Abstract

We report the implementation of a compact cascaded multicrystal scheme based on birefringent crystals in critical phase-matching, for the generation of continuous-wave (cw) radiation in the deep ultraviolet (UV). The approach comprises a cascade of 4 single-pass second-harmonic-generation (SHG) stages in β-BaB2O4 (BBO) pumped by a single-frequency cw green source at 532 nm. A deep-UV cw output power of 37.7 mW at 266 nm has been obtained with a high passive power stability of 0.12% rms over more than 4 hours. Characterization and optimization of the system in each stage has been systematically performed. Angular phase-matching acceptance bandwidth under tight focusing in BBO, and spectral properties of the deep-UV radiation, have been studied. Theoretical calculations for SHG in the cascaded scheme based on birefringent phase-matching have been performed, and enhancement in UV power compared to single-stage single-pass scheme are studied. Theoretical comparison of BBO with other potential crystals for deep-UV generation in cascaded multicrystal scheme is also presented.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High-power, high-repetition-rate performance characteristics of β-BaB2O4 for single-pass picosecond ultraviolet generation at 266 nm

S. Chaitanya Kumar, J. Canals Casals, Junxiong Wei, and M. Ebrahim-Zadeh
Opt. Express 23(21) 28091-28103 (2015)

Demonstration of long-term reliability of a 266-nm, continuous-wave, frequency-quadrupled solid-state laser using ?-BaB2O4

K. Kondo, M. Oka, H. Wada, T. Fukui, N. Umezu, K. Tatsuki, and S. Kubota
Opt. Lett. 23(3) 195-197 (1998)

Generation of 5-W deep-UV continuous-wave radiation at 266 nm by an external cavity with a CsLiB6O10 crystal

Jun Sakuma, Yuichi Asakawa, and Minoru Obara
Opt. Lett. 29(1) 92-94 (2004)

References

  • View by:
  • |
  • |
  • |

  1. C. Chen, T. Sasaki, R. Li, Y. Wu, Z. Lin, Y. Mori, Z. Hu, J. Wang, G. Aka, M. Yoshimura, and Y. Kaneda, Nonlinear Optical Borate Crystals: Principals and Applications (Wiley, 2012).
  2. J. J. Ewing, “Excimer Laser Technology Development,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1061–1071 (2000).
    [Crossref]
  3. T. Südmeyer, Y. Imai, H. Masuda, N. Eguchi, M. Saito, and S. Kubota, “Efficient 2nd and 4th harmonic generation of a single-frequency, continuous-wave fiber amplifier,” Opt. Express 16(3), 1546–1551 (2008).
    [Crossref] [PubMed]
  4. J. Sakuma, Y. Asakawa, and M. Obara, “Generation of 5-W deep-UV continuous-wave radiation at 266 nm by an external cavity with a CsLiB6O10 crystal,” Opt. Lett. 29(1), 92–94 (2004).
    [Crossref] [PubMed]
  5. S. C. Kumar, K. Devi, and M. Ebrahim-Zadeh, “Stable, continuous-wave, ytterbium-fiber-based single-pass ultraviolet source using BiB3O6.,” Opt. Lett. 38(23), 5114–5117 (2013).
    [Crossref] [PubMed]
  6. K. Devi, S. C. Kumar, and M. Ebrahim-Zadeh, “Tunable, continuous-wave, ultraviolet source based on intracavity sum-frequency-generation in an optical parametric oscillator using BiB3O6,” Opt. Express 21(21), 24829–24836 (2013).
    [Crossref] [PubMed]
  7. S. Chaitanya Kumar, J. Canals Casals, E. Sanchez Bautista, K. Devi, and M. Ebrahim-Zadeh, “Yb-fiber-laser-based, 1.8 W average power, picosecond ultraviolet source at 266 nm,” Opt. Lett. 40(10), 2397–2400 (2015).
    [Crossref] [PubMed]
  8. L. Wang, N. Zhai, L. Liu, X. Wang, G. Wang, Y. Zhu, and C. Chen, “High-average-power 266 nm generation with a KBe2BO3F2 prism-coupled device,” Opt. Express 22(22), 27086–27093 (2014).
    [Crossref] [PubMed]
  9. C. Chen, S. Luo, X. Wang, G. Wang, X. Wen, H. Wu, X. Zhang, and Z. Xu, “Deep UV nonlinear optical crystal:RbBe2(BO3)F2,” J. Opt. Soc. Am. B 26(8), 1519–1525 (2009).
    [Crossref]
  10. Y. Wang, L. Wang, X. Gao, G. Wang, R. K. Li, and C. T. Chen, “Growth, characterization and the fourth harmonic generation at 266 nm of K2Al2B2O7 crystals without UV absorptions and Na impurity,” J. Cryst. Growth 348(1), 1–4 (2012).
    [Crossref]
  11. S. Ilas, P. Loiseau, G. Aka, and T. Taira, “240 kW peak power at 266 nm in nonlinear YAl3(BO3)4 single crystal,” Opt. Express 22(24), 30325–30332 (2014).
    [Crossref] [PubMed]
  12. K. Kato, “Tunable UV Generation to 0.185 pm in CsB305,” IEEE J. Quantum Electron. 31(1), 169–171 (1995).
    [Crossref]
  13. C. Chen, “Chinese lab grows new nonlinear optical borate crystal,” Laser Focus World 25(11), 129–137 (1989).
  14. C. Chen, Y. Wang, B. Wu, K. Wu, W. Zeng, and L. Yu, “Design and synthesis of an ultraviolet-transparent nonlinear optical crystal Sr2Be2B2O7,” Nature 373(6512), 322–324 (1995).
    [Crossref]
  15. Y. S. Liu, W. B. Jones, and J. P. Chernoch, “Highefficiency highpower coherent uv generation at 266 nm in 90° phase matched deuterated KDP,” Appl. Phys. Lett. 29(1), 32–34 (1976).
    [Crossref]
  16. J. Reintjes and A. C. Eckardt, “Efficient harmonic generation from 532 to 266 nm in ADP and KD*P,” Appl. Phys. Lett. 30(2), 91–93 (1977).
    [Crossref]
  17. S. Kurimura, M. Harada, K. Muramatsu, M. Ueda, M. Adachi, T. Yamada, and T. Ueno, “Quartz revisits nonlinear optics: twinned crystal for quasi-phase matching [Invited],” Opt. Mater. Express 1(7), 1367–1375 (2011).
    [Crossref]
  18. J. Hirohashi, T. Taniuchi, K. Imai, and Y. Furukawa, “PP-LBGO device with 2nd-order QPM structure for 266nm generation,” in Conference on Lasers and Electro-Optics Conference, Technical Digest (OSA, 2015), paper STh3H.5.
    [Crossref]
  19. K. Devi, S. C. Kumar, and M. Ebrahim-Zadeh, “13.1 W, high-beam-quality, narrow-linewidth continuous-wave fiber-based source at 970 nm,” Opt. Express 19(12), 11631–11637 (2011).
    [Crossref] [PubMed]
  20. G. K. Samanta, S. C. Kumar, K. Devi, and M. Ebrahim-Zadeh, “Multicrystal, continuous-wave, single-pass second-harmonic generation with 56% efficiency,” Opt. Lett. 35(20), 3513–3515 (2010).
    [Crossref] [PubMed]
  21. A. K. Hansen, M. Tawfieq, O. B. Jensen, P. E. Andersen, B. Sumpf, G. Erbert, and P. M. Petersen, “Concept for power scaling second harmonic generation using a cascade of nonlinear crystals,” Opt. Express 23(12), 15921–15934 (2015).
    [Crossref] [PubMed]
  22. S. C. Kumar, G. K. Samanta, K. Devi, and M. Ebrahim-Zadeh, “High-efficiency, multicrystal, single-pass, continuous-wave second harmonic generation,” Opt. Express 19(12), 11152–11169 (2011).
    [Crossref] [PubMed]
  23. R. L. Sutherland, “Frequency doubling and mixing,” in Handbook of Nonlinear Optics (Marcel Dekker, Inc. 1996), Chap. 2.
  24. D. S. Hum and M. M. Fejer, “Quasi-phasematching,” C. R. Phys. 8(2), 180–198 (2007).
    [Crossref]
  25. J. E. Bjorkholm, “Optical second-harmonic generation using a focused Gaussian laser beam,” Phys. Rev. 142(1), 126–136 (1966).
    [Crossref]
  26. G. D. Boyd and D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39(8), 3597–3639 (1968).
    [Crossref]
  27. Y. F. Chen and Y. C. Chen, “Analytical functions for the optimization of second-harmonic generation and parametric generation by focused Gaussian beams,” Appl. Phys. B 76(6), 645–647 (2003).
    [Crossref]
  28. J. M. Yarborough, J. Falk, and C. B. Hitz, “Enhancement of optical second harmonic generation by utilizing the dispersion of air,” Appl. Phys. Lett. 18(3), 70–73 (1971).
    [Crossref]
  29. G. Ghosh, “Temperature dispersion of refractive indices in β-BaB2O4 and LiB3O5 crystals for nonlinear optical devices,” J. Appl. Phys. 78(11), 6752–6760 (1995).
    [Crossref]
  30. D. N. Nikogosyan, Nonlinear Optical Crystals: A Complete Survey (Springer, 2005).

2015 (2)

2014 (2)

2013 (2)

2012 (1)

Y. Wang, L. Wang, X. Gao, G. Wang, R. K. Li, and C. T. Chen, “Growth, characterization and the fourth harmonic generation at 266 nm of K2Al2B2O7 crystals without UV absorptions and Na impurity,” J. Cryst. Growth 348(1), 1–4 (2012).
[Crossref]

2011 (3)

2010 (1)

2009 (1)

2008 (1)

2007 (1)

D. S. Hum and M. M. Fejer, “Quasi-phasematching,” C. R. Phys. 8(2), 180–198 (2007).
[Crossref]

2004 (1)

2003 (1)

Y. F. Chen and Y. C. Chen, “Analytical functions for the optimization of second-harmonic generation and parametric generation by focused Gaussian beams,” Appl. Phys. B 76(6), 645–647 (2003).
[Crossref]

2000 (1)

J. J. Ewing, “Excimer Laser Technology Development,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1061–1071 (2000).
[Crossref]

1995 (3)

K. Kato, “Tunable UV Generation to 0.185 pm in CsB305,” IEEE J. Quantum Electron. 31(1), 169–171 (1995).
[Crossref]

C. Chen, Y. Wang, B. Wu, K. Wu, W. Zeng, and L. Yu, “Design and synthesis of an ultraviolet-transparent nonlinear optical crystal Sr2Be2B2O7,” Nature 373(6512), 322–324 (1995).
[Crossref]

G. Ghosh, “Temperature dispersion of refractive indices in β-BaB2O4 and LiB3O5 crystals for nonlinear optical devices,” J. Appl. Phys. 78(11), 6752–6760 (1995).
[Crossref]

1989 (1)

C. Chen, “Chinese lab grows new nonlinear optical borate crystal,” Laser Focus World 25(11), 129–137 (1989).

1977 (1)

J. Reintjes and A. C. Eckardt, “Efficient harmonic generation from 532 to 266 nm in ADP and KD*P,” Appl. Phys. Lett. 30(2), 91–93 (1977).
[Crossref]

1976 (1)

Y. S. Liu, W. B. Jones, and J. P. Chernoch, “Highefficiency highpower coherent uv generation at 266 nm in 90° phase matched deuterated KDP,” Appl. Phys. Lett. 29(1), 32–34 (1976).
[Crossref]

1971 (1)

J. M. Yarborough, J. Falk, and C. B. Hitz, “Enhancement of optical second harmonic generation by utilizing the dispersion of air,” Appl. Phys. Lett. 18(3), 70–73 (1971).
[Crossref]

1968 (1)

G. D. Boyd and D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39(8), 3597–3639 (1968).
[Crossref]

1966 (1)

J. E. Bjorkholm, “Optical second-harmonic generation using a focused Gaussian laser beam,” Phys. Rev. 142(1), 126–136 (1966).
[Crossref]

Adachi, M.

Aka, G.

Andersen, P. E.

Asakawa, Y.

Bjorkholm, J. E.

J. E. Bjorkholm, “Optical second-harmonic generation using a focused Gaussian laser beam,” Phys. Rev. 142(1), 126–136 (1966).
[Crossref]

Boyd, G. D.

G. D. Boyd and D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39(8), 3597–3639 (1968).
[Crossref]

Canals Casals, J.

Chaitanya Kumar, S.

Chen, C.

L. Wang, N. Zhai, L. Liu, X. Wang, G. Wang, Y. Zhu, and C. Chen, “High-average-power 266 nm generation with a KBe2BO3F2 prism-coupled device,” Opt. Express 22(22), 27086–27093 (2014).
[Crossref] [PubMed]

C. Chen, S. Luo, X. Wang, G. Wang, X. Wen, H. Wu, X. Zhang, and Z. Xu, “Deep UV nonlinear optical crystal:RbBe2(BO3)F2,” J. Opt. Soc. Am. B 26(8), 1519–1525 (2009).
[Crossref]

C. Chen, Y. Wang, B. Wu, K. Wu, W. Zeng, and L. Yu, “Design and synthesis of an ultraviolet-transparent nonlinear optical crystal Sr2Be2B2O7,” Nature 373(6512), 322–324 (1995).
[Crossref]

C. Chen, “Chinese lab grows new nonlinear optical borate crystal,” Laser Focus World 25(11), 129–137 (1989).

Chen, C. T.

Y. Wang, L. Wang, X. Gao, G. Wang, R. K. Li, and C. T. Chen, “Growth, characterization and the fourth harmonic generation at 266 nm of K2Al2B2O7 crystals without UV absorptions and Na impurity,” J. Cryst. Growth 348(1), 1–4 (2012).
[Crossref]

Chen, Y. C.

Y. F. Chen and Y. C. Chen, “Analytical functions for the optimization of second-harmonic generation and parametric generation by focused Gaussian beams,” Appl. Phys. B 76(6), 645–647 (2003).
[Crossref]

Chen, Y. F.

Y. F. Chen and Y. C. Chen, “Analytical functions for the optimization of second-harmonic generation and parametric generation by focused Gaussian beams,” Appl. Phys. B 76(6), 645–647 (2003).
[Crossref]

Chernoch, J. P.

Y. S. Liu, W. B. Jones, and J. P. Chernoch, “Highefficiency highpower coherent uv generation at 266 nm in 90° phase matched deuterated KDP,” Appl. Phys. Lett. 29(1), 32–34 (1976).
[Crossref]

Devi, K.

Ebrahim-Zadeh, M.

Eckardt, A. C.

J. Reintjes and A. C. Eckardt, “Efficient harmonic generation from 532 to 266 nm in ADP and KD*P,” Appl. Phys. Lett. 30(2), 91–93 (1977).
[Crossref]

Eguchi, N.

Erbert, G.

Ewing, J. J.

J. J. Ewing, “Excimer Laser Technology Development,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1061–1071 (2000).
[Crossref]

Falk, J.

J. M. Yarborough, J. Falk, and C. B. Hitz, “Enhancement of optical second harmonic generation by utilizing the dispersion of air,” Appl. Phys. Lett. 18(3), 70–73 (1971).
[Crossref]

Fejer, M. M.

D. S. Hum and M. M. Fejer, “Quasi-phasematching,” C. R. Phys. 8(2), 180–198 (2007).
[Crossref]

Gao, X.

Y. Wang, L. Wang, X. Gao, G. Wang, R. K. Li, and C. T. Chen, “Growth, characterization and the fourth harmonic generation at 266 nm of K2Al2B2O7 crystals without UV absorptions and Na impurity,” J. Cryst. Growth 348(1), 1–4 (2012).
[Crossref]

Ghosh, G.

G. Ghosh, “Temperature dispersion of refractive indices in β-BaB2O4 and LiB3O5 crystals for nonlinear optical devices,” J. Appl. Phys. 78(11), 6752–6760 (1995).
[Crossref]

Hansen, A. K.

Harada, M.

Hitz, C. B.

J. M. Yarborough, J. Falk, and C. B. Hitz, “Enhancement of optical second harmonic generation by utilizing the dispersion of air,” Appl. Phys. Lett. 18(3), 70–73 (1971).
[Crossref]

Hum, D. S.

D. S. Hum and M. M. Fejer, “Quasi-phasematching,” C. R. Phys. 8(2), 180–198 (2007).
[Crossref]

Ilas, S.

Imai, Y.

Jensen, O. B.

Jones, W. B.

Y. S. Liu, W. B. Jones, and J. P. Chernoch, “Highefficiency highpower coherent uv generation at 266 nm in 90° phase matched deuterated KDP,” Appl. Phys. Lett. 29(1), 32–34 (1976).
[Crossref]

Kato, K.

K. Kato, “Tunable UV Generation to 0.185 pm in CsB305,” IEEE J. Quantum Electron. 31(1), 169–171 (1995).
[Crossref]

Kleinman, D. A.

G. D. Boyd and D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39(8), 3597–3639 (1968).
[Crossref]

Kubota, S.

Kumar, S. C.

Kurimura, S.

Li, R. K.

Y. Wang, L. Wang, X. Gao, G. Wang, R. K. Li, and C. T. Chen, “Growth, characterization and the fourth harmonic generation at 266 nm of K2Al2B2O7 crystals without UV absorptions and Na impurity,” J. Cryst. Growth 348(1), 1–4 (2012).
[Crossref]

Liu, L.

Liu, Y. S.

Y. S. Liu, W. B. Jones, and J. P. Chernoch, “Highefficiency highpower coherent uv generation at 266 nm in 90° phase matched deuterated KDP,” Appl. Phys. Lett. 29(1), 32–34 (1976).
[Crossref]

Loiseau, P.

Luo, S.

Masuda, H.

Muramatsu, K.

Obara, M.

Petersen, P. M.

Reintjes, J.

J. Reintjes and A. C. Eckardt, “Efficient harmonic generation from 532 to 266 nm in ADP and KD*P,” Appl. Phys. Lett. 30(2), 91–93 (1977).
[Crossref]

Saito, M.

Sakuma, J.

Samanta, G. K.

Sanchez Bautista, E.

Südmeyer, T.

Sumpf, B.

Taira, T.

Tawfieq, M.

Ueda, M.

Ueno, T.

Wang, G.

Wang, L.

L. Wang, N. Zhai, L. Liu, X. Wang, G. Wang, Y. Zhu, and C. Chen, “High-average-power 266 nm generation with a KBe2BO3F2 prism-coupled device,” Opt. Express 22(22), 27086–27093 (2014).
[Crossref] [PubMed]

Y. Wang, L. Wang, X. Gao, G. Wang, R. K. Li, and C. T. Chen, “Growth, characterization and the fourth harmonic generation at 266 nm of K2Al2B2O7 crystals without UV absorptions and Na impurity,” J. Cryst. Growth 348(1), 1–4 (2012).
[Crossref]

Wang, X.

Wang, Y.

Y. Wang, L. Wang, X. Gao, G. Wang, R. K. Li, and C. T. Chen, “Growth, characterization and the fourth harmonic generation at 266 nm of K2Al2B2O7 crystals without UV absorptions and Na impurity,” J. Cryst. Growth 348(1), 1–4 (2012).
[Crossref]

C. Chen, Y. Wang, B. Wu, K. Wu, W. Zeng, and L. Yu, “Design and synthesis of an ultraviolet-transparent nonlinear optical crystal Sr2Be2B2O7,” Nature 373(6512), 322–324 (1995).
[Crossref]

Wen, X.

Wu, B.

C. Chen, Y. Wang, B. Wu, K. Wu, W. Zeng, and L. Yu, “Design and synthesis of an ultraviolet-transparent nonlinear optical crystal Sr2Be2B2O7,” Nature 373(6512), 322–324 (1995).
[Crossref]

Wu, H.

Wu, K.

C. Chen, Y. Wang, B. Wu, K. Wu, W. Zeng, and L. Yu, “Design and synthesis of an ultraviolet-transparent nonlinear optical crystal Sr2Be2B2O7,” Nature 373(6512), 322–324 (1995).
[Crossref]

Xu, Z.

Yamada, T.

Yarborough, J. M.

J. M. Yarborough, J. Falk, and C. B. Hitz, “Enhancement of optical second harmonic generation by utilizing the dispersion of air,” Appl. Phys. Lett. 18(3), 70–73 (1971).
[Crossref]

Yu, L.

C. Chen, Y. Wang, B. Wu, K. Wu, W. Zeng, and L. Yu, “Design and synthesis of an ultraviolet-transparent nonlinear optical crystal Sr2Be2B2O7,” Nature 373(6512), 322–324 (1995).
[Crossref]

Zeng, W.

C. Chen, Y. Wang, B. Wu, K. Wu, W. Zeng, and L. Yu, “Design and synthesis of an ultraviolet-transparent nonlinear optical crystal Sr2Be2B2O7,” Nature 373(6512), 322–324 (1995).
[Crossref]

Zhai, N.

Zhang, X.

Zhu, Y.

Appl. Phys. B (1)

Y. F. Chen and Y. C. Chen, “Analytical functions for the optimization of second-harmonic generation and parametric generation by focused Gaussian beams,” Appl. Phys. B 76(6), 645–647 (2003).
[Crossref]

Appl. Phys. Lett. (3)

J. M. Yarborough, J. Falk, and C. B. Hitz, “Enhancement of optical second harmonic generation by utilizing the dispersion of air,” Appl. Phys. Lett. 18(3), 70–73 (1971).
[Crossref]

Y. S. Liu, W. B. Jones, and J. P. Chernoch, “Highefficiency highpower coherent uv generation at 266 nm in 90° phase matched deuterated KDP,” Appl. Phys. Lett. 29(1), 32–34 (1976).
[Crossref]

J. Reintjes and A. C. Eckardt, “Efficient harmonic generation from 532 to 266 nm in ADP and KD*P,” Appl. Phys. Lett. 30(2), 91–93 (1977).
[Crossref]

C. R. Phys. (1)

D. S. Hum and M. M. Fejer, “Quasi-phasematching,” C. R. Phys. 8(2), 180–198 (2007).
[Crossref]

IEEE J. Quantum Electron. (1)

K. Kato, “Tunable UV Generation to 0.185 pm in CsB305,” IEEE J. Quantum Electron. 31(1), 169–171 (1995).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

J. J. Ewing, “Excimer Laser Technology Development,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1061–1071 (2000).
[Crossref]

J. Appl. Phys. (2)

G. D. Boyd and D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39(8), 3597–3639 (1968).
[Crossref]

G. Ghosh, “Temperature dispersion of refractive indices in β-BaB2O4 and LiB3O5 crystals for nonlinear optical devices,” J. Appl. Phys. 78(11), 6752–6760 (1995).
[Crossref]

J. Cryst. Growth (1)

Y. Wang, L. Wang, X. Gao, G. Wang, R. K. Li, and C. T. Chen, “Growth, characterization and the fourth harmonic generation at 266 nm of K2Al2B2O7 crystals without UV absorptions and Na impurity,” J. Cryst. Growth 348(1), 1–4 (2012).
[Crossref]

J. Opt. Soc. Am. B (1)

Laser Focus World (1)

C. Chen, “Chinese lab grows new nonlinear optical borate crystal,” Laser Focus World 25(11), 129–137 (1989).

Nature (1)

C. Chen, Y. Wang, B. Wu, K. Wu, W. Zeng, and L. Yu, “Design and synthesis of an ultraviolet-transparent nonlinear optical crystal Sr2Be2B2O7,” Nature 373(6512), 322–324 (1995).
[Crossref]

Opt. Express (7)

S. Ilas, P. Loiseau, G. Aka, and T. Taira, “240 kW peak power at 266 nm in nonlinear YAl3(BO3)4 single crystal,” Opt. Express 22(24), 30325–30332 (2014).
[Crossref] [PubMed]

T. Südmeyer, Y. Imai, H. Masuda, N. Eguchi, M. Saito, and S. Kubota, “Efficient 2nd and 4th harmonic generation of a single-frequency, continuous-wave fiber amplifier,” Opt. Express 16(3), 1546–1551 (2008).
[Crossref] [PubMed]

K. Devi, S. C. Kumar, and M. Ebrahim-Zadeh, “Tunable, continuous-wave, ultraviolet source based on intracavity sum-frequency-generation in an optical parametric oscillator using BiB3O6,” Opt. Express 21(21), 24829–24836 (2013).
[Crossref] [PubMed]

L. Wang, N. Zhai, L. Liu, X. Wang, G. Wang, Y. Zhu, and C. Chen, “High-average-power 266 nm generation with a KBe2BO3F2 prism-coupled device,” Opt. Express 22(22), 27086–27093 (2014).
[Crossref] [PubMed]

K. Devi, S. C. Kumar, and M. Ebrahim-Zadeh, “13.1 W, high-beam-quality, narrow-linewidth continuous-wave fiber-based source at 970 nm,” Opt. Express 19(12), 11631–11637 (2011).
[Crossref] [PubMed]

A. K. Hansen, M. Tawfieq, O. B. Jensen, P. E. Andersen, B. Sumpf, G. Erbert, and P. M. Petersen, “Concept for power scaling second harmonic generation using a cascade of nonlinear crystals,” Opt. Express 23(12), 15921–15934 (2015).
[Crossref] [PubMed]

S. C. Kumar, G. K. Samanta, K. Devi, and M. Ebrahim-Zadeh, “High-efficiency, multicrystal, single-pass, continuous-wave second harmonic generation,” Opt. Express 19(12), 11152–11169 (2011).
[Crossref] [PubMed]

Opt. Lett. (4)

Opt. Mater. Express (1)

Phys. Rev. (1)

J. E. Bjorkholm, “Optical second-harmonic generation using a focused Gaussian laser beam,” Phys. Rev. 142(1), 126–136 (1966).
[Crossref]

Other (4)

R. L. Sutherland, “Frequency doubling and mixing,” in Handbook of Nonlinear Optics (Marcel Dekker, Inc. 1996), Chap. 2.

D. N. Nikogosyan, Nonlinear Optical Crystals: A Complete Survey (Springer, 2005).

J. Hirohashi, T. Taniuchi, K. Imai, and Y. Furukawa, “PP-LBGO device with 2nd-order QPM structure for 266nm generation,” in Conference on Lasers and Electro-Optics Conference, Technical Digest (OSA, 2015), paper STh3H.5.
[Crossref]

C. Chen, T. Sasaki, R. Li, Y. Wu, Z. Lin, Y. Mori, Z. Hu, J. Wang, G. Aka, M. Yoshimura, and Y. Kaneda, Nonlinear Optical Borate Crystals: Principals and Applications (Wiley, 2012).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Schematic of the B-MC single-pass SHG. PBS: Polarizing beam-splitter; L: lens; M1-M6: Mirrors; M’, M”: Dichroic mirror; F: Filter. Inset(right-hand): Photograph of the experimental setup.
Fig. 2
Fig. 2 Variation of UV power and SHG efficiency as a function of fundamental power in SC scheme with (a) 10-mm-long, and (b) 5-mm-long BBO.
Fig. 3
Fig. 3 (a) UV power, and (b) SHG efficiency versus fundamental power after each stage in B-MC scheme.
Fig. 4
Fig. 4 (a) Theoretical UV power and (b) SHG efficiency scaling for different crystal lengths in B-MC scheme.
Fig. 5
Fig. 5 (a) Variation of UV power as a function of crystal length under tight focusing at maximum fundamental power. (b) SHG power enhancement factor as a function of fundamental power at different stages in B-MC scheme.
Fig. 6
Fig. 6 (a) Variation of the calculated nonlinear coupling coefficient, h(B,ξ), as a function of focusing parameter, ξ, in different crystals. (b) Theoretical SHG power as a function of crystal length for 10-mm-long crystals in cascade in B-MC scheme for different crystals.
Fig. 7
Fig. 7 Passive power stability of the UV output in the SC scheme for (a) 10-mm-long BBO, and (b) 5-mm-long BBO. (c) Fundamental power stability. (d) Passive power stability of the UV output in B-MC scheme after stage-4.
Fig. 8
Fig. 8 (a) Experimentally measured, and (b) theoretically calculated angular acceptance bandwidth of UV output for a 5-mm-long BBO crystal. (c) Theoretically calculated angular acceptance bandwidth for an effective length of leff = 0.44 mm.
Fig. 9
Fig. 9 (a) Spectrum of the SHG output and the input fundamental. (b) Single-frequency spectrum of fundamental measured at maximum power operation.
Fig. 10
Fig. 10 Near-field energy distribution of UV output in (a) SC scheme with 10-mm-long BBO, and (b) B-MC scheme after stage-4 using focussing lens.

Tables (3)

Tables Icon

Table 1 Phase-matching properties of nonlinear crystals for SHG at 266 nma

Tables Icon

Table 2 Collimation and focussing optics used in each SHG stage

Tables Icon

Table 3 Comparision of different crystals for single-pass SHG in multicrystal configuration

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

l eff = π w F ρ ,
P 2ω = 8π d eff 2 n ω 2 n 2ω c ε 0 λ ω 2 ( P ω 2 l 2 w F 2 )sin c 2 ( Δkl 2 ),
P 2ω = 16 π 2 d eff 2 h( B,ξ ) P ω 2 l n ω n 2ω c ε 0 λ ω 3 ,
B= ρ ( l k ω ) 2 ,
ξ= l k ω w F 2 ,
P 2ω l 2 w F 2
P 2ω π l w F ρ .

Metrics