphene structures,” Phys. Rev. B 87(7), 075416 (2013).
[Crossref]

G. T. Paradakis and H. A. Atwater, “Field-effect induced tunability in hyperbolic metamaterials,” Phys. Rev. B 92(18), 184101 (2015).
[Crossref]

Phys. Rev. Lett. (1)

A. Faraon, C. Santori, Z. Huang, V. M. Acosta, and R. G. Beausoleil, “Coupling of Nitrogen-Vacancy Centers to Photonic Crystal Cavities in Monocrystalline Diamond,” Phys. Rev. Lett. 109(3), 033604 (2012).
[Crossref] [PubMed]

Physica B (1)

R. Ning, S. Liu, H. Zhang, B. Bian, and X. Kong, “Tunable absorption in graphene-based hyperbolic metamaterials for mid-infrared range,” Physica B 457, 144–148 (2015).
[Crossref]

Prog. Quantum Electron. (1)

L. Ferrari, C. Wu, D. Lepage, X. Zhang, and Z. Liu, “Hyperbolic metamaterials and their applications,” Prog. Quantum Electron. 40, 1–40 (2015).
[Crossref]

Sci. Rep. (2)

J. Park, J.-H. Kang, X. Liu, and M. L. Brongersma, “Electrically Tunable Epsilon-Near-Zero (ENZ) Metafilm Absorbers,” Sci. Rep. 5(1), 15754 (2015).
[Crossref] [PubMed]

A. Marini and F. J. de Abajo, “Self-organization of frozen light in near-zero-index media with cubic nonlinearity,” Sci. Rep. 6(1), 20088 (2016).
[Crossref] [PubMed]

Science (1)

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
[Crossref] [PubMed]

Vacuum (1)

R. Mroczyński, N. Kwietniewski, M. Ćwil, P. Hoffmann, R. B. Beck, and J. Jakubowski, “Improvement of electro-physical properties of ultra-thin PECVD silicon oxynitride layers by high-temperature annealing,” Vacuum 82(10), 1013–1019 (2008).
[Crossref]

Other (3)

R. Chandrasekar, Z. Wang, X. Meng, A. Lagutchev, Y. L. Kim, A. Wei, A. Boltasseva, and V. M. Shalaev, “Lasing action with gold nanorod hyperbolic metamaterials,” in Conference on Lasers and Electro-Optics CLEO: Applications and Technology (2016), paper JTh4A.4.
[Crossref]

A. Al Sayem, A. Shahriar, M. R. C. Mahdy, and M. S. Rahman, “Control of reflection through epsilon near zero graphene based anisotropic metamaterial,” in Proceedings of IEEE Conference on Electrical and Computer Engineering (IEEE,2014), pp. 812–815.

A. Tyszka-Zawadzka, B. Janaszek, and P. Szczepański, “Tunable slow light in graphene-based hyperbolic metamaterial waveguide operating in SCLU telecom bands,” Optics Express, in press (2017).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Scheme of considered structure.
Fig. 2
Fig. 2 Real part of effective permittivity tensor components ε|| (red curve) and ε (blue curve) plotted vs. wavelength for biasing voltage Vg = 0 V, where λ 0 (1,3) and λ 0 (2) denote the resonance wavelengths of ε and ε||, respectively.
Fig. 3
Fig. 3 Spectral dependencies of effective gain/absorption (g, g|| / α, α||) corresponding to resonance wavelengths λ 0 (1) for different values of biasing voltage as well as gain/absorption (g/α) of constituent material: (a) g (left axis; blue curves) for Vg = 0,3,8 mV and g (right axis; solid green curve); (b) g|| (left axis; red curves) for Vg = 0,3,8 mV and g (right axis; solid green curve); (c) α (left axis; blue curves) for Vg = 11,13,15 mV and α (right axis; dashed green curve); (d) α|| (left axis; red curves) for Vg = 11,13,15 mV and α (right axis; dashed green curve).
Fig. 4
Fig. 4 Spectral dependencies of effective gain/absorption (g, g|| / α, α||) corresponding to resonance wavelengths λ 0 (2) for different values of biasing voltage as well as gain/absorption (g/α) of constituent material: (a) g (left axis; blue curves) for Vg = 0.55,0.75,0.9 V and g (right axis; solid green curve); (b) g|| (left axis; red curves) for Vg = 0.55,0.75,0.9 V and g (right axis; solid green curve); (c) α (left axis; blue curves) for Vg = 1.1,1.2,1.4 V and α (right axis; dashed green curve); (d) α|| (left axis; red curves) for Vg = 1.1,1.2,1.4 V and α (right axis; dashed green curve).
Fig. 5
Fig. 5 Spectral dependencies of effective absorption (α, α||) corresponding to resonance wavelengths λ 0 (3) for different values of biasing voltage as well as absorption (α) of constituent material: (c) α (left axis; blue curves) for Vg = 0,0.5,1 mV and α (right axis; dashed green curve); (d) α|| (left axis; red curves) for Vg = 0,0.5,1 mV and α (right axis; dashed green curve).

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

ε graph =1j σ(ω, μ c ) ω ε o t graph ,
σ(ω, μ c )= j4π q 2 k B T h 2 (ωj2τ) [ μ c k B T +2ln( e μ / k B T +1 ) ]+ j4π q 2 ( ωj2τ ) h 2 0 f D (ξ) f D (ξ) ( ωj2τ ) 2 16( πξ h ) dξ,
| μ c |= υ F π| a 0 ( V g V dirac ) | ,
Re( ε g/ab (λ))1+ a 1 λ 2 λ 2 l 1 2 + a 2 λ 2 λ 2 l 2 2 + a 3 λ 2 λ 2 l 3 2
g(λ)=N σ em (λ),
α(λ)=N σ abs (λ),
σ em/abs (λ)= k=1 4 α k exp( 2 ( λ λ k Δ λ k ) 2 ) .
Im( ε g/ab )=g(λ)λ Re( ε g/ab ) .
ε || = t graph ε graph + t g/ab ε g/ab t graph + t g/ab ,
ε = ε graph ε g/ab ( t graph + t g/ab ) t graph ε g/ab + t g/ab ε graph ,
g ||, ( λ )= Im[ ε ||, ( λ ) ]λ Re[ | ε ||, ( λ ) | ]
α ||, ( λ )= Im[ ε ||, ( λ ) ]λ Re[ | ε ||, ( λ ) | ] , .

Metrics