Abstract

Artificially designed hyperbolic metamaterial (HMM) possesses extraordinary electromagnetic features different from those of naturally existing materials. In particular, the dispersion relation of waves existing inside the HMM is hyperbolic rather than elliptical; thus, waves that are evanescent in isotropic media become propagating in the HMM. This characteristic of HMMs opens a novel way to spectrally control the near-field thermal radiation in which evanescent waves in the vacuum gap play a critical role. In this paper, we theoretically investigate the performance of a near-field thermophotovoltaic (TPV) energy conversion system in which a W/SiO2-multilayer-based HMM serves as the emitter at 1000 K and InAs works as the TPV cell at 300 K. By carefully designing the thickness of constituent materials of the HMM emitter, the electric power of the near-field TPV devices can be increased by about 6 times at 100-nm vacuum gap as compared to the case of the plain W emitter. Alternatively, in regards to the electric power generation, HMM emitter at experimentally achievable 100-nm vacuum gap performs equivalently to the plain W emitter at 18-nm vacuum gap. We show that the enhancement mechanism of the HMM emitter is due to the coupled surface plasmon modes at multiple metal-dielectric interfaces inside the HMM emitter. With the minority carrier transport model, the optimal p-n junction depth of the TPV cell has also been determined at various vacuum gaps.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Graphene-assisted Si-InSb thermophotovoltaic system for low temperature applications

Mikyung Lim, Seokmin Jin, Seung S. Lee, and Bong Jae Lee
Opt. Express 23(7) A240-A253 (2015)

Overcoming the black body limit in plasmonic and graphene near-field thermophotovoltaic systems

Ognjen Ilic, Marinko Jablan, John D. Joannopoulos, Ivan Celanovic, and Marin Soljačić
Opt. Express 20(S3) A366-A384 (2012)

Near-field thermophotovoltaic energy conversion using an intermediate transparent substrate

Takuya Inoue, Kohei Watanabe, Takashi Asano, and Susumu Noda
Opt. Express 26(2) A192-A208 (2018)

References

  • View by:
  • |
  • |
  • |

  1. D. Chubb, Fundamentals of Thermophotovoltaic Energy Conversion (Elsevier, 2007).
  2. M. D. Whale and E. G. Cravalho, “Modeling and performance of microscale thermophotovoltaic energy conversion devices,” IEEE Trans. Energy Conver. 17(1), 130–142 (2002).
    [Crossref]
  3. M. Laroche, R. Carminati, and J.-J. Greffet, “Near-field thermophotovoltaic energy conversion,” J. Appl. Phys. 100(6), 063704 (2006).
    [Crossref]
  4. S. Basu, Y. B. Chen, and Z. M. Zhang, “Microscale radiation in thermophotovoltaic devices-a review,” Int. J. Energy Res. 31(6), 689–716 (2007).
    [Crossref]
  5. K. Park, S. Basu, W. P. King, and Z. M. Zhang, “Performance analysis of near-field thermophotovoltaic devices considering absorption distribution,” J. Quant. Spectrosc. Radiat. Transf. 109(2), 305–316 (2008).
    [Crossref]
  6. M. Francoeur, R. Vaillon, and M. P. Mengüç, “Thermal impacts on the performance of nanoscale-gap thermophotovoltaic power generators,” IEEE Trans. Energy Conver. 26(2), 686–698 (2011).
    [Crossref]
  7. M. P. Bernardi, O. Dupré, E. Blandre, P.-O. Chapuis, R. Vaillon, and M. Francoeur, “Impacts of propagating, frustrated and surface modes on radiative, electrical and thermal losses in nanoscale-gap thermophotovoltaic power generators,” Sci. Rep. 5, 11626 (2015).
    [Crossref] [PubMed]
  8. R. Messina and P. Ben-Abdallah, “Graphene-based photovoltaic cells for near-field thermal energy conversion,” Sci. Rep. 3, 1383 (2013).
    [Crossref] [PubMed]
  9. M. Lim, S. Jin, S. S. Lee, and B. J. Lee, “Graphene-assisted Si-InSb thermophotovoltaic system for low temperature applications,” Opt. Express 23(7), A240–A253 (2015).
    [Crossref] [PubMed]
  10. M. Lim, S. S. Lee, and B. J. Lee, “Near-field thermal radiation between doped silicon plates at nanoscale gaps,” Phys. Rev. B 91(19), 195136 (2015).
    [Crossref]
  11. K. Ito, A. Miura, H. Iizuka, and H. Toshiyoshi, “Parallel-plate submicron gap formed by micromachined low-density pillars for near-field radiative heat transfer,” Appl. Phys. Lett. 106(8), 083504 (2015).
    [Crossref]
  12. V. Shalaev and W. Cai, Optical Metamaterials: Fundamentals and Applications (Springer, 2010).
  13. S. V. Zhukovsky, O. Kidwai, and J. E. Sipe, “Physical nature of volume plasmon polaritons in hyperbolic metamaterials,” Opt. Express 21(12), 14982–14987 (2013).
    [Crossref] [PubMed]
  14. S.-A. Biehs, M. Tschikin, and P. Ben-Abdallah, “Hyperbolic metamaterials as an analog of a blackbody in the near field,” Phys. Rev. Lett. 109(10), 104301 (2012).
    [Crossref] [PubMed]
  15. S.-A. Biehs, M. Tschikin, R. Messina, and P. Ben-Abdallah, “Super-Planckian near-field thermal emission with phonon-polaritonic hyperbolic metamaterials,” Appl. Phys. Lett. 102(13), 131106 (2013).
    [Crossref]
  16. X. L. Liu, R. Z. Zhang, and Z. M. Zhang, “Near-field radiative heat transfer with doped-silicon nanostructured metamaterials,” Int. J. Heat Mass Transfer 73, 389–398 (2014).
    [Crossref]
  17. J.-Y. Chang, Y. Yang, and L. P. Wang, “Tungsten nanowire based hyperbolic metamaterial emitters for near-field thermophotovoltaic applications,” Int. J. Heat Mass Transfer 87, 237–247 (2015).
    [Crossref]
  18. D. Polder and M. Van Hove, “Theory of radiative heat transfer between closely spaced bodies,” Phys. Rev. B 4(10), 3303 (1971).
    [Crossref]
  19. J.-P. Mulet, K. Joulain, R. Carminati, and J.-J. Greffet, “Enhanced radiative heat transfer at nanometric distances,” Microscale Thermophys. Eng. 6(3), 209–222 (2002).
    [Crossref]
  20. M. Tschikin, P. Ben-Abdallah, and S.-A. Biehs, “Coherent thermal conductance of 1-D photonic crystals,” Phys. Lett. A 376(45), 3462–3465 (2012).
    [Crossref]
  21. X. L. Liu, T. J. Bright, and Z. M. Zhang, “Application conditions of effective medium theory in near-field radiative heat transfer between multilayered metamaterials,” J. Heat Transfer 136(9), 092703 (2014).
    [Crossref]
  22. S.-A. Biehs, “Thermal heat radiation, near-field energy density and near-field radiative heat transfer of coated materials,” Eur. Phys. J. B 58(4), 423–431 (2007).
    [Crossref]
  23. S. V. Zhukovsky, “Perfect transmission and highly asymmetric light localization in photonic multilayers,” Phys. Rev. A 81(5), 053808 (2010).
    [Crossref]
  24. M. Francoeur, M. P. Mengüç, and R. Vaillon, “Spectral tuning of near-field radiative heat flux between two thin silicon carbide films,” J. Phys. D Appl. Phys. 43(7), 075501 (2010).
    [Crossref]
  25. M. Lim, S. S. Lee, and B. J. Lee, “Near-field thermal radiation between graphene-covered doped silicon plates,” Opt. Express 21(19), 22173–22185 (2013).
    [Crossref] [PubMed]
  26. S. Basu, Y. Yang, and L. P. Wang, “Near-field radiative heat transfer between metamaterials coated with silicon carbide thin films,” Appl. Phys. Lett. 106(3), 033106 (2015).
    [Crossref]
  27. R. Vaillon, L. Robin, C. Muresan, and C. Ménézo, “Modeling of coupled spectral radiation, thermal and carrier transport in a silicon photovoltaic cell,” Int. J. Heat Mass Transfer 49(23), 4454–4468 (2006).
    [Crossref]
  28. S. M. Sze and K. K. Ng, Physics of Semiconductor Devices (John Wiley & Sons, 2006).
  29. P. Markos and C. M. Soukoulis, Wave Propagation: From Electrons to Photonic Crystals and Left-handed Materials (Princeton University, 2008).
  30. A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7, 948–957 (2013).
    [Crossref]
  31. Y. Guo, W. Newman, C. L. Cortes, and Z. Jacob, “Applications of hyperbolic metamaterial substrates,” Adv. OptoElectron. 2012452502 (2012).
    [Crossref]
  32. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1998).
  33. J. R. Dixon and J. M. Ellis, “Optical properties of n-type indium arsenide in the fundamental absorption edge region,” Phys. Rev. 123(5), 1560 (1961).
    [Crossref]
  34. O. Ilic, M. Jablan, J. D. Joannopoulos, I. Celanovic, and M. Soljačić, “Overcoming the black body limit in plasmonic and graphene near-field thermophotovoltaic systems,” Opt. Express 20(S3), A366–A384 (2012).
    [Crossref] [PubMed]
  35. K. Joulain, J.-P. Mulet, F. Marquier, R. Carminati, and J.-J. Greffet, “Surface electromagnetic waves thermally excited: Radiative heat transfer, coherence properties and casimir forces revisited in the near field,” Surf. Sci. Rep. 57(3), 59–112 (2005).
    [Crossref]
  36. P.-O. Chapuis, S. Volz, C. Henkel, K. Joulain, and J.-J. Greffet, “Effects of spatial dispersion in near-field radiative heat transfer between two parallel metallic surfaces,” Phys. Rev. B 77(3), 035431 (2008).
    [Crossref]
  37. S. Basu, B. J. Lee, and Z. M. Zhang, “Near-field radiation calculated with an improved dielectric function model for doped silicon,” J. Heat Transfer 132(2), 023302 (2010).
    [Crossref]
  38. K. Park, B. J. Lee, C. Fu, and Z. M. Zhang, “Study of the surface and bulk polaritons with a negative index metamaterial,” J. Opt. Soc. Am. B 22(5), 1016–1023 (2005).
    [Crossref]
  39. R. Ortuño, C. García-Meca, F. Rodríguez-Fortuño, J. Martí, and A. Martínez, “Role of surface plasmon polaritons on optical transmission through double layer metallic hole arrays,” Phys. Rev. B 79(7), 075425 (2009).
    [Crossref]
  40. B. J. Lee and Z. M. Zhang, “Lateral shifts in near-field thermal radiation with surface phonon polaritons,” Nanoscale Microscale Thermophys. Eng. 12, 238–250 (2008).
    [Crossref]
  41. Y. Guo and Z. Jacob, “Thermal hyperbolic metamaterials,” Opt. Express 21(12), 15014–15019 (2013).
    [Crossref] [PubMed]
  42. M. Sotoodeh, A. H. Khalid, and A. A. Rezazadeh, “Empirical low-field mobility model for III – V compounds applicable in device simulation codes,” J. Appl. Phys. 87(6), 2890–2900 (2000).
    [Crossref]
  43. K. L. Vodopyanov, H. Graener, C. C. Phillips, and T. J. Tate, “Picosecond carrier dynamics and studies of Auger recombination processes in indium arsenide at room temperature,” Phys. Rev. B 46(20), 13194 (1992).
    [Crossref]
  44. J. A. González-Cuevas, T. F. Refaat, M. N. Abedin, and H. E. Elsayed-Ali, “Modeling of the temperature-dependent spectral response of In1−xGaxSb infrared photodetectors,” Opt. Eng. 45(4), 044001 (2006).
    [Crossref]
  45. H. J. Joyce, C. J. Docherty, Q. Gao, H. H. Tan, C. Jagadish, J. Lloyd-Hughes, L. M. Herz, and M. B. Johnston, “Electronic properties of GaAs, InAs and InP nanowires studied by terahertz spectroscopy,” Nanotechnology 24(21), 214006 (2013).
    [Crossref] [PubMed]
  46. T. J. Bright, L. P. Wang, and Z. M. Zhang, “Performance of near-field thermophotovoltaic cells enhanced with a backside reflector,” J. Heat. Transfer 136(6), 062701 (2014).
    [Crossref]

2015 (6)

M. Lim, S. Jin, S. S. Lee, and B. J. Lee, “Graphene-assisted Si-InSb thermophotovoltaic system for low temperature applications,” Opt. Express 23(7), A240–A253 (2015).
[Crossref] [PubMed]

M. Lim, S. S. Lee, and B. J. Lee, “Near-field thermal radiation between doped silicon plates at nanoscale gaps,” Phys. Rev. B 91(19), 195136 (2015).
[Crossref]

K. Ito, A. Miura, H. Iizuka, and H. Toshiyoshi, “Parallel-plate submicron gap formed by micromachined low-density pillars for near-field radiative heat transfer,” Appl. Phys. Lett. 106(8), 083504 (2015).
[Crossref]

M. P. Bernardi, O. Dupré, E. Blandre, P.-O. Chapuis, R. Vaillon, and M. Francoeur, “Impacts of propagating, frustrated and surface modes on radiative, electrical and thermal losses in nanoscale-gap thermophotovoltaic power generators,” Sci. Rep. 5, 11626 (2015).
[Crossref] [PubMed]

J.-Y. Chang, Y. Yang, and L. P. Wang, “Tungsten nanowire based hyperbolic metamaterial emitters for near-field thermophotovoltaic applications,” Int. J. Heat Mass Transfer 87, 237–247 (2015).
[Crossref]

S. Basu, Y. Yang, and L. P. Wang, “Near-field radiative heat transfer between metamaterials coated with silicon carbide thin films,” Appl. Phys. Lett. 106(3), 033106 (2015).
[Crossref]

2014 (3)

X. L. Liu, T. J. Bright, and Z. M. Zhang, “Application conditions of effective medium theory in near-field radiative heat transfer between multilayered metamaterials,” J. Heat Transfer 136(9), 092703 (2014).
[Crossref]

X. L. Liu, R. Z. Zhang, and Z. M. Zhang, “Near-field radiative heat transfer with doped-silicon nanostructured metamaterials,” Int. J. Heat Mass Transfer 73, 389–398 (2014).
[Crossref]

T. J. Bright, L. P. Wang, and Z. M. Zhang, “Performance of near-field thermophotovoltaic cells enhanced with a backside reflector,” J. Heat. Transfer 136(6), 062701 (2014).
[Crossref]

2013 (7)

H. J. Joyce, C. J. Docherty, Q. Gao, H. H. Tan, C. Jagadish, J. Lloyd-Hughes, L. M. Herz, and M. B. Johnston, “Electronic properties of GaAs, InAs and InP nanowires studied by terahertz spectroscopy,” Nanotechnology 24(21), 214006 (2013).
[Crossref] [PubMed]

Y. Guo and Z. Jacob, “Thermal hyperbolic metamaterials,” Opt. Express 21(12), 15014–15019 (2013).
[Crossref] [PubMed]

R. Messina and P. Ben-Abdallah, “Graphene-based photovoltaic cells for near-field thermal energy conversion,” Sci. Rep. 3, 1383 (2013).
[Crossref] [PubMed]

S.-A. Biehs, M. Tschikin, R. Messina, and P. Ben-Abdallah, “Super-Planckian near-field thermal emission with phonon-polaritonic hyperbolic metamaterials,” Appl. Phys. Lett. 102(13), 131106 (2013).
[Crossref]

S. V. Zhukovsky, O. Kidwai, and J. E. Sipe, “Physical nature of volume plasmon polaritons in hyperbolic metamaterials,” Opt. Express 21(12), 14982–14987 (2013).
[Crossref] [PubMed]

M. Lim, S. S. Lee, and B. J. Lee, “Near-field thermal radiation between graphene-covered doped silicon plates,” Opt. Express 21(19), 22173–22185 (2013).
[Crossref] [PubMed]

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7, 948–957 (2013).
[Crossref]

2012 (4)

Y. Guo, W. Newman, C. L. Cortes, and Z. Jacob, “Applications of hyperbolic metamaterial substrates,” Adv. OptoElectron. 2012452502 (2012).
[Crossref]

O. Ilic, M. Jablan, J. D. Joannopoulos, I. Celanovic, and M. Soljačić, “Overcoming the black body limit in plasmonic and graphene near-field thermophotovoltaic systems,” Opt. Express 20(S3), A366–A384 (2012).
[Crossref] [PubMed]

M. Tschikin, P. Ben-Abdallah, and S.-A. Biehs, “Coherent thermal conductance of 1-D photonic crystals,” Phys. Lett. A 376(45), 3462–3465 (2012).
[Crossref]

S.-A. Biehs, M. Tschikin, and P. Ben-Abdallah, “Hyperbolic metamaterials as an analog of a blackbody in the near field,” Phys. Rev. Lett. 109(10), 104301 (2012).
[Crossref] [PubMed]

2011 (1)

M. Francoeur, R. Vaillon, and M. P. Mengüç, “Thermal impacts on the performance of nanoscale-gap thermophotovoltaic power generators,” IEEE Trans. Energy Conver. 26(2), 686–698 (2011).
[Crossref]

2010 (3)

S. V. Zhukovsky, “Perfect transmission and highly asymmetric light localization in photonic multilayers,” Phys. Rev. A 81(5), 053808 (2010).
[Crossref]

M. Francoeur, M. P. Mengüç, and R. Vaillon, “Spectral tuning of near-field radiative heat flux between two thin silicon carbide films,” J. Phys. D Appl. Phys. 43(7), 075501 (2010).
[Crossref]

S. Basu, B. J. Lee, and Z. M. Zhang, “Near-field radiation calculated with an improved dielectric function model for doped silicon,” J. Heat Transfer 132(2), 023302 (2010).
[Crossref]

2009 (1)

R. Ortuño, C. García-Meca, F. Rodríguez-Fortuño, J. Martí, and A. Martínez, “Role of surface plasmon polaritons on optical transmission through double layer metallic hole arrays,” Phys. Rev. B 79(7), 075425 (2009).
[Crossref]

2008 (3)

B. J. Lee and Z. M. Zhang, “Lateral shifts in near-field thermal radiation with surface phonon polaritons,” Nanoscale Microscale Thermophys. Eng. 12, 238–250 (2008).
[Crossref]

K. Park, S. Basu, W. P. King, and Z. M. Zhang, “Performance analysis of near-field thermophotovoltaic devices considering absorption distribution,” J. Quant. Spectrosc. Radiat. Transf. 109(2), 305–316 (2008).
[Crossref]

P.-O. Chapuis, S. Volz, C. Henkel, K. Joulain, and J.-J. Greffet, “Effects of spatial dispersion in near-field radiative heat transfer between two parallel metallic surfaces,” Phys. Rev. B 77(3), 035431 (2008).
[Crossref]

2007 (2)

S. Basu, Y. B. Chen, and Z. M. Zhang, “Microscale radiation in thermophotovoltaic devices-a review,” Int. J. Energy Res. 31(6), 689–716 (2007).
[Crossref]

S.-A. Biehs, “Thermal heat radiation, near-field energy density and near-field radiative heat transfer of coated materials,” Eur. Phys. J. B 58(4), 423–431 (2007).
[Crossref]

2006 (3)

R. Vaillon, L. Robin, C. Muresan, and C. Ménézo, “Modeling of coupled spectral radiation, thermal and carrier transport in a silicon photovoltaic cell,” Int. J. Heat Mass Transfer 49(23), 4454–4468 (2006).
[Crossref]

M. Laroche, R. Carminati, and J.-J. Greffet, “Near-field thermophotovoltaic energy conversion,” J. Appl. Phys. 100(6), 063704 (2006).
[Crossref]

J. A. González-Cuevas, T. F. Refaat, M. N. Abedin, and H. E. Elsayed-Ali, “Modeling of the temperature-dependent spectral response of In1−xGaxSb infrared photodetectors,” Opt. Eng. 45(4), 044001 (2006).
[Crossref]

2005 (2)

K. Park, B. J. Lee, C. Fu, and Z. M. Zhang, “Study of the surface and bulk polaritons with a negative index metamaterial,” J. Opt. Soc. Am. B 22(5), 1016–1023 (2005).
[Crossref]

K. Joulain, J.-P. Mulet, F. Marquier, R. Carminati, and J.-J. Greffet, “Surface electromagnetic waves thermally excited: Radiative heat transfer, coherence properties and casimir forces revisited in the near field,” Surf. Sci. Rep. 57(3), 59–112 (2005).
[Crossref]

2002 (2)

M. D. Whale and E. G. Cravalho, “Modeling and performance of microscale thermophotovoltaic energy conversion devices,” IEEE Trans. Energy Conver. 17(1), 130–142 (2002).
[Crossref]

J.-P. Mulet, K. Joulain, R. Carminati, and J.-J. Greffet, “Enhanced radiative heat transfer at nanometric distances,” Microscale Thermophys. Eng. 6(3), 209–222 (2002).
[Crossref]

2000 (1)

M. Sotoodeh, A. H. Khalid, and A. A. Rezazadeh, “Empirical low-field mobility model for III – V compounds applicable in device simulation codes,” J. Appl. Phys. 87(6), 2890–2900 (2000).
[Crossref]

1992 (1)

K. L. Vodopyanov, H. Graener, C. C. Phillips, and T. J. Tate, “Picosecond carrier dynamics and studies of Auger recombination processes in indium arsenide at room temperature,” Phys. Rev. B 46(20), 13194 (1992).
[Crossref]

1971 (1)

D. Polder and M. Van Hove, “Theory of radiative heat transfer between closely spaced bodies,” Phys. Rev. B 4(10), 3303 (1971).
[Crossref]

1961 (1)

J. R. Dixon and J. M. Ellis, “Optical properties of n-type indium arsenide in the fundamental absorption edge region,” Phys. Rev. 123(5), 1560 (1961).
[Crossref]

Abedin, M. N.

J. A. González-Cuevas, T. F. Refaat, M. N. Abedin, and H. E. Elsayed-Ali, “Modeling of the temperature-dependent spectral response of In1−xGaxSb infrared photodetectors,” Opt. Eng. 45(4), 044001 (2006).
[Crossref]

Basu, S.

S. Basu, Y. Yang, and L. P. Wang, “Near-field radiative heat transfer between metamaterials coated with silicon carbide thin films,” Appl. Phys. Lett. 106(3), 033106 (2015).
[Crossref]

S. Basu, B. J. Lee, and Z. M. Zhang, “Near-field radiation calculated with an improved dielectric function model for doped silicon,” J. Heat Transfer 132(2), 023302 (2010).
[Crossref]

K. Park, S. Basu, W. P. King, and Z. M. Zhang, “Performance analysis of near-field thermophotovoltaic devices considering absorption distribution,” J. Quant. Spectrosc. Radiat. Transf. 109(2), 305–316 (2008).
[Crossref]

S. Basu, Y. B. Chen, and Z. M. Zhang, “Microscale radiation in thermophotovoltaic devices-a review,” Int. J. Energy Res. 31(6), 689–716 (2007).
[Crossref]

Belov, P.

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7, 948–957 (2013).
[Crossref]

Ben-Abdallah, P.

R. Messina and P. Ben-Abdallah, “Graphene-based photovoltaic cells for near-field thermal energy conversion,” Sci. Rep. 3, 1383 (2013).
[Crossref] [PubMed]

S.-A. Biehs, M. Tschikin, R. Messina, and P. Ben-Abdallah, “Super-Planckian near-field thermal emission with phonon-polaritonic hyperbolic metamaterials,” Appl. Phys. Lett. 102(13), 131106 (2013).
[Crossref]

S.-A. Biehs, M. Tschikin, and P. Ben-Abdallah, “Hyperbolic metamaterials as an analog of a blackbody in the near field,” Phys. Rev. Lett. 109(10), 104301 (2012).
[Crossref] [PubMed]

M. Tschikin, P. Ben-Abdallah, and S.-A. Biehs, “Coherent thermal conductance of 1-D photonic crystals,” Phys. Lett. A 376(45), 3462–3465 (2012).
[Crossref]

Bernardi, M. P.

M. P. Bernardi, O. Dupré, E. Blandre, P.-O. Chapuis, R. Vaillon, and M. Francoeur, “Impacts of propagating, frustrated and surface modes on radiative, electrical and thermal losses in nanoscale-gap thermophotovoltaic power generators,” Sci. Rep. 5, 11626 (2015).
[Crossref] [PubMed]

Biehs, S.-A.

S.-A. Biehs, M. Tschikin, R. Messina, and P. Ben-Abdallah, “Super-Planckian near-field thermal emission with phonon-polaritonic hyperbolic metamaterials,” Appl. Phys. Lett. 102(13), 131106 (2013).
[Crossref]

S.-A. Biehs, M. Tschikin, and P. Ben-Abdallah, “Hyperbolic metamaterials as an analog of a blackbody in the near field,” Phys. Rev. Lett. 109(10), 104301 (2012).
[Crossref] [PubMed]

M. Tschikin, P. Ben-Abdallah, and S.-A. Biehs, “Coherent thermal conductance of 1-D photonic crystals,” Phys. Lett. A 376(45), 3462–3465 (2012).
[Crossref]

S.-A. Biehs, “Thermal heat radiation, near-field energy density and near-field radiative heat transfer of coated materials,” Eur. Phys. J. B 58(4), 423–431 (2007).
[Crossref]

Blandre, E.

M. P. Bernardi, O. Dupré, E. Blandre, P.-O. Chapuis, R. Vaillon, and M. Francoeur, “Impacts of propagating, frustrated and surface modes on radiative, electrical and thermal losses in nanoscale-gap thermophotovoltaic power generators,” Sci. Rep. 5, 11626 (2015).
[Crossref] [PubMed]

Bright, T. J.

X. L. Liu, T. J. Bright, and Z. M. Zhang, “Application conditions of effective medium theory in near-field radiative heat transfer between multilayered metamaterials,” J. Heat Transfer 136(9), 092703 (2014).
[Crossref]

T. J. Bright, L. P. Wang, and Z. M. Zhang, “Performance of near-field thermophotovoltaic cells enhanced with a backside reflector,” J. Heat. Transfer 136(6), 062701 (2014).
[Crossref]

Cai, W.

V. Shalaev and W. Cai, Optical Metamaterials: Fundamentals and Applications (Springer, 2010).

Carminati, R.

M. Laroche, R. Carminati, and J.-J. Greffet, “Near-field thermophotovoltaic energy conversion,” J. Appl. Phys. 100(6), 063704 (2006).
[Crossref]

K. Joulain, J.-P. Mulet, F. Marquier, R. Carminati, and J.-J. Greffet, “Surface electromagnetic waves thermally excited: Radiative heat transfer, coherence properties and casimir forces revisited in the near field,” Surf. Sci. Rep. 57(3), 59–112 (2005).
[Crossref]

J.-P. Mulet, K. Joulain, R. Carminati, and J.-J. Greffet, “Enhanced radiative heat transfer at nanometric distances,” Microscale Thermophys. Eng. 6(3), 209–222 (2002).
[Crossref]

Celanovic, I.

Chang, J.-Y.

J.-Y. Chang, Y. Yang, and L. P. Wang, “Tungsten nanowire based hyperbolic metamaterial emitters for near-field thermophotovoltaic applications,” Int. J. Heat Mass Transfer 87, 237–247 (2015).
[Crossref]

Chapuis, P.-O.

M. P. Bernardi, O. Dupré, E. Blandre, P.-O. Chapuis, R. Vaillon, and M. Francoeur, “Impacts of propagating, frustrated and surface modes on radiative, electrical and thermal losses in nanoscale-gap thermophotovoltaic power generators,” Sci. Rep. 5, 11626 (2015).
[Crossref] [PubMed]

P.-O. Chapuis, S. Volz, C. Henkel, K. Joulain, and J.-J. Greffet, “Effects of spatial dispersion in near-field radiative heat transfer between two parallel metallic surfaces,” Phys. Rev. B 77(3), 035431 (2008).
[Crossref]

Chen, Y. B.

S. Basu, Y. B. Chen, and Z. M. Zhang, “Microscale radiation in thermophotovoltaic devices-a review,” Int. J. Energy Res. 31(6), 689–716 (2007).
[Crossref]

Chubb, D.

D. Chubb, Fundamentals of Thermophotovoltaic Energy Conversion (Elsevier, 2007).

Cortes, C. L.

Y. Guo, W. Newman, C. L. Cortes, and Z. Jacob, “Applications of hyperbolic metamaterial substrates,” Adv. OptoElectron. 2012452502 (2012).
[Crossref]

Cravalho, E. G.

M. D. Whale and E. G. Cravalho, “Modeling and performance of microscale thermophotovoltaic energy conversion devices,” IEEE Trans. Energy Conver. 17(1), 130–142 (2002).
[Crossref]

Dixon, J. R.

J. R. Dixon and J. M. Ellis, “Optical properties of n-type indium arsenide in the fundamental absorption edge region,” Phys. Rev. 123(5), 1560 (1961).
[Crossref]

Docherty, C. J.

H. J. Joyce, C. J. Docherty, Q. Gao, H. H. Tan, C. Jagadish, J. Lloyd-Hughes, L. M. Herz, and M. B. Johnston, “Electronic properties of GaAs, InAs and InP nanowires studied by terahertz spectroscopy,” Nanotechnology 24(21), 214006 (2013).
[Crossref] [PubMed]

Dupré, O.

M. P. Bernardi, O. Dupré, E. Blandre, P.-O. Chapuis, R. Vaillon, and M. Francoeur, “Impacts of propagating, frustrated and surface modes on radiative, electrical and thermal losses in nanoscale-gap thermophotovoltaic power generators,” Sci. Rep. 5, 11626 (2015).
[Crossref] [PubMed]

Ellis, J. M.

J. R. Dixon and J. M. Ellis, “Optical properties of n-type indium arsenide in the fundamental absorption edge region,” Phys. Rev. 123(5), 1560 (1961).
[Crossref]

Elsayed-Ali, H. E.

J. A. González-Cuevas, T. F. Refaat, M. N. Abedin, and H. E. Elsayed-Ali, “Modeling of the temperature-dependent spectral response of In1−xGaxSb infrared photodetectors,” Opt. Eng. 45(4), 044001 (2006).
[Crossref]

Francoeur, M.

M. P. Bernardi, O. Dupré, E. Blandre, P.-O. Chapuis, R. Vaillon, and M. Francoeur, “Impacts of propagating, frustrated and surface modes on radiative, electrical and thermal losses in nanoscale-gap thermophotovoltaic power generators,” Sci. Rep. 5, 11626 (2015).
[Crossref] [PubMed]

M. Francoeur, R. Vaillon, and M. P. Mengüç, “Thermal impacts on the performance of nanoscale-gap thermophotovoltaic power generators,” IEEE Trans. Energy Conver. 26(2), 686–698 (2011).
[Crossref]

M. Francoeur, M. P. Mengüç, and R. Vaillon, “Spectral tuning of near-field radiative heat flux between two thin silicon carbide films,” J. Phys. D Appl. Phys. 43(7), 075501 (2010).
[Crossref]

Fu, C.

Gao, Q.

H. J. Joyce, C. J. Docherty, Q. Gao, H. H. Tan, C. Jagadish, J. Lloyd-Hughes, L. M. Herz, and M. B. Johnston, “Electronic properties of GaAs, InAs and InP nanowires studied by terahertz spectroscopy,” Nanotechnology 24(21), 214006 (2013).
[Crossref] [PubMed]

García-Meca, C.

R. Ortuño, C. García-Meca, F. Rodríguez-Fortuño, J. Martí, and A. Martínez, “Role of surface plasmon polaritons on optical transmission through double layer metallic hole arrays,” Phys. Rev. B 79(7), 075425 (2009).
[Crossref]

González-Cuevas, J. A.

J. A. González-Cuevas, T. F. Refaat, M. N. Abedin, and H. E. Elsayed-Ali, “Modeling of the temperature-dependent spectral response of In1−xGaxSb infrared photodetectors,” Opt. Eng. 45(4), 044001 (2006).
[Crossref]

Graener, H.

K. L. Vodopyanov, H. Graener, C. C. Phillips, and T. J. Tate, “Picosecond carrier dynamics and studies of Auger recombination processes in indium arsenide at room temperature,” Phys. Rev. B 46(20), 13194 (1992).
[Crossref]

Greffet, J.-J.

P.-O. Chapuis, S. Volz, C. Henkel, K. Joulain, and J.-J. Greffet, “Effects of spatial dispersion in near-field radiative heat transfer between two parallel metallic surfaces,” Phys. Rev. B 77(3), 035431 (2008).
[Crossref]

M. Laroche, R. Carminati, and J.-J. Greffet, “Near-field thermophotovoltaic energy conversion,” J. Appl. Phys. 100(6), 063704 (2006).
[Crossref]

K. Joulain, J.-P. Mulet, F. Marquier, R. Carminati, and J.-J. Greffet, “Surface electromagnetic waves thermally excited: Radiative heat transfer, coherence properties and casimir forces revisited in the near field,” Surf. Sci. Rep. 57(3), 59–112 (2005).
[Crossref]

J.-P. Mulet, K. Joulain, R. Carminati, and J.-J. Greffet, “Enhanced radiative heat transfer at nanometric distances,” Microscale Thermophys. Eng. 6(3), 209–222 (2002).
[Crossref]

Guo, Y.

Y. Guo and Z. Jacob, “Thermal hyperbolic metamaterials,” Opt. Express 21(12), 15014–15019 (2013).
[Crossref] [PubMed]

Y. Guo, W. Newman, C. L. Cortes, and Z. Jacob, “Applications of hyperbolic metamaterial substrates,” Adv. OptoElectron. 2012452502 (2012).
[Crossref]

Henkel, C.

P.-O. Chapuis, S. Volz, C. Henkel, K. Joulain, and J.-J. Greffet, “Effects of spatial dispersion in near-field radiative heat transfer between two parallel metallic surfaces,” Phys. Rev. B 77(3), 035431 (2008).
[Crossref]

Herz, L. M.

H. J. Joyce, C. J. Docherty, Q. Gao, H. H. Tan, C. Jagadish, J. Lloyd-Hughes, L. M. Herz, and M. B. Johnston, “Electronic properties of GaAs, InAs and InP nanowires studied by terahertz spectroscopy,” Nanotechnology 24(21), 214006 (2013).
[Crossref] [PubMed]

Iizuka, H.

K. Ito, A. Miura, H. Iizuka, and H. Toshiyoshi, “Parallel-plate submicron gap formed by micromachined low-density pillars for near-field radiative heat transfer,” Appl. Phys. Lett. 106(8), 083504 (2015).
[Crossref]

Ilic, O.

Iorsh, I.

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7, 948–957 (2013).
[Crossref]

Ito, K.

K. Ito, A. Miura, H. Iizuka, and H. Toshiyoshi, “Parallel-plate submicron gap formed by micromachined low-density pillars for near-field radiative heat transfer,” Appl. Phys. Lett. 106(8), 083504 (2015).
[Crossref]

Jablan, M.

Jacob, Z.

Y. Guo and Z. Jacob, “Thermal hyperbolic metamaterials,” Opt. Express 21(12), 15014–15019 (2013).
[Crossref] [PubMed]

Y. Guo, W. Newman, C. L. Cortes, and Z. Jacob, “Applications of hyperbolic metamaterial substrates,” Adv. OptoElectron. 2012452502 (2012).
[Crossref]

Jagadish, C.

H. J. Joyce, C. J. Docherty, Q. Gao, H. H. Tan, C. Jagadish, J. Lloyd-Hughes, L. M. Herz, and M. B. Johnston, “Electronic properties of GaAs, InAs and InP nanowires studied by terahertz spectroscopy,” Nanotechnology 24(21), 214006 (2013).
[Crossref] [PubMed]

Jin, S.

Joannopoulos, J. D.

Johnston, M. B.

H. J. Joyce, C. J. Docherty, Q. Gao, H. H. Tan, C. Jagadish, J. Lloyd-Hughes, L. M. Herz, and M. B. Johnston, “Electronic properties of GaAs, InAs and InP nanowires studied by terahertz spectroscopy,” Nanotechnology 24(21), 214006 (2013).
[Crossref] [PubMed]

Joulain, K.

P.-O. Chapuis, S. Volz, C. Henkel, K. Joulain, and J.-J. Greffet, “Effects of spatial dispersion in near-field radiative heat transfer between two parallel metallic surfaces,” Phys. Rev. B 77(3), 035431 (2008).
[Crossref]

K. Joulain, J.-P. Mulet, F. Marquier, R. Carminati, and J.-J. Greffet, “Surface electromagnetic waves thermally excited: Radiative heat transfer, coherence properties and casimir forces revisited in the near field,” Surf. Sci. Rep. 57(3), 59–112 (2005).
[Crossref]

J.-P. Mulet, K. Joulain, R. Carminati, and J.-J. Greffet, “Enhanced radiative heat transfer at nanometric distances,” Microscale Thermophys. Eng. 6(3), 209–222 (2002).
[Crossref]

Joyce, H. J.

H. J. Joyce, C. J. Docherty, Q. Gao, H. H. Tan, C. Jagadish, J. Lloyd-Hughes, L. M. Herz, and M. B. Johnston, “Electronic properties of GaAs, InAs and InP nanowires studied by terahertz spectroscopy,” Nanotechnology 24(21), 214006 (2013).
[Crossref] [PubMed]

Khalid, A. H.

M. Sotoodeh, A. H. Khalid, and A. A. Rezazadeh, “Empirical low-field mobility model for III – V compounds applicable in device simulation codes,” J. Appl. Phys. 87(6), 2890–2900 (2000).
[Crossref]

Kidwai, O.

King, W. P.

K. Park, S. Basu, W. P. King, and Z. M. Zhang, “Performance analysis of near-field thermophotovoltaic devices considering absorption distribution,” J. Quant. Spectrosc. Radiat. Transf. 109(2), 305–316 (2008).
[Crossref]

Kivshar, Y.

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7, 948–957 (2013).
[Crossref]

Laroche, M.

M. Laroche, R. Carminati, and J.-J. Greffet, “Near-field thermophotovoltaic energy conversion,” J. Appl. Phys. 100(6), 063704 (2006).
[Crossref]

Lee, B. J.

M. Lim, S. Jin, S. S. Lee, and B. J. Lee, “Graphene-assisted Si-InSb thermophotovoltaic system for low temperature applications,” Opt. Express 23(7), A240–A253 (2015).
[Crossref] [PubMed]

M. Lim, S. S. Lee, and B. J. Lee, “Near-field thermal radiation between doped silicon plates at nanoscale gaps,” Phys. Rev. B 91(19), 195136 (2015).
[Crossref]

M. Lim, S. S. Lee, and B. J. Lee, “Near-field thermal radiation between graphene-covered doped silicon plates,” Opt. Express 21(19), 22173–22185 (2013).
[Crossref] [PubMed]

S. Basu, B. J. Lee, and Z. M. Zhang, “Near-field radiation calculated with an improved dielectric function model for doped silicon,” J. Heat Transfer 132(2), 023302 (2010).
[Crossref]

B. J. Lee and Z. M. Zhang, “Lateral shifts in near-field thermal radiation with surface phonon polaritons,” Nanoscale Microscale Thermophys. Eng. 12, 238–250 (2008).
[Crossref]

K. Park, B. J. Lee, C. Fu, and Z. M. Zhang, “Study of the surface and bulk polaritons with a negative index metamaterial,” J. Opt. Soc. Am. B 22(5), 1016–1023 (2005).
[Crossref]

Lee, S. S.

Lim, M.

Liu, X. L.

X. L. Liu, T. J. Bright, and Z. M. Zhang, “Application conditions of effective medium theory in near-field radiative heat transfer between multilayered metamaterials,” J. Heat Transfer 136(9), 092703 (2014).
[Crossref]

X. L. Liu, R. Z. Zhang, and Z. M. Zhang, “Near-field radiative heat transfer with doped-silicon nanostructured metamaterials,” Int. J. Heat Mass Transfer 73, 389–398 (2014).
[Crossref]

Lloyd-Hughes, J.

H. J. Joyce, C. J. Docherty, Q. Gao, H. H. Tan, C. Jagadish, J. Lloyd-Hughes, L. M. Herz, and M. B. Johnston, “Electronic properties of GaAs, InAs and InP nanowires studied by terahertz spectroscopy,” Nanotechnology 24(21), 214006 (2013).
[Crossref] [PubMed]

Markos, P.

P. Markos and C. M. Soukoulis, Wave Propagation: From Electrons to Photonic Crystals and Left-handed Materials (Princeton University, 2008).

Marquier, F.

K. Joulain, J.-P. Mulet, F. Marquier, R. Carminati, and J.-J. Greffet, “Surface electromagnetic waves thermally excited: Radiative heat transfer, coherence properties and casimir forces revisited in the near field,” Surf. Sci. Rep. 57(3), 59–112 (2005).
[Crossref]

Martí, J.

R. Ortuño, C. García-Meca, F. Rodríguez-Fortuño, J. Martí, and A. Martínez, “Role of surface plasmon polaritons on optical transmission through double layer metallic hole arrays,” Phys. Rev. B 79(7), 075425 (2009).
[Crossref]

Martínez, A.

R. Ortuño, C. García-Meca, F. Rodríguez-Fortuño, J. Martí, and A. Martínez, “Role of surface plasmon polaritons on optical transmission through double layer metallic hole arrays,” Phys. Rev. B 79(7), 075425 (2009).
[Crossref]

Ménézo, C.

R. Vaillon, L. Robin, C. Muresan, and C. Ménézo, “Modeling of coupled spectral radiation, thermal and carrier transport in a silicon photovoltaic cell,” Int. J. Heat Mass Transfer 49(23), 4454–4468 (2006).
[Crossref]

Mengüç, M. P.

M. Francoeur, R. Vaillon, and M. P. Mengüç, “Thermal impacts on the performance of nanoscale-gap thermophotovoltaic power generators,” IEEE Trans. Energy Conver. 26(2), 686–698 (2011).
[Crossref]

M. Francoeur, M. P. Mengüç, and R. Vaillon, “Spectral tuning of near-field radiative heat flux between two thin silicon carbide films,” J. Phys. D Appl. Phys. 43(7), 075501 (2010).
[Crossref]

Messina, R.

S.-A. Biehs, M. Tschikin, R. Messina, and P. Ben-Abdallah, “Super-Planckian near-field thermal emission with phonon-polaritonic hyperbolic metamaterials,” Appl. Phys. Lett. 102(13), 131106 (2013).
[Crossref]

R. Messina and P. Ben-Abdallah, “Graphene-based photovoltaic cells for near-field thermal energy conversion,” Sci. Rep. 3, 1383 (2013).
[Crossref] [PubMed]

Miura, A.

K. Ito, A. Miura, H. Iizuka, and H. Toshiyoshi, “Parallel-plate submicron gap formed by micromachined low-density pillars for near-field radiative heat transfer,” Appl. Phys. Lett. 106(8), 083504 (2015).
[Crossref]

Mulet, J.-P.

K. Joulain, J.-P. Mulet, F. Marquier, R. Carminati, and J.-J. Greffet, “Surface electromagnetic waves thermally excited: Radiative heat transfer, coherence properties and casimir forces revisited in the near field,” Surf. Sci. Rep. 57(3), 59–112 (2005).
[Crossref]

J.-P. Mulet, K. Joulain, R. Carminati, and J.-J. Greffet, “Enhanced radiative heat transfer at nanometric distances,” Microscale Thermophys. Eng. 6(3), 209–222 (2002).
[Crossref]

Muresan, C.

R. Vaillon, L. Robin, C. Muresan, and C. Ménézo, “Modeling of coupled spectral radiation, thermal and carrier transport in a silicon photovoltaic cell,” Int. J. Heat Mass Transfer 49(23), 4454–4468 (2006).
[Crossref]

Newman, W.

Y. Guo, W. Newman, C. L. Cortes, and Z. Jacob, “Applications of hyperbolic metamaterial substrates,” Adv. OptoElectron. 2012452502 (2012).
[Crossref]

Ng, K. K.

S. M. Sze and K. K. Ng, Physics of Semiconductor Devices (John Wiley & Sons, 2006).

Ortuño, R.

R. Ortuño, C. García-Meca, F. Rodríguez-Fortuño, J. Martí, and A. Martínez, “Role of surface plasmon polaritons on optical transmission through double layer metallic hole arrays,” Phys. Rev. B 79(7), 075425 (2009).
[Crossref]

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1998).

Park, K.

K. Park, S. Basu, W. P. King, and Z. M. Zhang, “Performance analysis of near-field thermophotovoltaic devices considering absorption distribution,” J. Quant. Spectrosc. Radiat. Transf. 109(2), 305–316 (2008).
[Crossref]

K. Park, B. J. Lee, C. Fu, and Z. M. Zhang, “Study of the surface and bulk polaritons with a negative index metamaterial,” J. Opt. Soc. Am. B 22(5), 1016–1023 (2005).
[Crossref]

Phillips, C. C.

K. L. Vodopyanov, H. Graener, C. C. Phillips, and T. J. Tate, “Picosecond carrier dynamics and studies of Auger recombination processes in indium arsenide at room temperature,” Phys. Rev. B 46(20), 13194 (1992).
[Crossref]

Poddubny, A.

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7, 948–957 (2013).
[Crossref]

Polder, D.

D. Polder and M. Van Hove, “Theory of radiative heat transfer between closely spaced bodies,” Phys. Rev. B 4(10), 3303 (1971).
[Crossref]

Refaat, T. F.

J. A. González-Cuevas, T. F. Refaat, M. N. Abedin, and H. E. Elsayed-Ali, “Modeling of the temperature-dependent spectral response of In1−xGaxSb infrared photodetectors,” Opt. Eng. 45(4), 044001 (2006).
[Crossref]

Rezazadeh, A. A.

M. Sotoodeh, A. H. Khalid, and A. A. Rezazadeh, “Empirical low-field mobility model for III – V compounds applicable in device simulation codes,” J. Appl. Phys. 87(6), 2890–2900 (2000).
[Crossref]

Robin, L.

R. Vaillon, L. Robin, C. Muresan, and C. Ménézo, “Modeling of coupled spectral radiation, thermal and carrier transport in a silicon photovoltaic cell,” Int. J. Heat Mass Transfer 49(23), 4454–4468 (2006).
[Crossref]

Rodríguez-Fortuño, F.

R. Ortuño, C. García-Meca, F. Rodríguez-Fortuño, J. Martí, and A. Martínez, “Role of surface plasmon polaritons on optical transmission through double layer metallic hole arrays,” Phys. Rev. B 79(7), 075425 (2009).
[Crossref]

Shalaev, V.

V. Shalaev and W. Cai, Optical Metamaterials: Fundamentals and Applications (Springer, 2010).

Sipe, J. E.

Soljacic, M.

Sotoodeh, M.

M. Sotoodeh, A. H. Khalid, and A. A. Rezazadeh, “Empirical low-field mobility model for III – V compounds applicable in device simulation codes,” J. Appl. Phys. 87(6), 2890–2900 (2000).
[Crossref]

Soukoulis, C. M.

P. Markos and C. M. Soukoulis, Wave Propagation: From Electrons to Photonic Crystals and Left-handed Materials (Princeton University, 2008).

Sze, S. M.

S. M. Sze and K. K. Ng, Physics of Semiconductor Devices (John Wiley & Sons, 2006).

Tan, H. H.

H. J. Joyce, C. J. Docherty, Q. Gao, H. H. Tan, C. Jagadish, J. Lloyd-Hughes, L. M. Herz, and M. B. Johnston, “Electronic properties of GaAs, InAs and InP nanowires studied by terahertz spectroscopy,” Nanotechnology 24(21), 214006 (2013).
[Crossref] [PubMed]

Tate, T. J.

K. L. Vodopyanov, H. Graener, C. C. Phillips, and T. J. Tate, “Picosecond carrier dynamics and studies of Auger recombination processes in indium arsenide at room temperature,” Phys. Rev. B 46(20), 13194 (1992).
[Crossref]

Toshiyoshi, H.

K. Ito, A. Miura, H. Iizuka, and H. Toshiyoshi, “Parallel-plate submicron gap formed by micromachined low-density pillars for near-field radiative heat transfer,” Appl. Phys. Lett. 106(8), 083504 (2015).
[Crossref]

Tschikin, M.

S.-A. Biehs, M. Tschikin, R. Messina, and P. Ben-Abdallah, “Super-Planckian near-field thermal emission with phonon-polaritonic hyperbolic metamaterials,” Appl. Phys. Lett. 102(13), 131106 (2013).
[Crossref]

S.-A. Biehs, M. Tschikin, and P. Ben-Abdallah, “Hyperbolic metamaterials as an analog of a blackbody in the near field,” Phys. Rev. Lett. 109(10), 104301 (2012).
[Crossref] [PubMed]

M. Tschikin, P. Ben-Abdallah, and S.-A. Biehs, “Coherent thermal conductance of 1-D photonic crystals,” Phys. Lett. A 376(45), 3462–3465 (2012).
[Crossref]

Vaillon, R.

M. P. Bernardi, O. Dupré, E. Blandre, P.-O. Chapuis, R. Vaillon, and M. Francoeur, “Impacts of propagating, frustrated and surface modes on radiative, electrical and thermal losses in nanoscale-gap thermophotovoltaic power generators,” Sci. Rep. 5, 11626 (2015).
[Crossref] [PubMed]

M. Francoeur, R. Vaillon, and M. P. Mengüç, “Thermal impacts on the performance of nanoscale-gap thermophotovoltaic power generators,” IEEE Trans. Energy Conver. 26(2), 686–698 (2011).
[Crossref]

M. Francoeur, M. P. Mengüç, and R. Vaillon, “Spectral tuning of near-field radiative heat flux between two thin silicon carbide films,” J. Phys. D Appl. Phys. 43(7), 075501 (2010).
[Crossref]

R. Vaillon, L. Robin, C. Muresan, and C. Ménézo, “Modeling of coupled spectral radiation, thermal and carrier transport in a silicon photovoltaic cell,” Int. J. Heat Mass Transfer 49(23), 4454–4468 (2006).
[Crossref]

Van Hove, M.

D. Polder and M. Van Hove, “Theory of radiative heat transfer between closely spaced bodies,” Phys. Rev. B 4(10), 3303 (1971).
[Crossref]

Vodopyanov, K. L.

K. L. Vodopyanov, H. Graener, C. C. Phillips, and T. J. Tate, “Picosecond carrier dynamics and studies of Auger recombination processes in indium arsenide at room temperature,” Phys. Rev. B 46(20), 13194 (1992).
[Crossref]

Volz, S.

P.-O. Chapuis, S. Volz, C. Henkel, K. Joulain, and J.-J. Greffet, “Effects of spatial dispersion in near-field radiative heat transfer between two parallel metallic surfaces,” Phys. Rev. B 77(3), 035431 (2008).
[Crossref]

Wang, L. P.

S. Basu, Y. Yang, and L. P. Wang, “Near-field radiative heat transfer between metamaterials coated with silicon carbide thin films,” Appl. Phys. Lett. 106(3), 033106 (2015).
[Crossref]

J.-Y. Chang, Y. Yang, and L. P. Wang, “Tungsten nanowire based hyperbolic metamaterial emitters for near-field thermophotovoltaic applications,” Int. J. Heat Mass Transfer 87, 237–247 (2015).
[Crossref]

T. J. Bright, L. P. Wang, and Z. M. Zhang, “Performance of near-field thermophotovoltaic cells enhanced with a backside reflector,” J. Heat. Transfer 136(6), 062701 (2014).
[Crossref]

Whale, M. D.

M. D. Whale and E. G. Cravalho, “Modeling and performance of microscale thermophotovoltaic energy conversion devices,” IEEE Trans. Energy Conver. 17(1), 130–142 (2002).
[Crossref]

Yang, Y.

J.-Y. Chang, Y. Yang, and L. P. Wang, “Tungsten nanowire based hyperbolic metamaterial emitters for near-field thermophotovoltaic applications,” Int. J. Heat Mass Transfer 87, 237–247 (2015).
[Crossref]

S. Basu, Y. Yang, and L. P. Wang, “Near-field radiative heat transfer between metamaterials coated with silicon carbide thin films,” Appl. Phys. Lett. 106(3), 033106 (2015).
[Crossref]

Zhang, R. Z.

X. L. Liu, R. Z. Zhang, and Z. M. Zhang, “Near-field radiative heat transfer with doped-silicon nanostructured metamaterials,” Int. J. Heat Mass Transfer 73, 389–398 (2014).
[Crossref]

Zhang, Z. M.

X. L. Liu, R. Z. Zhang, and Z. M. Zhang, “Near-field radiative heat transfer with doped-silicon nanostructured metamaterials,” Int. J. Heat Mass Transfer 73, 389–398 (2014).
[Crossref]

X. L. Liu, T. J. Bright, and Z. M. Zhang, “Application conditions of effective medium theory in near-field radiative heat transfer between multilayered metamaterials,” J. Heat Transfer 136(9), 092703 (2014).
[Crossref]

T. J. Bright, L. P. Wang, and Z. M. Zhang, “Performance of near-field thermophotovoltaic cells enhanced with a backside reflector,” J. Heat. Transfer 136(6), 062701 (2014).
[Crossref]

S. Basu, B. J. Lee, and Z. M. Zhang, “Near-field radiation calculated with an improved dielectric function model for doped silicon,” J. Heat Transfer 132(2), 023302 (2010).
[Crossref]

B. J. Lee and Z. M. Zhang, “Lateral shifts in near-field thermal radiation with surface phonon polaritons,” Nanoscale Microscale Thermophys. Eng. 12, 238–250 (2008).
[Crossref]

K. Park, S. Basu, W. P. King, and Z. M. Zhang, “Performance analysis of near-field thermophotovoltaic devices considering absorption distribution,” J. Quant. Spectrosc. Radiat. Transf. 109(2), 305–316 (2008).
[Crossref]

S. Basu, Y. B. Chen, and Z. M. Zhang, “Microscale radiation in thermophotovoltaic devices-a review,” Int. J. Energy Res. 31(6), 689–716 (2007).
[Crossref]

K. Park, B. J. Lee, C. Fu, and Z. M. Zhang, “Study of the surface and bulk polaritons with a negative index metamaterial,” J. Opt. Soc. Am. B 22(5), 1016–1023 (2005).
[Crossref]

Zhukovsky, S. V.

S. V. Zhukovsky, O. Kidwai, and J. E. Sipe, “Physical nature of volume plasmon polaritons in hyperbolic metamaterials,” Opt. Express 21(12), 14982–14987 (2013).
[Crossref] [PubMed]

S. V. Zhukovsky, “Perfect transmission and highly asymmetric light localization in photonic multilayers,” Phys. Rev. A 81(5), 053808 (2010).
[Crossref]

Adv. OptoElectron. (1)

Y. Guo, W. Newman, C. L. Cortes, and Z. Jacob, “Applications of hyperbolic metamaterial substrates,” Adv. OptoElectron. 2012452502 (2012).
[Crossref]

Appl. Phys. Lett. (3)

S. Basu, Y. Yang, and L. P. Wang, “Near-field radiative heat transfer between metamaterials coated with silicon carbide thin films,” Appl. Phys. Lett. 106(3), 033106 (2015).
[Crossref]

S.-A. Biehs, M. Tschikin, R. Messina, and P. Ben-Abdallah, “Super-Planckian near-field thermal emission with phonon-polaritonic hyperbolic metamaterials,” Appl. Phys. Lett. 102(13), 131106 (2013).
[Crossref]

K. Ito, A. Miura, H. Iizuka, and H. Toshiyoshi, “Parallel-plate submicron gap formed by micromachined low-density pillars for near-field radiative heat transfer,” Appl. Phys. Lett. 106(8), 083504 (2015).
[Crossref]

Eur. Phys. J. B (1)

S.-A. Biehs, “Thermal heat radiation, near-field energy density and near-field radiative heat transfer of coated materials,” Eur. Phys. J. B 58(4), 423–431 (2007).
[Crossref]

IEEE Trans. Energy Conver. (2)

M. D. Whale and E. G. Cravalho, “Modeling and performance of microscale thermophotovoltaic energy conversion devices,” IEEE Trans. Energy Conver. 17(1), 130–142 (2002).
[Crossref]

M. Francoeur, R. Vaillon, and M. P. Mengüç, “Thermal impacts on the performance of nanoscale-gap thermophotovoltaic power generators,” IEEE Trans. Energy Conver. 26(2), 686–698 (2011).
[Crossref]

Int. J. Energy Res. (1)

S. Basu, Y. B. Chen, and Z. M. Zhang, “Microscale radiation in thermophotovoltaic devices-a review,” Int. J. Energy Res. 31(6), 689–716 (2007).
[Crossref]

Int. J. Heat Mass Transfer (3)

X. L. Liu, R. Z. Zhang, and Z. M. Zhang, “Near-field radiative heat transfer with doped-silicon nanostructured metamaterials,” Int. J. Heat Mass Transfer 73, 389–398 (2014).
[Crossref]

J.-Y. Chang, Y. Yang, and L. P. Wang, “Tungsten nanowire based hyperbolic metamaterial emitters for near-field thermophotovoltaic applications,” Int. J. Heat Mass Transfer 87, 237–247 (2015).
[Crossref]

R. Vaillon, L. Robin, C. Muresan, and C. Ménézo, “Modeling of coupled spectral radiation, thermal and carrier transport in a silicon photovoltaic cell,” Int. J. Heat Mass Transfer 49(23), 4454–4468 (2006).
[Crossref]

J. Appl. Phys. (2)

M. Laroche, R. Carminati, and J.-J. Greffet, “Near-field thermophotovoltaic energy conversion,” J. Appl. Phys. 100(6), 063704 (2006).
[Crossref]

M. Sotoodeh, A. H. Khalid, and A. A. Rezazadeh, “Empirical low-field mobility model for III – V compounds applicable in device simulation codes,” J. Appl. Phys. 87(6), 2890–2900 (2000).
[Crossref]

J. Heat Transfer (2)

X. L. Liu, T. J. Bright, and Z. M. Zhang, “Application conditions of effective medium theory in near-field radiative heat transfer between multilayered metamaterials,” J. Heat Transfer 136(9), 092703 (2014).
[Crossref]

S. Basu, B. J. Lee, and Z. M. Zhang, “Near-field radiation calculated with an improved dielectric function model for doped silicon,” J. Heat Transfer 132(2), 023302 (2010).
[Crossref]

J. Heat. Transfer (1)

T. J. Bright, L. P. Wang, and Z. M. Zhang, “Performance of near-field thermophotovoltaic cells enhanced with a backside reflector,” J. Heat. Transfer 136(6), 062701 (2014).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. D Appl. Phys. (1)

M. Francoeur, M. P. Mengüç, and R. Vaillon, “Spectral tuning of near-field radiative heat flux between two thin silicon carbide films,” J. Phys. D Appl. Phys. 43(7), 075501 (2010).
[Crossref]

J. Quant. Spectrosc. Radiat. Transf. (1)

K. Park, S. Basu, W. P. King, and Z. M. Zhang, “Performance analysis of near-field thermophotovoltaic devices considering absorption distribution,” J. Quant. Spectrosc. Radiat. Transf. 109(2), 305–316 (2008).
[Crossref]

Microscale Thermophys. Eng. (1)

J.-P. Mulet, K. Joulain, R. Carminati, and J.-J. Greffet, “Enhanced radiative heat transfer at nanometric distances,” Microscale Thermophys. Eng. 6(3), 209–222 (2002).
[Crossref]

Nanoscale Microscale Thermophys. Eng. (1)

B. J. Lee and Z. M. Zhang, “Lateral shifts in near-field thermal radiation with surface phonon polaritons,” Nanoscale Microscale Thermophys. Eng. 12, 238–250 (2008).
[Crossref]

Nanotechnology (1)

H. J. Joyce, C. J. Docherty, Q. Gao, H. H. Tan, C. Jagadish, J. Lloyd-Hughes, L. M. Herz, and M. B. Johnston, “Electronic properties of GaAs, InAs and InP nanowires studied by terahertz spectroscopy,” Nanotechnology 24(21), 214006 (2013).
[Crossref] [PubMed]

Nat. Photonics (1)

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7, 948–957 (2013).
[Crossref]

Opt. Eng. (1)

J. A. González-Cuevas, T. F. Refaat, M. N. Abedin, and H. E. Elsayed-Ali, “Modeling of the temperature-dependent spectral response of In1−xGaxSb infrared photodetectors,” Opt. Eng. 45(4), 044001 (2006).
[Crossref]

Opt. Express (5)

Phys. Lett. A (1)

M. Tschikin, P. Ben-Abdallah, and S.-A. Biehs, “Coherent thermal conductance of 1-D photonic crystals,” Phys. Lett. A 376(45), 3462–3465 (2012).
[Crossref]

Phys. Rev. (1)

J. R. Dixon and J. M. Ellis, “Optical properties of n-type indium arsenide in the fundamental absorption edge region,” Phys. Rev. 123(5), 1560 (1961).
[Crossref]

Phys. Rev. A (1)

S. V. Zhukovsky, “Perfect transmission and highly asymmetric light localization in photonic multilayers,” Phys. Rev. A 81(5), 053808 (2010).
[Crossref]

Phys. Rev. B (5)

R. Ortuño, C. García-Meca, F. Rodríguez-Fortuño, J. Martí, and A. Martínez, “Role of surface plasmon polaritons on optical transmission through double layer metallic hole arrays,” Phys. Rev. B 79(7), 075425 (2009).
[Crossref]

D. Polder and M. Van Hove, “Theory of radiative heat transfer between closely spaced bodies,” Phys. Rev. B 4(10), 3303 (1971).
[Crossref]

M. Lim, S. S. Lee, and B. J. Lee, “Near-field thermal radiation between doped silicon plates at nanoscale gaps,” Phys. Rev. B 91(19), 195136 (2015).
[Crossref]

P.-O. Chapuis, S. Volz, C. Henkel, K. Joulain, and J.-J. Greffet, “Effects of spatial dispersion in near-field radiative heat transfer between two parallel metallic surfaces,” Phys. Rev. B 77(3), 035431 (2008).
[Crossref]

K. L. Vodopyanov, H. Graener, C. C. Phillips, and T. J. Tate, “Picosecond carrier dynamics and studies of Auger recombination processes in indium arsenide at room temperature,” Phys. Rev. B 46(20), 13194 (1992).
[Crossref]

Phys. Rev. Lett. (1)

S.-A. Biehs, M. Tschikin, and P. Ben-Abdallah, “Hyperbolic metamaterials as an analog of a blackbody in the near field,” Phys. Rev. Lett. 109(10), 104301 (2012).
[Crossref] [PubMed]

Sci. Rep. (2)

M. P. Bernardi, O. Dupré, E. Blandre, P.-O. Chapuis, R. Vaillon, and M. Francoeur, “Impacts of propagating, frustrated and surface modes on radiative, electrical and thermal losses in nanoscale-gap thermophotovoltaic power generators,” Sci. Rep. 5, 11626 (2015).
[Crossref] [PubMed]

R. Messina and P. Ben-Abdallah, “Graphene-based photovoltaic cells for near-field thermal energy conversion,” Sci. Rep. 3, 1383 (2013).
[Crossref] [PubMed]

Surf. Sci. Rep. (1)

K. Joulain, J.-P. Mulet, F. Marquier, R. Carminati, and J.-J. Greffet, “Surface electromagnetic waves thermally excited: Radiative heat transfer, coherence properties and casimir forces revisited in the near field,” Surf. Sci. Rep. 57(3), 59–112 (2005).
[Crossref]

Other (5)

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1998).

S. M. Sze and K. K. Ng, Physics of Semiconductor Devices (John Wiley & Sons, 2006).

P. Markos and C. M. Soukoulis, Wave Propagation: From Electrons to Photonic Crystals and Left-handed Materials (Princeton University, 2008).

D. Chubb, Fundamentals of Thermophotovoltaic Energy Conversion (Elsevier, 2007).

V. Shalaev and W. Cai, Optical Metamaterials: Fundamentals and Applications (Springer, 2010).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Schematic of the near-field TPV system with W/SiO2-HMM as an emitter and InAs as a TPV cell.
Fig. 2
Fig. 2 Real part of the effective dielectric function of the HMM emitter with dm = 10 nm and dd = 100 nm. Inset shows an isofrequency surface in Type II hyperbolic metamaterial.
Fig. 3
Fig. 3 Near-field radiation between the HMM emitter and TPV cell at 100-nm vacuum gap: (a) Effect of the number of period in the HMM emitter; and (b) contribution of p- and s-polarization to the net spectral heat flux for the 7-period HMM. The HMM emitter is coated on the W substrate maintained at 1000 K, and temperate of the InAs TPV cell is set to be 300 K. Dashed line indicates ωg = 5.469 × 1014 rad/s corresponding to the bandgap of InAs.
Fig. 4
Fig. 4 Contour plot of (a) S(β, ω) and (b) p-polarization exchange function ξp(β, ω) with the HMM emitter at d = 100 nm; (c) S(β, ω) and (d) p-polarization exchange function ξp(β, ω) for plain W emitter at the same vacuum gap.
Fig. 5
Fig. 5 Contour of exchange function ξp(β, ω) when only one period of W/SiO2 is used at d = 100 nm. The inset shows excited surface plasmon modes at the four-layer configuration of vacuum-W-SiO2-W.
Fig. 6
Fig. 6 Comparison of the net spectral heat flux with or without additional 100-nm-thick SiO2 layer on the 7-period HMM emitter.
Fig. 7
Fig. 7 Generated electric power output with respect to the vacuum gap width. For comparison, the electric power generated by the plain W emitter is also plotted. Contribution of propagating waves to the electric power generation is indicated by dashed lines for each case.
Fig. 8
Fig. 8 Effect of p-region thickness: (a) total photocurrent density and electric power with respect to Lp; and (b) radiation penetration depth inside the InAs cell. The vacuum gap width is d = 100 nm.
Fig. 9
Fig. 9 Generated electric power PE, normalized by PE,max at a given vacuum gap width, with respect to the p-region thickness. Dashed line indicates the Lp value when PE,max occurs at a given vacuum gap width.

Tables (1)

Tables Icon

Table 1 Electric parameters of the InAs TPV cell.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

q ω , net = γ = p , s 0 S γ ( β , ω ) d β = [ Θ ( ω , T S ) 4 π 2 Θ ( ω , T R ) 4 π 2 ] γ = p , s 0 ξ γ ( β , ω ) β d β
ξ prop γ ( β , ω ) = ( 1 | R 0 S γ | 2 ) ( 1 | r 0 R γ | 2 ) | 1 R 0 S γ r 0 R γ e i 2 k 0 z d | 2
ξ evan γ ( β , ω ) = 4 Im ( R 0 S γ ) Im ( r 0 R γ ) e 2 Im ( k 0 z ) d | 1 R 0 S γ r 0 R γ e 2 i k 0 z d | 2
ε = ε m d m + ε d d d d m + d d
ε = ε m ε d ( d m + d d ) ε m d d + ε d d m
β 2 ε + k z 2 ε = ω 2 c 0 2
Q ω > ω g ( z ) = ω g [ γ = p , s 0 S γ ( β , ω ) e 2 Im ( k R z ) z ] d β d ω

Metrics