Abstract

Despite the fact that metal is the most common conducting constituent element in the fabrication of metamaterials, one of the advantages of graphene over metal is that its conductivity can be controlled by the Fermi energy. Here, we theoretically investigate multilayer structures comprising alternating graphene and dielectric layers as a class of hyperbolic metamaterials for THz frequencies based on a general simple model of the graphene and the dielectric layers. By employing a method of matching the tangential components of the electrical and magnetic fields, we derive the relevant dispersion relations and demonstrate that tuning can be achieved by modifying the Fermi energy. Moreover, tunability of the graphene-dielectric heterostructures can be enhanced further by changing either the thickness of the dielectric layers or the number of graphene sheets employed. Calculated dispersion relations, propagation lengths of plasmon modes in the system are presented. This allows us to characterize and categorize the modes into two groups: Ferrel-Berreman modes and surface plasmon polaritons.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Engineered surface Bloch waves in graphene-based hyperbolic metamaterials

Yuanjiang Xiang, Jun Guo, Xiaoyu Dai, Shuangchun Wen, and Dingyuan Tang
Opt. Express 22(3) 3054-3062 (2014)

Tunable bulk polaritons of graphene-based hyperbolic metamaterials

Liwei Zhang, Zhengren Zhang, Chaoyang Kang, Bei Cheng, Liang Chen, Xuefeng Yang, Jian Wang, Weibing Li, and Baoji Wang
Opt. Express 22(11) 14022-14030 (2014)

Graphene-based tunable hyperbolic metamaterials and enhanced near-field absorption

Mohamed A. K. Othman, Caner Guclu, and Filippo Capolino
Opt. Express 21(6) 7614-7632 (2013)

References

  • View by:
  • |
  • |
  • |

  1. A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater. 6(12), 946–950 (2007).
    [Crossref] [PubMed]
  2. H. N. S. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, “Topological transitions in metamaterials,” Science 336(6078), 205–209 (2012).
    [Crossref] [PubMed]
  3. C. Argyropoulos, N. M. Estakhri, F. Monticone, and A. Alù, “Negative refraction, gain and nonlinear effects in hyperbolic metamaterials,” Opt. Express 21(12), 15037–15047 (2013).
    [Crossref] [PubMed]
  4. S. Campione, T. S. Luk, S. Liu, and M. B. Sinclair, “Optical properties of transiently-excited semiconductor hyperbolic metamaterials,” Opt. Express 5(11), 2385–2394 (2015).
    [Crossref]
  5. C. Guclu, S. Campione, and F. Capolino, “Hyperbolic metamaterial as super absorber for scattered fields generated at its surface,” Phys. Rev. B 86(20), 205130 (2012).
    [Crossref]
  6. L. B. Felsen and N. Marcuvitz, Radiation and Scattering of Waves (Prentice-Hall, 1973).
  7. D. R. Smith and D. Schurig, “Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors,” Phys. Rev. Lett. 90(7), 077405 (2003).
    [Crossref] [PubMed]
  8. A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7(12), 948–957 (2013).
    [Crossref]
  9. Y.-C. Chang, C.-H. Liu, C.-H. Liu, S. Zhang, S. R. Marder, E. E. Narimanov, Z. Zhong, and T. B. Norris, “Realization of mid-infrared graphene hyperbolic metamaterials,” Nat. Commun. 7, 10568 (2016).
    [Crossref] [PubMed]
  10. M. A. K. Othman, C. Guclu, and F. Capolino, “Graphene-based tunable hyperbolic metamaterials and enhanced near-field absorption,” Opt. Express 21(6), 7614–7632 (2013).
    [Crossref] [PubMed]
  11. M. A. K. Othman, C. Guclu, and F. Capolino, “Graphene–dielectric composite metamaterials: evolution from elliptic to hyperbolic wavevector dispersion and the transverse epsilon-near-zero condition,” J. Nanophotonics 7(1), 073089 (2013).
    [Crossref]
  12. I. V. Iorsh, I. S. Mukhin, I. V. Shadrivov, P. A. Belov, and Y. S. Kivshar, “Hyperbolic metamaterials based on multilayer graphene structures,” Phys. Rev. B 88(3), 039904 (2013).
    [Crossref]
  13. K. V. Sreekanth, A. De Luca, and G. Strangi, “Negative refraction in graphene-based hyperbolic metamaterials,” Appl. Phys. Lett. 103(2), 023107 (2013).
    [Crossref]
  14. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
    [Crossref] [PubMed]
  15. F. H. Koppens, D. E. Chang, and F. J. García de Abajo, “Graphene plasmonics: a platform for strong light-matter interactions,” Nano Lett. 11(8), 3370–3377 (2011).
    [Crossref] [PubMed]
  16. Y. Xiang, J. Guo, X. Dai, S. Wen, and D. Tang, “Engineered surface Bloch waves in graphene-based hyperbolic metamaterials,” Opt. Express 22(3), 3054–3062 (2014).
    [Crossref] [PubMed]
  17. T. Gric, “Surface-plasmon-polaritons at the interface of nanostructured metamaterials,” Prog. Electromagnetics Res. 46, 165–172 (2016).
    [Crossref]
  18. V. M. Agranovich and V. E. Kravtsov, “Notes on crystal optics of superlattices,” Solid State Commun. 55(1), 85–90 (1985).
    [Crossref]
  19. I. Iorsh, A. Orlov, P. Belov, and Y. Kivshar, “Interface modes in nanostructured metal-dielectric metamaterials,” Appl. Phys. Lett. 99(15), 151914 (2011).
    [Crossref]
  20. L. A. Falkovsky, “Optical properties of graphene,” J. Phys. Conf. Ser. 129, 012004 (2008).
    [Crossref]
  21. G. W. Hanson, “Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene,” J. Appl. Phys. 103(6), 064302 (2008).
    [Crossref]
  22. A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011).
    [Crossref] [PubMed]
  23. J. Homola, Electromagnetic Theory of Surface Plasmons (Springer series on chemical sensors and biosensors, 2006).
  24. A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3–4), 131–314 (2005).
    [Crossref]
  25. J. Kim, V. P. Drachev, Z. Jacob, G. V. Naik, A. Boltasseva, E. E. Narimanov, and V. M. Shalaev, “Improving the radiative decay rate for dye molecules with hyperbolic metamaterials,” Opt. Express 20(7), 8100–8116 (2012).
    [Crossref] [PubMed]
  26. N. Engheta, “Materials science. Pursuing near-zero response,” Science 340(6130), 286–287 (2013).
    [Crossref] [PubMed]
  27. E. Kretschmann and H. Raether, “Radiative decay of non-radiative surface plasmons excited by light,” Z. Naturforsch. B 23A, 2135–2136 (1968).
  28. B. Hecht, H. Bielefeldt, L. Novotny, Y. Inouye, and D. W. Pohl, “Local excitation, scattering, and interference of surface plasmons,” Phys. Rev. Lett. 77(9), 1889–1892 (1996).
    [Crossref] [PubMed]
  29. J. Tian, S. Yu, W. Yan, and M. Qiu, “Broadband high-efficiency surface-plasmon-polariton coupler with siliconmetal interface,” Appl. Phys. Lett. 95(1), 013504 (2009).
    [Crossref]
  30. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  31. J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Planar metal plasmon waveguides: frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model,” Phys. Rev. B 72(7), 075405 (2005).
    [Crossref]
  32. R. T. Ling, J. D. Scholler, and P. Ya. Ufimtsev, “The propagation and excitation of surface waves in an absorbing layer,” Prog. Electromagnetics Res. 19, 49–91 (1998).
    [Crossref]
  33. J. A. Sorni, M. Naserpour, C. J. Zapata-Rodríguez, and J. J. Miret, “Dyakonov surface waves in lossy metamaterials,” Opt. Commun. 355, 251–255 (2015).
    [Crossref]
  34. S. Campione, F. Marquier, J.-P. Hugonin, A. R. Ellis, J. F. Klem, M. B. Sinclair, and T. S. Luk, “Directional and monochromatic thermal emitter from epsilon-near-zero conditions in semiconductor hyperbolic metamaterials,” Sci. Rep. 6, 34746 (2016).
    [Crossref] [PubMed]
  35. S. Vassant, J.-P. Hugonin, F. Marquier, and J.-J. Greffet, “Berreman mode and epsilon near zero mode,” Opt. Express 20(21), 23971–23977 (2012).
    [Crossref] [PubMed]
  36. S. Vassant, A. Archambault, F. Marquier, F. Pardo, U. Gennser, A. Cavanna, J. L. Pelouard, and J.-J. Greffet, “Epsilon-near-zero mode for active optoelectronic devices,” Phys. Rev. Lett. 109(23), 237401 (2012).
    [Crossref] [PubMed]
  37. S. Campione, I. Brener, and F. Marquier, “Theory of epsilon-near-zero modes in ultrathin films,” Phys. Rev. B 91(12), 121408 (2015).
    [Crossref]
  38. K. Kliewer and R. Fuchs, “Collective electronic motion in a metallic slab,” Phys. Rev. 153(2), 498–512 (1967).
    [Crossref]
  39. A. McAlister and E. Stern, “Plasma resonance absorption in thin metal films,” Phys. Rev. 132(4), 1599–1602 (1963).
    [Crossref]
  40. D. W. Berreman, “Infrared absorption at longitudinal optic frequency in cubic crystal films,” Phys. Rev. 130(6), 2193–2198 (1963).
    [Crossref]

2016 (3)

Y.-C. Chang, C.-H. Liu, C.-H. Liu, S. Zhang, S. R. Marder, E. E. Narimanov, Z. Zhong, and T. B. Norris, “Realization of mid-infrared graphene hyperbolic metamaterials,” Nat. Commun. 7, 10568 (2016).
[Crossref] [PubMed]

T. Gric, “Surface-plasmon-polaritons at the interface of nanostructured metamaterials,” Prog. Electromagnetics Res. 46, 165–172 (2016).
[Crossref]

S. Campione, F. Marquier, J.-P. Hugonin, A. R. Ellis, J. F. Klem, M. B. Sinclair, and T. S. Luk, “Directional and monochromatic thermal emitter from epsilon-near-zero conditions in semiconductor hyperbolic metamaterials,” Sci. Rep. 6, 34746 (2016).
[Crossref] [PubMed]

2015 (3)

J. A. Sorni, M. Naserpour, C. J. Zapata-Rodríguez, and J. J. Miret, “Dyakonov surface waves in lossy metamaterials,” Opt. Commun. 355, 251–255 (2015).
[Crossref]

S. Campione, I. Brener, and F. Marquier, “Theory of epsilon-near-zero modes in ultrathin films,” Phys. Rev. B 91(12), 121408 (2015).
[Crossref]

S. Campione, T. S. Luk, S. Liu, and M. B. Sinclair, “Optical properties of transiently-excited semiconductor hyperbolic metamaterials,” Opt. Express 5(11), 2385–2394 (2015).
[Crossref]

2014 (1)

2013 (7)

C. Argyropoulos, N. M. Estakhri, F. Monticone, and A. Alù, “Negative refraction, gain and nonlinear effects in hyperbolic metamaterials,” Opt. Express 21(12), 15037–15047 (2013).
[Crossref] [PubMed]

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7(12), 948–957 (2013).
[Crossref]

M. A. K. Othman, C. Guclu, and F. Capolino, “Graphene-based tunable hyperbolic metamaterials and enhanced near-field absorption,” Opt. Express 21(6), 7614–7632 (2013).
[Crossref] [PubMed]

M. A. K. Othman, C. Guclu, and F. Capolino, “Graphene–dielectric composite metamaterials: evolution from elliptic to hyperbolic wavevector dispersion and the transverse epsilon-near-zero condition,” J. Nanophotonics 7(1), 073089 (2013).
[Crossref]

I. V. Iorsh, I. S. Mukhin, I. V. Shadrivov, P. A. Belov, and Y. S. Kivshar, “Hyperbolic metamaterials based on multilayer graphene structures,” Phys. Rev. B 88(3), 039904 (2013).
[Crossref]

K. V. Sreekanth, A. De Luca, and G. Strangi, “Negative refraction in graphene-based hyperbolic metamaterials,” Appl. Phys. Lett. 103(2), 023107 (2013).
[Crossref]

N. Engheta, “Materials science. Pursuing near-zero response,” Science 340(6130), 286–287 (2013).
[Crossref] [PubMed]

2012 (5)

J. Kim, V. P. Drachev, Z. Jacob, G. V. Naik, A. Boltasseva, E. E. Narimanov, and V. M. Shalaev, “Improving the radiative decay rate for dye molecules with hyperbolic metamaterials,” Opt. Express 20(7), 8100–8116 (2012).
[Crossref] [PubMed]

S. Vassant, J.-P. Hugonin, F. Marquier, and J.-J. Greffet, “Berreman mode and epsilon near zero mode,” Opt. Express 20(21), 23971–23977 (2012).
[Crossref] [PubMed]

S. Vassant, A. Archambault, F. Marquier, F. Pardo, U. Gennser, A. Cavanna, J. L. Pelouard, and J.-J. Greffet, “Epsilon-near-zero mode for active optoelectronic devices,” Phys. Rev. Lett. 109(23), 237401 (2012).
[Crossref] [PubMed]

C. Guclu, S. Campione, and F. Capolino, “Hyperbolic metamaterial as super absorber for scattered fields generated at its surface,” Phys. Rev. B 86(20), 205130 (2012).
[Crossref]

H. N. S. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, “Topological transitions in metamaterials,” Science 336(6078), 205–209 (2012).
[Crossref] [PubMed]

2011 (3)

F. H. Koppens, D. E. Chang, and F. J. García de Abajo, “Graphene plasmonics: a platform for strong light-matter interactions,” Nano Lett. 11(8), 3370–3377 (2011).
[Crossref] [PubMed]

I. Iorsh, A. Orlov, P. Belov, and Y. Kivshar, “Interface modes in nanostructured metal-dielectric metamaterials,” Appl. Phys. Lett. 99(15), 151914 (2011).
[Crossref]

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011).
[Crossref] [PubMed]

2009 (1)

J. Tian, S. Yu, W. Yan, and M. Qiu, “Broadband high-efficiency surface-plasmon-polariton coupler with siliconmetal interface,” Appl. Phys. Lett. 95(1), 013504 (2009).
[Crossref]

2008 (2)

L. A. Falkovsky, “Optical properties of graphene,” J. Phys. Conf. Ser. 129, 012004 (2008).
[Crossref]

G. W. Hanson, “Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene,” J. Appl. Phys. 103(6), 064302 (2008).
[Crossref]

2007 (1)

A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater. 6(12), 946–950 (2007).
[Crossref] [PubMed]

2005 (2)

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Planar metal plasmon waveguides: frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model,” Phys. Rev. B 72(7), 075405 (2005).
[Crossref]

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3–4), 131–314 (2005).
[Crossref]

2004 (1)

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

2003 (1)

D. R. Smith and D. Schurig, “Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors,” Phys. Rev. Lett. 90(7), 077405 (2003).
[Crossref] [PubMed]

1998 (1)

R. T. Ling, J. D. Scholler, and P. Ya. Ufimtsev, “The propagation and excitation of surface waves in an absorbing layer,” Prog. Electromagnetics Res. 19, 49–91 (1998).
[Crossref]

1996 (1)

B. Hecht, H. Bielefeldt, L. Novotny, Y. Inouye, and D. W. Pohl, “Local excitation, scattering, and interference of surface plasmons,” Phys. Rev. Lett. 77(9), 1889–1892 (1996).
[Crossref] [PubMed]

1985 (1)

V. M. Agranovich and V. E. Kravtsov, “Notes on crystal optics of superlattices,” Solid State Commun. 55(1), 85–90 (1985).
[Crossref]

1968 (1)

E. Kretschmann and H. Raether, “Radiative decay of non-radiative surface plasmons excited by light,” Z. Naturforsch. B 23A, 2135–2136 (1968).

1967 (1)

K. Kliewer and R. Fuchs, “Collective electronic motion in a metallic slab,” Phys. Rev. 153(2), 498–512 (1967).
[Crossref]

1963 (2)

A. McAlister and E. Stern, “Plasma resonance absorption in thin metal films,” Phys. Rev. 132(4), 1599–1602 (1963).
[Crossref]

D. W. Berreman, “Infrared absorption at longitudinal optic frequency in cubic crystal films,” Phys. Rev. 130(6), 2193–2198 (1963).
[Crossref]

Agranovich, V. M.

V. M. Agranovich and V. E. Kravtsov, “Notes on crystal optics of superlattices,” Solid State Commun. 55(1), 85–90 (1985).
[Crossref]

Alekseyev, L.

A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater. 6(12), 946–950 (2007).
[Crossref] [PubMed]

Alù, A.

Archambault, A.

S. Vassant, A. Archambault, F. Marquier, F. Pardo, U. Gennser, A. Cavanna, J. L. Pelouard, and J.-J. Greffet, “Epsilon-near-zero mode for active optoelectronic devices,” Phys. Rev. Lett. 109(23), 237401 (2012).
[Crossref] [PubMed]

Argyropoulos, C.

Atwater, H. A.

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Planar metal plasmon waveguides: frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model,” Phys. Rev. B 72(7), 075405 (2005).
[Crossref]

Belov, P.

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7(12), 948–957 (2013).
[Crossref]

I. Iorsh, A. Orlov, P. Belov, and Y. Kivshar, “Interface modes in nanostructured metal-dielectric metamaterials,” Appl. Phys. Lett. 99(15), 151914 (2011).
[Crossref]

Belov, P. A.

I. V. Iorsh, I. S. Mukhin, I. V. Shadrivov, P. A. Belov, and Y. S. Kivshar, “Hyperbolic metamaterials based on multilayer graphene structures,” Phys. Rev. B 88(3), 039904 (2013).
[Crossref]

Berreman, D. W.

D. W. Berreman, “Infrared absorption at longitudinal optic frequency in cubic crystal films,” Phys. Rev. 130(6), 2193–2198 (1963).
[Crossref]

Bielefeldt, H.

B. Hecht, H. Bielefeldt, L. Novotny, Y. Inouye, and D. W. Pohl, “Local excitation, scattering, and interference of surface plasmons,” Phys. Rev. Lett. 77(9), 1889–1892 (1996).
[Crossref] [PubMed]

Boltasseva, A.

Brener, I.

S. Campione, I. Brener, and F. Marquier, “Theory of epsilon-near-zero modes in ultrathin films,” Phys. Rev. B 91(12), 121408 (2015).
[Crossref]

Campione, S.

S. Campione, F. Marquier, J.-P. Hugonin, A. R. Ellis, J. F. Klem, M. B. Sinclair, and T. S. Luk, “Directional and monochromatic thermal emitter from epsilon-near-zero conditions in semiconductor hyperbolic metamaterials,” Sci. Rep. 6, 34746 (2016).
[Crossref] [PubMed]

S. Campione, I. Brener, and F. Marquier, “Theory of epsilon-near-zero modes in ultrathin films,” Phys. Rev. B 91(12), 121408 (2015).
[Crossref]

S. Campione, T. S. Luk, S. Liu, and M. B. Sinclair, “Optical properties of transiently-excited semiconductor hyperbolic metamaterials,” Opt. Express 5(11), 2385–2394 (2015).
[Crossref]

C. Guclu, S. Campione, and F. Capolino, “Hyperbolic metamaterial as super absorber for scattered fields generated at its surface,” Phys. Rev. B 86(20), 205130 (2012).
[Crossref]

Capolino, F.

M. A. K. Othman, C. Guclu, and F. Capolino, “Graphene–dielectric composite metamaterials: evolution from elliptic to hyperbolic wavevector dispersion and the transverse epsilon-near-zero condition,” J. Nanophotonics 7(1), 073089 (2013).
[Crossref]

M. A. K. Othman, C. Guclu, and F. Capolino, “Graphene-based tunable hyperbolic metamaterials and enhanced near-field absorption,” Opt. Express 21(6), 7614–7632 (2013).
[Crossref] [PubMed]

C. Guclu, S. Campione, and F. Capolino, “Hyperbolic metamaterial as super absorber for scattered fields generated at its surface,” Phys. Rev. B 86(20), 205130 (2012).
[Crossref]

Cavanna, A.

S. Vassant, A. Archambault, F. Marquier, F. Pardo, U. Gennser, A. Cavanna, J. L. Pelouard, and J.-J. Greffet, “Epsilon-near-zero mode for active optoelectronic devices,” Phys. Rev. Lett. 109(23), 237401 (2012).
[Crossref] [PubMed]

Chang, D. E.

F. H. Koppens, D. E. Chang, and F. J. García de Abajo, “Graphene plasmonics: a platform for strong light-matter interactions,” Nano Lett. 11(8), 3370–3377 (2011).
[Crossref] [PubMed]

Chang, Y.-C.

Y.-C. Chang, C.-H. Liu, C.-H. Liu, S. Zhang, S. R. Marder, E. E. Narimanov, Z. Zhong, and T. B. Norris, “Realization of mid-infrared graphene hyperbolic metamaterials,” Nat. Commun. 7, 10568 (2016).
[Crossref] [PubMed]

Dai, X.

De Luca, A.

K. V. Sreekanth, A. De Luca, and G. Strangi, “Negative refraction in graphene-based hyperbolic metamaterials,” Appl. Phys. Lett. 103(2), 023107 (2013).
[Crossref]

Dionne, J. A.

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Planar metal plasmon waveguides: frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model,” Phys. Rev. B 72(7), 075405 (2005).
[Crossref]

Drachev, V. P.

Dubonos, S. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Ellis, A. R.

S. Campione, F. Marquier, J.-P. Hugonin, A. R. Ellis, J. F. Klem, M. B. Sinclair, and T. S. Luk, “Directional and monochromatic thermal emitter from epsilon-near-zero conditions in semiconductor hyperbolic metamaterials,” Sci. Rep. 6, 34746 (2016).
[Crossref] [PubMed]

Engheta, N.

N. Engheta, “Materials science. Pursuing near-zero response,” Science 340(6130), 286–287 (2013).
[Crossref] [PubMed]

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011).
[Crossref] [PubMed]

Estakhri, N. M.

Falkovsky, L. A.

L. A. Falkovsky, “Optical properties of graphene,” J. Phys. Conf. Ser. 129, 012004 (2008).
[Crossref]

Firsov, A. A.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Franz, K. J.

A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater. 6(12), 946–950 (2007).
[Crossref] [PubMed]

Fuchs, R.

K. Kliewer and R. Fuchs, “Collective electronic motion in a metallic slab,” Phys. Rev. 153(2), 498–512 (1967).
[Crossref]

García de Abajo, F. J.

F. H. Koppens, D. E. Chang, and F. J. García de Abajo, “Graphene plasmonics: a platform for strong light-matter interactions,” Nano Lett. 11(8), 3370–3377 (2011).
[Crossref] [PubMed]

Geim, A. K.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Gennser, U.

S. Vassant, A. Archambault, F. Marquier, F. Pardo, U. Gennser, A. Cavanna, J. L. Pelouard, and J.-J. Greffet, “Epsilon-near-zero mode for active optoelectronic devices,” Phys. Rev. Lett. 109(23), 237401 (2012).
[Crossref] [PubMed]

Gmachl, C.

A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater. 6(12), 946–950 (2007).
[Crossref] [PubMed]

Greffet, J.-J.

S. Vassant, A. Archambault, F. Marquier, F. Pardo, U. Gennser, A. Cavanna, J. L. Pelouard, and J.-J. Greffet, “Epsilon-near-zero mode for active optoelectronic devices,” Phys. Rev. Lett. 109(23), 237401 (2012).
[Crossref] [PubMed]

S. Vassant, J.-P. Hugonin, F. Marquier, and J.-J. Greffet, “Berreman mode and epsilon near zero mode,” Opt. Express 20(21), 23971–23977 (2012).
[Crossref] [PubMed]

Gric, T.

T. Gric, “Surface-plasmon-polaritons at the interface of nanostructured metamaterials,” Prog. Electromagnetics Res. 46, 165–172 (2016).
[Crossref]

Grigorieva, I. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Guclu, C.

M. A. K. Othman, C. Guclu, and F. Capolino, “Graphene-based tunable hyperbolic metamaterials and enhanced near-field absorption,” Opt. Express 21(6), 7614–7632 (2013).
[Crossref] [PubMed]

M. A. K. Othman, C. Guclu, and F. Capolino, “Graphene–dielectric composite metamaterials: evolution from elliptic to hyperbolic wavevector dispersion and the transverse epsilon-near-zero condition,” J. Nanophotonics 7(1), 073089 (2013).
[Crossref]

C. Guclu, S. Campione, and F. Capolino, “Hyperbolic metamaterial as super absorber for scattered fields generated at its surface,” Phys. Rev. B 86(20), 205130 (2012).
[Crossref]

Guo, J.

Hanson, G. W.

G. W. Hanson, “Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene,” J. Appl. Phys. 103(6), 064302 (2008).
[Crossref]

Hecht, B.

B. Hecht, H. Bielefeldt, L. Novotny, Y. Inouye, and D. W. Pohl, “Local excitation, scattering, and interference of surface plasmons,” Phys. Rev. Lett. 77(9), 1889–1892 (1996).
[Crossref] [PubMed]

Hoffman, A. J.

A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater. 6(12), 946–950 (2007).
[Crossref] [PubMed]

Howard, S. S.

A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater. 6(12), 946–950 (2007).
[Crossref] [PubMed]

Hugonin, J.-P.

S. Campione, F. Marquier, J.-P. Hugonin, A. R. Ellis, J. F. Klem, M. B. Sinclair, and T. S. Luk, “Directional and monochromatic thermal emitter from epsilon-near-zero conditions in semiconductor hyperbolic metamaterials,” Sci. Rep. 6, 34746 (2016).
[Crossref] [PubMed]

S. Vassant, J.-P. Hugonin, F. Marquier, and J.-J. Greffet, “Berreman mode and epsilon near zero mode,” Opt. Express 20(21), 23971–23977 (2012).
[Crossref] [PubMed]

Inouye, Y.

B. Hecht, H. Bielefeldt, L. Novotny, Y. Inouye, and D. W. Pohl, “Local excitation, scattering, and interference of surface plasmons,” Phys. Rev. Lett. 77(9), 1889–1892 (1996).
[Crossref] [PubMed]

Iorsh, I.

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7(12), 948–957 (2013).
[Crossref]

I. Iorsh, A. Orlov, P. Belov, and Y. Kivshar, “Interface modes in nanostructured metal-dielectric metamaterials,” Appl. Phys. Lett. 99(15), 151914 (2011).
[Crossref]

Iorsh, I. V.

I. V. Iorsh, I. S. Mukhin, I. V. Shadrivov, P. A. Belov, and Y. S. Kivshar, “Hyperbolic metamaterials based on multilayer graphene structures,” Phys. Rev. B 88(3), 039904 (2013).
[Crossref]

Jacob, Z.

Jiang, D.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Kim, J.

Kivshar, Y.

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7(12), 948–957 (2013).
[Crossref]

I. Iorsh, A. Orlov, P. Belov, and Y. Kivshar, “Interface modes in nanostructured metal-dielectric metamaterials,” Appl. Phys. Lett. 99(15), 151914 (2011).
[Crossref]

Kivshar, Y. S.

I. V. Iorsh, I. S. Mukhin, I. V. Shadrivov, P. A. Belov, and Y. S. Kivshar, “Hyperbolic metamaterials based on multilayer graphene structures,” Phys. Rev. B 88(3), 039904 (2013).
[Crossref]

Klem, J. F.

S. Campione, F. Marquier, J.-P. Hugonin, A. R. Ellis, J. F. Klem, M. B. Sinclair, and T. S. Luk, “Directional and monochromatic thermal emitter from epsilon-near-zero conditions in semiconductor hyperbolic metamaterials,” Sci. Rep. 6, 34746 (2016).
[Crossref] [PubMed]

Kliewer, K.

K. Kliewer and R. Fuchs, “Collective electronic motion in a metallic slab,” Phys. Rev. 153(2), 498–512 (1967).
[Crossref]

Koppens, F. H.

F. H. Koppens, D. E. Chang, and F. J. García de Abajo, “Graphene plasmonics: a platform for strong light-matter interactions,” Nano Lett. 11(8), 3370–3377 (2011).
[Crossref] [PubMed]

Kravtsov, V. E.

V. M. Agranovich and V. E. Kravtsov, “Notes on crystal optics of superlattices,” Solid State Commun. 55(1), 85–90 (1985).
[Crossref]

Kretschmann, E.

E. Kretschmann and H. Raether, “Radiative decay of non-radiative surface plasmons excited by light,” Z. Naturforsch. B 23A, 2135–2136 (1968).

Kretzschmar, I.

H. N. S. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, “Topological transitions in metamaterials,” Science 336(6078), 205–209 (2012).
[Crossref] [PubMed]

Krishnamoorthy, H. N. S.

H. N. S. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, “Topological transitions in metamaterials,” Science 336(6078), 205–209 (2012).
[Crossref] [PubMed]

Ling, R. T.

R. T. Ling, J. D. Scholler, and P. Ya. Ufimtsev, “The propagation and excitation of surface waves in an absorbing layer,” Prog. Electromagnetics Res. 19, 49–91 (1998).
[Crossref]

Liu, C.-H.

Y.-C. Chang, C.-H. Liu, C.-H. Liu, S. Zhang, S. R. Marder, E. E. Narimanov, Z. Zhong, and T. B. Norris, “Realization of mid-infrared graphene hyperbolic metamaterials,” Nat. Commun. 7, 10568 (2016).
[Crossref] [PubMed]

Y.-C. Chang, C.-H. Liu, C.-H. Liu, S. Zhang, S. R. Marder, E. E. Narimanov, Z. Zhong, and T. B. Norris, “Realization of mid-infrared graphene hyperbolic metamaterials,” Nat. Commun. 7, 10568 (2016).
[Crossref] [PubMed]

Liu, S.

S. Campione, T. S. Luk, S. Liu, and M. B. Sinclair, “Optical properties of transiently-excited semiconductor hyperbolic metamaterials,” Opt. Express 5(11), 2385–2394 (2015).
[Crossref]

Luk, T. S.

S. Campione, F. Marquier, J.-P. Hugonin, A. R. Ellis, J. F. Klem, M. B. Sinclair, and T. S. Luk, “Directional and monochromatic thermal emitter from epsilon-near-zero conditions in semiconductor hyperbolic metamaterials,” Sci. Rep. 6, 34746 (2016).
[Crossref] [PubMed]

S. Campione, T. S. Luk, S. Liu, and M. B. Sinclair, “Optical properties of transiently-excited semiconductor hyperbolic metamaterials,” Opt. Express 5(11), 2385–2394 (2015).
[Crossref]

Maradudin, A. A.

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3–4), 131–314 (2005).
[Crossref]

Marder, S. R.

Y.-C. Chang, C.-H. Liu, C.-H. Liu, S. Zhang, S. R. Marder, E. E. Narimanov, Z. Zhong, and T. B. Norris, “Realization of mid-infrared graphene hyperbolic metamaterials,” Nat. Commun. 7, 10568 (2016).
[Crossref] [PubMed]

Marquier, F.

S. Campione, F. Marquier, J.-P. Hugonin, A. R. Ellis, J. F. Klem, M. B. Sinclair, and T. S. Luk, “Directional and monochromatic thermal emitter from epsilon-near-zero conditions in semiconductor hyperbolic metamaterials,” Sci. Rep. 6, 34746 (2016).
[Crossref] [PubMed]

S. Campione, I. Brener, and F. Marquier, “Theory of epsilon-near-zero modes in ultrathin films,” Phys. Rev. B 91(12), 121408 (2015).
[Crossref]

S. Vassant, A. Archambault, F. Marquier, F. Pardo, U. Gennser, A. Cavanna, J. L. Pelouard, and J.-J. Greffet, “Epsilon-near-zero mode for active optoelectronic devices,” Phys. Rev. Lett. 109(23), 237401 (2012).
[Crossref] [PubMed]

S. Vassant, J.-P. Hugonin, F. Marquier, and J.-J. Greffet, “Berreman mode and epsilon near zero mode,” Opt. Express 20(21), 23971–23977 (2012).
[Crossref] [PubMed]

McAlister, A.

A. McAlister and E. Stern, “Plasma resonance absorption in thin metal films,” Phys. Rev. 132(4), 1599–1602 (1963).
[Crossref]

Menon, V. M.

H. N. S. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, “Topological transitions in metamaterials,” Science 336(6078), 205–209 (2012).
[Crossref] [PubMed]

Miret, J. J.

J. A. Sorni, M. Naserpour, C. J. Zapata-Rodríguez, and J. J. Miret, “Dyakonov surface waves in lossy metamaterials,” Opt. Commun. 355, 251–255 (2015).
[Crossref]

Monticone, F.

Morozov, S. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Mukhin, I. S.

I. V. Iorsh, I. S. Mukhin, I. V. Shadrivov, P. A. Belov, and Y. S. Kivshar, “Hyperbolic metamaterials based on multilayer graphene structures,” Phys. Rev. B 88(3), 039904 (2013).
[Crossref]

Naik, G. V.

Narimanov, E.

H. N. S. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, “Topological transitions in metamaterials,” Science 336(6078), 205–209 (2012).
[Crossref] [PubMed]

Narimanov, E. E.

Y.-C. Chang, C.-H. Liu, C.-H. Liu, S. Zhang, S. R. Marder, E. E. Narimanov, Z. Zhong, and T. B. Norris, “Realization of mid-infrared graphene hyperbolic metamaterials,” Nat. Commun. 7, 10568 (2016).
[Crossref] [PubMed]

J. Kim, V. P. Drachev, Z. Jacob, G. V. Naik, A. Boltasseva, E. E. Narimanov, and V. M. Shalaev, “Improving the radiative decay rate for dye molecules with hyperbolic metamaterials,” Opt. Express 20(7), 8100–8116 (2012).
[Crossref] [PubMed]

A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater. 6(12), 946–950 (2007).
[Crossref] [PubMed]

Naserpour, M.

J. A. Sorni, M. Naserpour, C. J. Zapata-Rodríguez, and J. J. Miret, “Dyakonov surface waves in lossy metamaterials,” Opt. Commun. 355, 251–255 (2015).
[Crossref]

Norris, T. B.

Y.-C. Chang, C.-H. Liu, C.-H. Liu, S. Zhang, S. R. Marder, E. E. Narimanov, Z. Zhong, and T. B. Norris, “Realization of mid-infrared graphene hyperbolic metamaterials,” Nat. Commun. 7, 10568 (2016).
[Crossref] [PubMed]

Novoselov, K. S.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Novotny, L.

B. Hecht, H. Bielefeldt, L. Novotny, Y. Inouye, and D. W. Pohl, “Local excitation, scattering, and interference of surface plasmons,” Phys. Rev. Lett. 77(9), 1889–1892 (1996).
[Crossref] [PubMed]

Orlov, A.

I. Iorsh, A. Orlov, P. Belov, and Y. Kivshar, “Interface modes in nanostructured metal-dielectric metamaterials,” Appl. Phys. Lett. 99(15), 151914 (2011).
[Crossref]

Othman, M. A. K.

M. A. K. Othman, C. Guclu, and F. Capolino, “Graphene-based tunable hyperbolic metamaterials and enhanced near-field absorption,” Opt. Express 21(6), 7614–7632 (2013).
[Crossref] [PubMed]

M. A. K. Othman, C. Guclu, and F. Capolino, “Graphene–dielectric composite metamaterials: evolution from elliptic to hyperbolic wavevector dispersion and the transverse epsilon-near-zero condition,” J. Nanophotonics 7(1), 073089 (2013).
[Crossref]

Pardo, F.

S. Vassant, A. Archambault, F. Marquier, F. Pardo, U. Gennser, A. Cavanna, J. L. Pelouard, and J.-J. Greffet, “Epsilon-near-zero mode for active optoelectronic devices,” Phys. Rev. Lett. 109(23), 237401 (2012).
[Crossref] [PubMed]

Pelouard, J. L.

S. Vassant, A. Archambault, F. Marquier, F. Pardo, U. Gennser, A. Cavanna, J. L. Pelouard, and J.-J. Greffet, “Epsilon-near-zero mode for active optoelectronic devices,” Phys. Rev. Lett. 109(23), 237401 (2012).
[Crossref] [PubMed]

Poddubny, A.

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7(12), 948–957 (2013).
[Crossref]

Podolskiy, V. A.

A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater. 6(12), 946–950 (2007).
[Crossref] [PubMed]

Pohl, D. W.

B. Hecht, H. Bielefeldt, L. Novotny, Y. Inouye, and D. W. Pohl, “Local excitation, scattering, and interference of surface plasmons,” Phys. Rev. Lett. 77(9), 1889–1892 (1996).
[Crossref] [PubMed]

Polman, A.

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Planar metal plasmon waveguides: frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model,” Phys. Rev. B 72(7), 075405 (2005).
[Crossref]

Qiu, M.

J. Tian, S. Yu, W. Yan, and M. Qiu, “Broadband high-efficiency surface-plasmon-polariton coupler with siliconmetal interface,” Appl. Phys. Lett. 95(1), 013504 (2009).
[Crossref]

Raether, H.

E. Kretschmann and H. Raether, “Radiative decay of non-radiative surface plasmons excited by light,” Z. Naturforsch. B 23A, 2135–2136 (1968).

Scholler, J. D.

R. T. Ling, J. D. Scholler, and P. Ya. Ufimtsev, “The propagation and excitation of surface waves in an absorbing layer,” Prog. Electromagnetics Res. 19, 49–91 (1998).
[Crossref]

Schurig, D.

D. R. Smith and D. Schurig, “Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors,” Phys. Rev. Lett. 90(7), 077405 (2003).
[Crossref] [PubMed]

Shadrivov, I. V.

I. V. Iorsh, I. S. Mukhin, I. V. Shadrivov, P. A. Belov, and Y. S. Kivshar, “Hyperbolic metamaterials based on multilayer graphene structures,” Phys. Rev. B 88(3), 039904 (2013).
[Crossref]

Shalaev, V. M.

Sinclair, M. B.

S. Campione, F. Marquier, J.-P. Hugonin, A. R. Ellis, J. F. Klem, M. B. Sinclair, and T. S. Luk, “Directional and monochromatic thermal emitter from epsilon-near-zero conditions in semiconductor hyperbolic metamaterials,” Sci. Rep. 6, 34746 (2016).
[Crossref] [PubMed]

S. Campione, T. S. Luk, S. Liu, and M. B. Sinclair, “Optical properties of transiently-excited semiconductor hyperbolic metamaterials,” Opt. Express 5(11), 2385–2394 (2015).
[Crossref]

Sivco, D. L.

A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater. 6(12), 946–950 (2007).
[Crossref] [PubMed]

Smith, D. R.

D. R. Smith and D. Schurig, “Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors,” Phys. Rev. Lett. 90(7), 077405 (2003).
[Crossref] [PubMed]

Smolyaninov, I. I.

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3–4), 131–314 (2005).
[Crossref]

Sorni, J. A.

J. A. Sorni, M. Naserpour, C. J. Zapata-Rodríguez, and J. J. Miret, “Dyakonov surface waves in lossy metamaterials,” Opt. Commun. 355, 251–255 (2015).
[Crossref]

Sreekanth, K. V.

K. V. Sreekanth, A. De Luca, and G. Strangi, “Negative refraction in graphene-based hyperbolic metamaterials,” Appl. Phys. Lett. 103(2), 023107 (2013).
[Crossref]

Stern, E.

A. McAlister and E. Stern, “Plasma resonance absorption in thin metal films,” Phys. Rev. 132(4), 1599–1602 (1963).
[Crossref]

Strangi, G.

K. V. Sreekanth, A. De Luca, and G. Strangi, “Negative refraction in graphene-based hyperbolic metamaterials,” Appl. Phys. Lett. 103(2), 023107 (2013).
[Crossref]

Sweatlock, L. A.

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Planar metal plasmon waveguides: frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model,” Phys. Rev. B 72(7), 075405 (2005).
[Crossref]

Tang, D.

Tian, J.

J. Tian, S. Yu, W. Yan, and M. Qiu, “Broadband high-efficiency surface-plasmon-polariton coupler with siliconmetal interface,” Appl. Phys. Lett. 95(1), 013504 (2009).
[Crossref]

Ufimtsev, P. Ya.

R. T. Ling, J. D. Scholler, and P. Ya. Ufimtsev, “The propagation and excitation of surface waves in an absorbing layer,” Prog. Electromagnetics Res. 19, 49–91 (1998).
[Crossref]

Vakil, A.

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011).
[Crossref] [PubMed]

Vassant, S.

S. Vassant, J.-P. Hugonin, F. Marquier, and J.-J. Greffet, “Berreman mode and epsilon near zero mode,” Opt. Express 20(21), 23971–23977 (2012).
[Crossref] [PubMed]

S. Vassant, A. Archambault, F. Marquier, F. Pardo, U. Gennser, A. Cavanna, J. L. Pelouard, and J.-J. Greffet, “Epsilon-near-zero mode for active optoelectronic devices,” Phys. Rev. Lett. 109(23), 237401 (2012).
[Crossref] [PubMed]

Wasserman, D.

A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater. 6(12), 946–950 (2007).
[Crossref] [PubMed]

Wen, S.

Xiang, Y.

Yan, W.

J. Tian, S. Yu, W. Yan, and M. Qiu, “Broadband high-efficiency surface-plasmon-polariton coupler with siliconmetal interface,” Appl. Phys. Lett. 95(1), 013504 (2009).
[Crossref]

Yu, S.

J. Tian, S. Yu, W. Yan, and M. Qiu, “Broadband high-efficiency surface-plasmon-polariton coupler with siliconmetal interface,” Appl. Phys. Lett. 95(1), 013504 (2009).
[Crossref]

Zapata-Rodríguez, C. J.

J. A. Sorni, M. Naserpour, C. J. Zapata-Rodríguez, and J. J. Miret, “Dyakonov surface waves in lossy metamaterials,” Opt. Commun. 355, 251–255 (2015).
[Crossref]

Zayats, A. V.

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3–4), 131–314 (2005).
[Crossref]

Zhang, S.

Y.-C. Chang, C.-H. Liu, C.-H. Liu, S. Zhang, S. R. Marder, E. E. Narimanov, Z. Zhong, and T. B. Norris, “Realization of mid-infrared graphene hyperbolic metamaterials,” Nat. Commun. 7, 10568 (2016).
[Crossref] [PubMed]

Zhang, Y.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Zhong, Z.

Y.-C. Chang, C.-H. Liu, C.-H. Liu, S. Zhang, S. R. Marder, E. E. Narimanov, Z. Zhong, and T. B. Norris, “Realization of mid-infrared graphene hyperbolic metamaterials,” Nat. Commun. 7, 10568 (2016).
[Crossref] [PubMed]

Appl. Phys. Lett. (3)

K. V. Sreekanth, A. De Luca, and G. Strangi, “Negative refraction in graphene-based hyperbolic metamaterials,” Appl. Phys. Lett. 103(2), 023107 (2013).
[Crossref]

I. Iorsh, A. Orlov, P. Belov, and Y. Kivshar, “Interface modes in nanostructured metal-dielectric metamaterials,” Appl. Phys. Lett. 99(15), 151914 (2011).
[Crossref]

J. Tian, S. Yu, W. Yan, and M. Qiu, “Broadband high-efficiency surface-plasmon-polariton coupler with siliconmetal interface,” Appl. Phys. Lett. 95(1), 013504 (2009).
[Crossref]

J. Appl. Phys. (1)

G. W. Hanson, “Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene,” J. Appl. Phys. 103(6), 064302 (2008).
[Crossref]

J. Nanophotonics (1)

M. A. K. Othman, C. Guclu, and F. Capolino, “Graphene–dielectric composite metamaterials: evolution from elliptic to hyperbolic wavevector dispersion and the transverse epsilon-near-zero condition,” J. Nanophotonics 7(1), 073089 (2013).
[Crossref]

J. Phys. Conf. Ser. (1)

L. A. Falkovsky, “Optical properties of graphene,” J. Phys. Conf. Ser. 129, 012004 (2008).
[Crossref]

Nano Lett. (1)

F. H. Koppens, D. E. Chang, and F. J. García de Abajo, “Graphene plasmonics: a platform for strong light-matter interactions,” Nano Lett. 11(8), 3370–3377 (2011).
[Crossref] [PubMed]

Nat. Commun. (1)

Y.-C. Chang, C.-H. Liu, C.-H. Liu, S. Zhang, S. R. Marder, E. E. Narimanov, Z. Zhong, and T. B. Norris, “Realization of mid-infrared graphene hyperbolic metamaterials,” Nat. Commun. 7, 10568 (2016).
[Crossref] [PubMed]

Nat. Mater. (1)

A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater. 6(12), 946–950 (2007).
[Crossref] [PubMed]

Nat. Photonics (1)

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7(12), 948–957 (2013).
[Crossref]

Opt. Commun. (1)

J. A. Sorni, M. Naserpour, C. J. Zapata-Rodríguez, and J. J. Miret, “Dyakonov surface waves in lossy metamaterials,” Opt. Commun. 355, 251–255 (2015).
[Crossref]

Opt. Express (6)

Phys. Rep. (1)

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3–4), 131–314 (2005).
[Crossref]

Phys. Rev. (3)

K. Kliewer and R. Fuchs, “Collective electronic motion in a metallic slab,” Phys. Rev. 153(2), 498–512 (1967).
[Crossref]

A. McAlister and E. Stern, “Plasma resonance absorption in thin metal films,” Phys. Rev. 132(4), 1599–1602 (1963).
[Crossref]

D. W. Berreman, “Infrared absorption at longitudinal optic frequency in cubic crystal films,” Phys. Rev. 130(6), 2193–2198 (1963).
[Crossref]

Phys. Rev. B (4)

S. Campione, I. Brener, and F. Marquier, “Theory of epsilon-near-zero modes in ultrathin films,” Phys. Rev. B 91(12), 121408 (2015).
[Crossref]

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Planar metal plasmon waveguides: frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model,” Phys. Rev. B 72(7), 075405 (2005).
[Crossref]

C. Guclu, S. Campione, and F. Capolino, “Hyperbolic metamaterial as super absorber for scattered fields generated at its surface,” Phys. Rev. B 86(20), 205130 (2012).
[Crossref]

I. V. Iorsh, I. S. Mukhin, I. V. Shadrivov, P. A. Belov, and Y. S. Kivshar, “Hyperbolic metamaterials based on multilayer graphene structures,” Phys. Rev. B 88(3), 039904 (2013).
[Crossref]

Phys. Rev. Lett. (3)

D. R. Smith and D. Schurig, “Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors,” Phys. Rev. Lett. 90(7), 077405 (2003).
[Crossref] [PubMed]

B. Hecht, H. Bielefeldt, L. Novotny, Y. Inouye, and D. W. Pohl, “Local excitation, scattering, and interference of surface plasmons,” Phys. Rev. Lett. 77(9), 1889–1892 (1996).
[Crossref] [PubMed]

S. Vassant, A. Archambault, F. Marquier, F. Pardo, U. Gennser, A. Cavanna, J. L. Pelouard, and J.-J. Greffet, “Epsilon-near-zero mode for active optoelectronic devices,” Phys. Rev. Lett. 109(23), 237401 (2012).
[Crossref] [PubMed]

Prog. Electromagnetics Res. (2)

R. T. Ling, J. D. Scholler, and P. Ya. Ufimtsev, “The propagation and excitation of surface waves in an absorbing layer,” Prog. Electromagnetics Res. 19, 49–91 (1998).
[Crossref]

T. Gric, “Surface-plasmon-polaritons at the interface of nanostructured metamaterials,” Prog. Electromagnetics Res. 46, 165–172 (2016).
[Crossref]

Sci. Rep. (1)

S. Campione, F. Marquier, J.-P. Hugonin, A. R. Ellis, J. F. Klem, M. B. Sinclair, and T. S. Luk, “Directional and monochromatic thermal emitter from epsilon-near-zero conditions in semiconductor hyperbolic metamaterials,” Sci. Rep. 6, 34746 (2016).
[Crossref] [PubMed]

Science (4)

N. Engheta, “Materials science. Pursuing near-zero response,” Science 340(6130), 286–287 (2013).
[Crossref] [PubMed]

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011).
[Crossref] [PubMed]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

H. N. S. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, “Topological transitions in metamaterials,” Science 336(6078), 205–209 (2012).
[Crossref] [PubMed]

Solid State Commun. (1)

V. M. Agranovich and V. E. Kravtsov, “Notes on crystal optics of superlattices,” Solid State Commun. 55(1), 85–90 (1985).
[Crossref]

Z. Naturforsch. B (1)

E. Kretschmann and H. Raether, “Radiative decay of non-radiative surface plasmons excited by light,” Z. Naturforsch. B 23A, 2135–2136 (1968).

Other (3)

J. Homola, Electromagnetic Theory of Surface Plasmons (Springer series on chemical sensors and biosensors, 2006).

L. B. Felsen and N. Marcuvitz, Radiation and Scattering of Waves (Prentice-Hall, 1973).

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Schematic view of an interface separating two different infinite layered nanoctructured metamaterials formed by alternating graphene and dielectric layers. Herein, indexes “1, 2” correspond to the graphene and dielectric layers correspondingly.
Fig. 2
Fig. 2 The influence of (a), Fermi energy μ, (b) thickness of dielectric dd, and (c), number of graphene sheets N on the real part of ε . N = 1, dd = 10 nm in (a), N = 1, μ = 0.5eV in (b), and dd = 10, μ = 0.5eV in (b).
Fig. 3
Fig. 3 The influence of (a), Fermi energy μ, (b) thickness of dielectric dd, and (c), number of graphene sheets N on the imaginary part of ε . N = 1, dd = 10 nm in (a), N = 1, μ = 0.5eV in (b), and dd = 10, μ = 0.5eV in (b).
Fig. 4
Fig. 4 The influence of (a), Fermi energy μ, (b) thickness of dielectric dd, and (c) number of graphene sheets N on the real part of ε || . N = 1, dd = 10 nm in (a), N = 1, μ = 0.5eV in (b), and dd = 10, μ = 0.5eV in (c).
Fig. 5
Fig. 5 The influence of (a), Fermi energy μ, (b) thickness of dielectric dd, and (c) number of graphene sheets N on the real part of ε || . N = 1, dd = 10 nm in (a), N = 1, μ = 0.5eV in (b), and dd = 10, μ = 0.5eV in (c).
Fig. 6
Fig. 6 The dispersion of surface waves (a); propagation lengths (b) and absorption (c) at different Fermi energy, where N = 1, dd = 10 nm, ε 1 = ε 3 , ε 2 = ε 4 and d 1 d 2 d 3 d 4 and the blue line in (a) is the free-space light line.
Fig. 7
Fig. 7 The dispersion of surface waves (a); propagation lengths (b) and absorption (c) at different Fermi energy, where N = 1, dd = 10 nm, ε 1 = ε 3 , ε 2 ε 4 and d 1 d 2 d 3 d 4 and the blue line in (a) is the free-space light line.
Fig. 8
Fig. 8 The dependences of dispersion of surface waves, propagation lengths and absorption on (a), (b), (e) the thickness of dielectric dd and (c), (d), (f) number of graphene sheets. Herein N = 1, μ = 0.5eV in (a), (b), (e) and dd = 10nm, μ = 0.5eV in (c), (d), (f).

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

ε I = ε 1 d 1 + ε 2 d 2 d 1 + d 2
ε II = ε 3 d 3 + ε 4 d 4 d 3 + d 4
ε I = ε 1 ε 2 ( d 1 + d 2 ) ε 1 d 2 + ε 2 d 1 ,
ε II = ε 3 ε 4 ( d 3 + d 4 ) ε 3 d 4 + ε 4 d 3 ,
β=k ( ε || II ε || I ) ε II ε I ε II ε || II ε I ε || I ,
β=k ε 2 ( d 1 ε 0 ω+iσ )( d 1 ε 0 ω+ d 1 ε 0 ε 2 ωiσ ) d 1 2 ε 0 2 ε 2 2 ω 2 +2 d 1 2 ε 0 2 ε 2 ω 2 + d 1 2 ε 0 2 ω 2 + σ 2
β=k ε 2 ε 4 ( d 1 + d 2 )( d 3 + d 4 ) ε g 2 ( d 2 ε 2 + d 1 ε g d 1 + d 2 d 4 ε 4 + d 3 ε g d 3 + d 4 ) ( ε 2 ε g ( d 2 ε 2 + d 1 ε g ) d 1 ε 2 + d 2 ε g ε 4 ε g ( d 4 ε 4 + d 3 ε g ) d 3 ε 4 + d 4 ε g )( d 1 ε 2 + d 2 ε g )( d 3 ε 4 + d 4 ε g ) ,
β=k ε 0 ε 2 ε 4 ω( d 1 + d 2 )( d 1 ε 0 ω+σi )( σ 2 DCB+ d 2 ε 0 ε 4 σωiA+ d 2 ε 0 ε 2 σωi+2 d 1 ε 0 σωi ) ( D σ 2 +C+B+A ) 2 + ε 0 2 σ 2 ω 2 ( 2 d 1 + d 2 ε 2 + d 2 ε 4 ) 2 where A= d 1 2 ε 0 2 ε 2 ε 4 ω 2 , B= d 1 d 2 ε 0 2 ε 4 ω 2 , C= d 1 d 2 ε 0 2 ε 2 ω 2 , D= d 1 2 ε 0 2 ω 2 .
L p = 1 2Im( β )

Metrics