Abstract

We demonstrate backwards lasing in atomic argon directly excited via a three–photon pumping in air mixtures with argon mole fractions down to 10%. We achieve well collimated, narrowband coherent emission at 1327nm by using both broadband femtosecond excitation and narrow linewidth picosecond excitation in the vicinity of 261nm. This approach shows promise for standoff trace detection in the atmosphere.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Backward Lasing of Air plasma pumped by Circularly polarized femtosecond pulses for the saKe of remote sensing (BLACK)

Pengji Ding, Sergey Mitryukovskiy, Aurélien Houard, Eduardo Oliva, Arnaud Couairon, André Mysyrowicz, and Yi Liu
Opt. Express 22(24) 29964-29977 (2014)

Backward stimulated radiation from filaments in nitrogen gas and air pumped by circularly polarized 800 nm femtosecond laser pulses

Sergey Mitryukovskiy, Yi Liu, Pengji Ding, Aurélien Houard, and André Mysyrowicz
Opt. Express 22(11) 12750-12759 (2014)

Femtosecond two-photon-excited backward lasing of atomic hydrogen in a flame

Pengji Ding, Maria Ruchkina, Yi Liu, Marcus Alden, and Joakim Bood
Opt. Lett. 43(5) 1183-1186 (2018)

References

  • View by:
  • |
  • |
  • |

  1. A. Dogariu, J. B. Michael, M. O. Scully, and R. B. Miles, “High-gain backward lasing in air,” Science 331(6016), 442–445 (2011).
    [Crossref] [PubMed]
  2. A. Dogariu and R. Miles, “Lasing in atmospheric air: similarities and differences of Oxygen and Nitrogen,” in Frontiers in Optics 2013, P. Delyett, Jr. and D. Gauthier, eds., OSA Technical Digest (online) (Optical Society of America, 2013), paper LTh2H.2.
  3. A. Dogariu and R. B. Miles, “Nitrogen lasing in air,” in CLEO:2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper QW1E.1.
  4. A. Laurain, M. Scheller, and P. Polynkin, “Low-threshold bidirectional air lasing,” Phys. Rev. Lett. 113(25), 253901 (2014).
    [Crossref] [PubMed]
  5. P. W. Hoff, J. C. Swingle, and C. K. Rhodes, “Observations of stimulated emission from high-pressure krypton and argon/xenon mixtures,” Appl. Phys. Lett. 23(5), 245–246 (1973).
    [Crossref]
  6. S. E. Harris, A. H. Kung, E. A. Stappaerts, and J. F. Young, “Stimulated emission in multiple‐photon‐pumped xenon and argon excimers,” Appl. Phys. Lett. 23(5), 232–234 (1973).
    [Crossref]
  7. G. Balssen, O. Dossel, H. Nahme, N. Schwentner, and H. Wilcke, “Stimulated emission in argon crystals around 10 eV,” J. Lumin. 24-25, 535–538 (1981).
    [Crossref]
  8. A. V. Eleskii and A. R. Sorokin, “Stimulated emission of argon dimers excited by a pulsed plasma-cathode discharge,” Tech. Phys. 42(11), 1285–1288 (1997).
    [Crossref]
  9. W. B. Bridges, “Laser oscillation in singly ionized argon in the visible spectrum,” Appl. Phys. Lett. 4(7), 128–130 (1964).
    [Crossref]
  10. S. M. Koeckhoven, W. J. Buma, and C. A. de Lange, “Three-photon excitation of autoionizing states of Ar, Kr, and Xe between the 2P3/2 and 2P1/2 ionic limits,” Phys. Rev. A 49(5), 3322–3332 (1994).
    [Crossref] [PubMed]
  11. M. Shneider, Z. Zhang, and R. B. Miles, “Plasma induced by resonance enhanced multiphoton ionization in inert gas,” J. Appl. Phys. 102(12), 123103 (2007).
    [Crossref]
  12. Z. Zhang, M. N. Shneider, and R. B. Miles, “Coherent microwave Rayleigh scattering from resonance-enhanced multiphoton ionization in argon,” Phys. Rev. Lett. 98(26), 265005 (2007).
    [Crossref] [PubMed]
  13. A. Dogariu and R. B. Miles, “Detecting localized trace species using Radar REMPI,” Appl. Opt. 50, A68–A73 (2011).
    [Crossref] [PubMed]
  14. A. Dogariu, J. Li, and R. B. Miles, “Three-photon pumped backwards lasing in argon,” in Light, Energy and the Environment 2015, OSA Technical Digest (online) (Optical Society of America, 2015), paper ETu2A.4.
  15. W. D. Kulatilaka, J. R. Gord, V. R. Katta, and S. Roy, “Photolytic-interference-free, femtosecond two-photon fluorescence imaging of atomic hydrogen,” Opt. Lett. 37(15), 3051–3053 (2012).
    [Crossref] [PubMed]
  16. J. L. Dehmer, S. T. Pratt, and P. M. Dehmer, “Three-photon excitation of autoionizing states of atomic krypton between the 2P(3/2) and 2P(1/2) fine-structure thresholds,” Phys. Rev. A 49, 3322–3332 (1994).
    [PubMed]

2014 (1)

A. Laurain, M. Scheller, and P. Polynkin, “Low-threshold bidirectional air lasing,” Phys. Rev. Lett. 113(25), 253901 (2014).
[Crossref] [PubMed]

2012 (1)

2011 (2)

A. Dogariu and R. B. Miles, “Detecting localized trace species using Radar REMPI,” Appl. Opt. 50, A68–A73 (2011).
[Crossref] [PubMed]

A. Dogariu, J. B. Michael, M. O. Scully, and R. B. Miles, “High-gain backward lasing in air,” Science 331(6016), 442–445 (2011).
[Crossref] [PubMed]

2007 (2)

M. Shneider, Z. Zhang, and R. B. Miles, “Plasma induced by resonance enhanced multiphoton ionization in inert gas,” J. Appl. Phys. 102(12), 123103 (2007).
[Crossref]

Z. Zhang, M. N. Shneider, and R. B. Miles, “Coherent microwave Rayleigh scattering from resonance-enhanced multiphoton ionization in argon,” Phys. Rev. Lett. 98(26), 265005 (2007).
[Crossref] [PubMed]

1997 (1)

A. V. Eleskii and A. R. Sorokin, “Stimulated emission of argon dimers excited by a pulsed plasma-cathode discharge,” Tech. Phys. 42(11), 1285–1288 (1997).
[Crossref]

1994 (2)

S. M. Koeckhoven, W. J. Buma, and C. A. de Lange, “Three-photon excitation of autoionizing states of Ar, Kr, and Xe between the 2P3/2 and 2P1/2 ionic limits,” Phys. Rev. A 49(5), 3322–3332 (1994).
[Crossref] [PubMed]

J. L. Dehmer, S. T. Pratt, and P. M. Dehmer, “Three-photon excitation of autoionizing states of atomic krypton between the 2P(3/2) and 2P(1/2) fine-structure thresholds,” Phys. Rev. A 49, 3322–3332 (1994).
[PubMed]

1981 (1)

G. Balssen, O. Dossel, H. Nahme, N. Schwentner, and H. Wilcke, “Stimulated emission in argon crystals around 10 eV,” J. Lumin. 24-25, 535–538 (1981).
[Crossref]

1973 (2)

P. W. Hoff, J. C. Swingle, and C. K. Rhodes, “Observations of stimulated emission from high-pressure krypton and argon/xenon mixtures,” Appl. Phys. Lett. 23(5), 245–246 (1973).
[Crossref]

S. E. Harris, A. H. Kung, E. A. Stappaerts, and J. F. Young, “Stimulated emission in multiple‐photon‐pumped xenon and argon excimers,” Appl. Phys. Lett. 23(5), 232–234 (1973).
[Crossref]

1964 (1)

W. B. Bridges, “Laser oscillation in singly ionized argon in the visible spectrum,” Appl. Phys. Lett. 4(7), 128–130 (1964).
[Crossref]

Balssen, G.

G. Balssen, O. Dossel, H. Nahme, N. Schwentner, and H. Wilcke, “Stimulated emission in argon crystals around 10 eV,” J. Lumin. 24-25, 535–538 (1981).
[Crossref]

Bridges, W. B.

W. B. Bridges, “Laser oscillation in singly ionized argon in the visible spectrum,” Appl. Phys. Lett. 4(7), 128–130 (1964).
[Crossref]

Buma, W. J.

S. M. Koeckhoven, W. J. Buma, and C. A. de Lange, “Three-photon excitation of autoionizing states of Ar, Kr, and Xe between the 2P3/2 and 2P1/2 ionic limits,” Phys. Rev. A 49(5), 3322–3332 (1994).
[Crossref] [PubMed]

de Lange, C. A.

S. M. Koeckhoven, W. J. Buma, and C. A. de Lange, “Three-photon excitation of autoionizing states of Ar, Kr, and Xe between the 2P3/2 and 2P1/2 ionic limits,” Phys. Rev. A 49(5), 3322–3332 (1994).
[Crossref] [PubMed]

Dehmer, J. L.

J. L. Dehmer, S. T. Pratt, and P. M. Dehmer, “Three-photon excitation of autoionizing states of atomic krypton between the 2P(3/2) and 2P(1/2) fine-structure thresholds,” Phys. Rev. A 49, 3322–3332 (1994).
[PubMed]

Dehmer, P. M.

J. L. Dehmer, S. T. Pratt, and P. M. Dehmer, “Three-photon excitation of autoionizing states of atomic krypton between the 2P(3/2) and 2P(1/2) fine-structure thresholds,” Phys. Rev. A 49, 3322–3332 (1994).
[PubMed]

Dogariu, A.

A. Dogariu and R. B. Miles, “Detecting localized trace species using Radar REMPI,” Appl. Opt. 50, A68–A73 (2011).
[Crossref] [PubMed]

A. Dogariu, J. B. Michael, M. O. Scully, and R. B. Miles, “High-gain backward lasing in air,” Science 331(6016), 442–445 (2011).
[Crossref] [PubMed]

Dossel, O.

G. Balssen, O. Dossel, H. Nahme, N. Schwentner, and H. Wilcke, “Stimulated emission in argon crystals around 10 eV,” J. Lumin. 24-25, 535–538 (1981).
[Crossref]

Eleskii, A. V.

A. V. Eleskii and A. R. Sorokin, “Stimulated emission of argon dimers excited by a pulsed plasma-cathode discharge,” Tech. Phys. 42(11), 1285–1288 (1997).
[Crossref]

Gord, J. R.

Harris, S. E.

S. E. Harris, A. H. Kung, E. A. Stappaerts, and J. F. Young, “Stimulated emission in multiple‐photon‐pumped xenon and argon excimers,” Appl. Phys. Lett. 23(5), 232–234 (1973).
[Crossref]

Hoff, P. W.

P. W. Hoff, J. C. Swingle, and C. K. Rhodes, “Observations of stimulated emission from high-pressure krypton and argon/xenon mixtures,” Appl. Phys. Lett. 23(5), 245–246 (1973).
[Crossref]

Katta, V. R.

Koeckhoven, S. M.

S. M. Koeckhoven, W. J. Buma, and C. A. de Lange, “Three-photon excitation of autoionizing states of Ar, Kr, and Xe between the 2P3/2 and 2P1/2 ionic limits,” Phys. Rev. A 49(5), 3322–3332 (1994).
[Crossref] [PubMed]

Kulatilaka, W. D.

Kung, A. H.

S. E. Harris, A. H. Kung, E. A. Stappaerts, and J. F. Young, “Stimulated emission in multiple‐photon‐pumped xenon and argon excimers,” Appl. Phys. Lett. 23(5), 232–234 (1973).
[Crossref]

Laurain, A.

A. Laurain, M. Scheller, and P. Polynkin, “Low-threshold bidirectional air lasing,” Phys. Rev. Lett. 113(25), 253901 (2014).
[Crossref] [PubMed]

Michael, J. B.

A. Dogariu, J. B. Michael, M. O. Scully, and R. B. Miles, “High-gain backward lasing in air,” Science 331(6016), 442–445 (2011).
[Crossref] [PubMed]

Miles, R. B.

A. Dogariu, J. B. Michael, M. O. Scully, and R. B. Miles, “High-gain backward lasing in air,” Science 331(6016), 442–445 (2011).
[Crossref] [PubMed]

A. Dogariu and R. B. Miles, “Detecting localized trace species using Radar REMPI,” Appl. Opt. 50, A68–A73 (2011).
[Crossref] [PubMed]

M. Shneider, Z. Zhang, and R. B. Miles, “Plasma induced by resonance enhanced multiphoton ionization in inert gas,” J. Appl. Phys. 102(12), 123103 (2007).
[Crossref]

Z. Zhang, M. N. Shneider, and R. B. Miles, “Coherent microwave Rayleigh scattering from resonance-enhanced multiphoton ionization in argon,” Phys. Rev. Lett. 98(26), 265005 (2007).
[Crossref] [PubMed]

Nahme, H.

G. Balssen, O. Dossel, H. Nahme, N. Schwentner, and H. Wilcke, “Stimulated emission in argon crystals around 10 eV,” J. Lumin. 24-25, 535–538 (1981).
[Crossref]

Polynkin, P.

A. Laurain, M. Scheller, and P. Polynkin, “Low-threshold bidirectional air lasing,” Phys. Rev. Lett. 113(25), 253901 (2014).
[Crossref] [PubMed]

Pratt, S. T.

J. L. Dehmer, S. T. Pratt, and P. M. Dehmer, “Three-photon excitation of autoionizing states of atomic krypton between the 2P(3/2) and 2P(1/2) fine-structure thresholds,” Phys. Rev. A 49, 3322–3332 (1994).
[PubMed]

Rhodes, C. K.

P. W. Hoff, J. C. Swingle, and C. K. Rhodes, “Observations of stimulated emission from high-pressure krypton and argon/xenon mixtures,” Appl. Phys. Lett. 23(5), 245–246 (1973).
[Crossref]

Roy, S.

Scheller, M.

A. Laurain, M. Scheller, and P. Polynkin, “Low-threshold bidirectional air lasing,” Phys. Rev. Lett. 113(25), 253901 (2014).
[Crossref] [PubMed]

Schwentner, N.

G. Balssen, O. Dossel, H. Nahme, N. Schwentner, and H. Wilcke, “Stimulated emission in argon crystals around 10 eV,” J. Lumin. 24-25, 535–538 (1981).
[Crossref]

Scully, M. O.

A. Dogariu, J. B. Michael, M. O. Scully, and R. B. Miles, “High-gain backward lasing in air,” Science 331(6016), 442–445 (2011).
[Crossref] [PubMed]

Shneider, M.

M. Shneider, Z. Zhang, and R. B. Miles, “Plasma induced by resonance enhanced multiphoton ionization in inert gas,” J. Appl. Phys. 102(12), 123103 (2007).
[Crossref]

Shneider, M. N.

Z. Zhang, M. N. Shneider, and R. B. Miles, “Coherent microwave Rayleigh scattering from resonance-enhanced multiphoton ionization in argon,” Phys. Rev. Lett. 98(26), 265005 (2007).
[Crossref] [PubMed]

Sorokin, A. R.

A. V. Eleskii and A. R. Sorokin, “Stimulated emission of argon dimers excited by a pulsed plasma-cathode discharge,” Tech. Phys. 42(11), 1285–1288 (1997).
[Crossref]

Stappaerts, E. A.

S. E. Harris, A. H. Kung, E. A. Stappaerts, and J. F. Young, “Stimulated emission in multiple‐photon‐pumped xenon and argon excimers,” Appl. Phys. Lett. 23(5), 232–234 (1973).
[Crossref]

Swingle, J. C.

P. W. Hoff, J. C. Swingle, and C. K. Rhodes, “Observations of stimulated emission from high-pressure krypton and argon/xenon mixtures,” Appl. Phys. Lett. 23(5), 245–246 (1973).
[Crossref]

Wilcke, H.

G. Balssen, O. Dossel, H. Nahme, N. Schwentner, and H. Wilcke, “Stimulated emission in argon crystals around 10 eV,” J. Lumin. 24-25, 535–538 (1981).
[Crossref]

Young, J. F.

S. E. Harris, A. H. Kung, E. A. Stappaerts, and J. F. Young, “Stimulated emission in multiple‐photon‐pumped xenon and argon excimers,” Appl. Phys. Lett. 23(5), 232–234 (1973).
[Crossref]

Zhang, Z.

M. Shneider, Z. Zhang, and R. B. Miles, “Plasma induced by resonance enhanced multiphoton ionization in inert gas,” J. Appl. Phys. 102(12), 123103 (2007).
[Crossref]

Z. Zhang, M. N. Shneider, and R. B. Miles, “Coherent microwave Rayleigh scattering from resonance-enhanced multiphoton ionization in argon,” Phys. Rev. Lett. 98(26), 265005 (2007).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (3)

P. W. Hoff, J. C. Swingle, and C. K. Rhodes, “Observations of stimulated emission from high-pressure krypton and argon/xenon mixtures,” Appl. Phys. Lett. 23(5), 245–246 (1973).
[Crossref]

S. E. Harris, A. H. Kung, E. A. Stappaerts, and J. F. Young, “Stimulated emission in multiple‐photon‐pumped xenon and argon excimers,” Appl. Phys. Lett. 23(5), 232–234 (1973).
[Crossref]

W. B. Bridges, “Laser oscillation in singly ionized argon in the visible spectrum,” Appl. Phys. Lett. 4(7), 128–130 (1964).
[Crossref]

J. Appl. Phys. (1)

M. Shneider, Z. Zhang, and R. B. Miles, “Plasma induced by resonance enhanced multiphoton ionization in inert gas,” J. Appl. Phys. 102(12), 123103 (2007).
[Crossref]

J. Lumin. (1)

G. Balssen, O. Dossel, H. Nahme, N. Schwentner, and H. Wilcke, “Stimulated emission in argon crystals around 10 eV,” J. Lumin. 24-25, 535–538 (1981).
[Crossref]

Opt. Lett. (1)

Phys. Rev. A (2)

S. M. Koeckhoven, W. J. Buma, and C. A. de Lange, “Three-photon excitation of autoionizing states of Ar, Kr, and Xe between the 2P3/2 and 2P1/2 ionic limits,” Phys. Rev. A 49(5), 3322–3332 (1994).
[Crossref] [PubMed]

J. L. Dehmer, S. T. Pratt, and P. M. Dehmer, “Three-photon excitation of autoionizing states of atomic krypton between the 2P(3/2) and 2P(1/2) fine-structure thresholds,” Phys. Rev. A 49, 3322–3332 (1994).
[PubMed]

Phys. Rev. Lett. (2)

A. Laurain, M. Scheller, and P. Polynkin, “Low-threshold bidirectional air lasing,” Phys. Rev. Lett. 113(25), 253901 (2014).
[Crossref] [PubMed]

Z. Zhang, M. N. Shneider, and R. B. Miles, “Coherent microwave Rayleigh scattering from resonance-enhanced multiphoton ionization in argon,” Phys. Rev. Lett. 98(26), 265005 (2007).
[Crossref] [PubMed]

Science (1)

A. Dogariu, J. B. Michael, M. O. Scully, and R. B. Miles, “High-gain backward lasing in air,” Science 331(6016), 442–445 (2011).
[Crossref] [PubMed]

Tech. Phys. (1)

A. V. Eleskii and A. R. Sorokin, “Stimulated emission of argon dimers excited by a pulsed plasma-cathode discharge,” Tech. Phys. 42(11), 1285–1288 (1997).
[Crossref]

Other (3)

A. Dogariu and R. Miles, “Lasing in atmospheric air: similarities and differences of Oxygen and Nitrogen,” in Frontiers in Optics 2013, P. Delyett, Jr. and D. Gauthier, eds., OSA Technical Digest (online) (Optical Society of America, 2013), paper LTh2H.2.

A. Dogariu and R. B. Miles, “Nitrogen lasing in air,” in CLEO:2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper QW1E.1.

A. Dogariu, J. Li, and R. B. Miles, “Three-photon pumped backwards lasing in argon,” in Light, Energy and the Environment 2015, OSA Technical Digest (online) (Optical Society of America, 2015), paper ETu2A.4.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Argon three-photon excitation using 261nm photons is followed by emission at 1327nm. The suggested 6-photon mixing generates 145nm photons.
Fig. 2
Fig. 2 Experimental setup for forward and backward lasing in argon via three-photon resonant optical pumping.
Fig. 3
Fig. 3 Temporal (a) and spectral (b) shape of the 1327nm emission from Ar in the forward (squares) and backward (circles) direction.
Fig. 4
Fig. 4 Backwards (squares) and forward (circles) stimulated emission as function of the Ar pressure.
Fig. 5
Fig. 5 Backwards (squares) and forward (circles) three-photon excitation spectra of argon while pumping with linear (a) and circular (b) polarization.
Fig. 6
Fig. 6 Backwards lasing in pure Ar with varying the Ar density.
Fig. 7
Fig. 7 Backwards lasing in pure Ar (circles) and in Ar in atmospheric air (squares) as function of the partial pressure of Ar.

Tables (1)

Tables Icon

Table 1 Polarization dependence of optically pumped argon lasing

Metrics