Abstract

Net surface shortwave radiation (NSSR) significantly affects regional and global climate change, and is an important aspect of research on surface radiation budget balance. Many previous studies have proposed methods for estimating NSSR. This study proposes a method to calculate NSSR using FY-2D short-wave channel data. Firstly, a linear regression model is established between the top-of-atmosphere (TOA) broadband albedo (r) and the narrowband reflectivity (ρ1), based on data simulated with MODTRAN 4.2. Secondly, the relationship between surface absorption coefficient (as) and broadband albedo (r) is determined by dividing the surface type into land, sea, or snow&ice, and NSSR can then be calculated. Thirdly, sensitivity analysis is performed for errors associated with sensor noise, vertically integrated atmospheric water content, view zenith angle and solar zenith angle. Finally, validation using ground measurements is performed. Results show that the root mean square error (RMSE) between the estimated and actual r is less than 0.011 for all conditions, and the RMSEs between estimated and real NSSR are 26.60 W/m2, 9.99 W/m2, and 23.40 W/m2, using simulated data for land, sea, and snow&ice surfaces, respectively. This indicates that the proposed method can be used to adequately estimate NSSR. Additionally, we compare field measurements from TaiYuan and ChangWu ecological stations with estimates using corresponding FY-2D data acquired from January to April 2012, on cloud-free days. Results show that the RMSE between the estimated and actual NSSR is 48.56W/m2, with a mean error of −2.23W/m2. Causes of errors also include measurement accuracy and estimations of atmospheric water vertical contents. This method is only suitable for cloudless conditions.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Retrievals of all-weather daytime land surface temperature from FengYun-2D data

Xiaoyu Zhang, Chenguang Wang, Hong Zhao, and Zehui Lu
Opt. Express 25(22) 27210-27224 (2017)

New method to estimate surface upwelling long-wave radiation from MODIS cloud-free data

Chunlei Wang, Bo-Hui Tang, Xing Huo, and Zhao-Liang Li
Opt. Express 25(12) A574-A588 (2017)

References

  • View by:
  • |
  • |
  • |

  1. S. B. Duan, Z. L. Li, N. Wang, H. Wu, and B. H. Tang, “Evaluation of six land-surface diurnal temperature cycle models using clear-sky in situ and satellite data,” Remote Sens. Environ. 124, 15–25 (2012).
    [Crossref]
  2. S. B. Duan, Z. L. Li, B. H. Tang, H. Wu, and R. Tang, “Generation of a time-consistent land surface temperature product from MODIS data,” Remote Sens. Environ. 140, 339–349 (2014).
    [Crossref]
  3. S. B. Duan, Z. L. Li, B. H. Tang, H. Wu, and R. Tang, “Direct estimation of land-surface diurnal temperature cycle model parameters from MSG-SEVIRI brightness temperatures under clear sky conditions,” Remote Sens. Environ. 150, 34–43 (2014).
    [Crossref]
  4. X. Y. Zhang, J. Pang, and L. L. Li, “Estimation of land surface temperature under cloudy skies using combined diurnal solar radiation and surface temperature evolution,” Remote Sens. 7(1), 905–921 (2015).
    [Crossref]
  5. R. T. Pinker and L. Corio, “Surface radiation budget from satellites,” Mon. Weather Rev. 112(1), 209–215 (1984).
    [Crossref]
  6. R. T. Pinker and J. A. Ewing, “Modeling surface solar radiation: model formulation and validation,” J. Clim. Appl. Meteorol. 24(5), 389–401 (1985).
    [Crossref]
  7. R. T. Pinker and J. D. Tarpley, “The relationship between the planetary and surface net radiation: an update,” J. Appl. Meteorol. 27(8), 957–964 (1988).
    [Crossref]
  8. R. D. Cess and I. L. Vulis, “Inferring surface-solar absorption from broadband satellite measurements,” J. Clim. 2(9), 974–985 (1989).
    [Crossref]
  9. R. D. Cess, E. G. Dutton, J. J. DeLuisi, and F. Jiang, “Determining surface solar absorption from broadband satellite measurements for clear skies: comparisons with surface measurements,” J. Clim. 4(2), 236–247 (1991).
    [Crossref]
  10. Z. Q. Li, H. G. Leighton, K. Masuda, and T. Takashima, “Estimation of shortwave flux absorbed at the surface from TOA reflected flux,” J. Clim. 6(2), 317–330 (1993).
    [Crossref]
  11. K. Masuda, H. G. Leighton, and Z. Q. Li, “A new parameterization for the determination of solar flux absorbed at the surface from satellite measurements,” J. Clim. 8(6), 1615–1629 (1995).
    [Crossref]
  12. W. B. Rossow and Y. C. Zhang, “Calculation of surface and top-of-atmosphere radiative fluxes from physical quantities based on ISCCP data sets. 2: validation and first results,” J. Geophys. Res. 100(D1), 1167–1198 (1995).
    [Crossref]
  13. R. Hollmann, A. Bodas, A. Gratzki, K. Dammann, and R. Stuhlmann, “The surface shortwave net flux from the scanner for radiation budget (SCARAB),” Adv. Space Res. 30(11), 2363–2369 (2002).
    [Crossref]
  14. Z. Li and A. Trishchenko, “A Study toward an improved understanding of the relationship between visible and shortwave measurements,” J. Atmos. Ocean. Technol. 16(3), 347–360 (1999).
    [Crossref]
  15. B. H. Tang, Z. L. Li, and R. H. Zhang, “A direct method for estimating net surface shortwave radiation from MODIS data,” Remote Sens. Environ. 103(1), 115–126 (2006).
    [Crossref]
  16. B. H. Tang and Z. L. Li, “Estimation of instantaneous net surface longwave radiation from MODIS cloud-free data,” Remote Sens. Environ. 112(9), 3482–3492 (2008).
    [Crossref]
  17. J. Wang, B. H. Tang, X. Y. Zhang, H. Wu, and Z. L. Li, “Estimation of surface longwave radiation over the Tibetan plateau region using MODIS data for cloud-free skies,” IEEE J. Sel. Top. Appl. Earth Observ. Rem. Sens. 7(9), 3695–3730 (2014).
  18. H. Y. Kim and S. L. Liang, “Development of a hybrid method for estimating land surface shortwave net radiation from MODIS data,” Remote Sens. Environ. 114(11), 2393–2402 (2010).
    [Crossref]
  19. G. H. Huang, S. M. Liu, and S. L. Liang, “Estimation of net surface shortwave radiation from MODIS data,” Int. J. Remote Sens. 33(3), 804–825 (2012).
    [Crossref]
  20. Z. L. Li, L. Jia, Z. B. Su, Z. M. Wan, and R. H. Zhang, “A new approach for retrieving precipitable water from ATSR2 split-window channel data over land,” Int. J. Remote Sens. 24(24), 5095–5117 (2003).
    [Crossref]
  21. B. H. Tang, K. Shao, Z. L. Li, H. Wu, F. Nerry, and G. Q. Zhou, “Estimation and validation of land surface temperature from Chinese second generation polar-orbiting FY-3A VIRR data,” Remote Sens. 7(3), 3250–3273 (2015).
    [Crossref]

2015 (2)

X. Y. Zhang, J. Pang, and L. L. Li, “Estimation of land surface temperature under cloudy skies using combined diurnal solar radiation and surface temperature evolution,” Remote Sens. 7(1), 905–921 (2015).
[Crossref]

B. H. Tang, K. Shao, Z. L. Li, H. Wu, F. Nerry, and G. Q. Zhou, “Estimation and validation of land surface temperature from Chinese second generation polar-orbiting FY-3A VIRR data,” Remote Sens. 7(3), 3250–3273 (2015).
[Crossref]

2014 (3)

J. Wang, B. H. Tang, X. Y. Zhang, H. Wu, and Z. L. Li, “Estimation of surface longwave radiation over the Tibetan plateau region using MODIS data for cloud-free skies,” IEEE J. Sel. Top. Appl. Earth Observ. Rem. Sens. 7(9), 3695–3730 (2014).

S. B. Duan, Z. L. Li, B. H. Tang, H. Wu, and R. Tang, “Generation of a time-consistent land surface temperature product from MODIS data,” Remote Sens. Environ. 140, 339–349 (2014).
[Crossref]

S. B. Duan, Z. L. Li, B. H. Tang, H. Wu, and R. Tang, “Direct estimation of land-surface diurnal temperature cycle model parameters from MSG-SEVIRI brightness temperatures under clear sky conditions,” Remote Sens. Environ. 150, 34–43 (2014).
[Crossref]

2012 (2)

S. B. Duan, Z. L. Li, N. Wang, H. Wu, and B. H. Tang, “Evaluation of six land-surface diurnal temperature cycle models using clear-sky in situ and satellite data,” Remote Sens. Environ. 124, 15–25 (2012).
[Crossref]

G. H. Huang, S. M. Liu, and S. L. Liang, “Estimation of net surface shortwave radiation from MODIS data,” Int. J. Remote Sens. 33(3), 804–825 (2012).
[Crossref]

2010 (1)

H. Y. Kim and S. L. Liang, “Development of a hybrid method for estimating land surface shortwave net radiation from MODIS data,” Remote Sens. Environ. 114(11), 2393–2402 (2010).
[Crossref]

2008 (1)

B. H. Tang and Z. L. Li, “Estimation of instantaneous net surface longwave radiation from MODIS cloud-free data,” Remote Sens. Environ. 112(9), 3482–3492 (2008).
[Crossref]

2006 (1)

B. H. Tang, Z. L. Li, and R. H. Zhang, “A direct method for estimating net surface shortwave radiation from MODIS data,” Remote Sens. Environ. 103(1), 115–126 (2006).
[Crossref]

2003 (1)

Z. L. Li, L. Jia, Z. B. Su, Z. M. Wan, and R. H. Zhang, “A new approach for retrieving precipitable water from ATSR2 split-window channel data over land,” Int. J. Remote Sens. 24(24), 5095–5117 (2003).
[Crossref]

2002 (1)

R. Hollmann, A. Bodas, A. Gratzki, K. Dammann, and R. Stuhlmann, “The surface shortwave net flux from the scanner for radiation budget (SCARAB),” Adv. Space Res. 30(11), 2363–2369 (2002).
[Crossref]

1999 (1)

Z. Li and A. Trishchenko, “A Study toward an improved understanding of the relationship between visible and shortwave measurements,” J. Atmos. Ocean. Technol. 16(3), 347–360 (1999).
[Crossref]

1995 (2)

K. Masuda, H. G. Leighton, and Z. Q. Li, “A new parameterization for the determination of solar flux absorbed at the surface from satellite measurements,” J. Clim. 8(6), 1615–1629 (1995).
[Crossref]

W. B. Rossow and Y. C. Zhang, “Calculation of surface and top-of-atmosphere radiative fluxes from physical quantities based on ISCCP data sets. 2: validation and first results,” J. Geophys. Res. 100(D1), 1167–1198 (1995).
[Crossref]

1993 (1)

Z. Q. Li, H. G. Leighton, K. Masuda, and T. Takashima, “Estimation of shortwave flux absorbed at the surface from TOA reflected flux,” J. Clim. 6(2), 317–330 (1993).
[Crossref]

1991 (1)

R. D. Cess, E. G. Dutton, J. J. DeLuisi, and F. Jiang, “Determining surface solar absorption from broadband satellite measurements for clear skies: comparisons with surface measurements,” J. Clim. 4(2), 236–247 (1991).
[Crossref]

1989 (1)

R. D. Cess and I. L. Vulis, “Inferring surface-solar absorption from broadband satellite measurements,” J. Clim. 2(9), 974–985 (1989).
[Crossref]

1988 (1)

R. T. Pinker and J. D. Tarpley, “The relationship between the planetary and surface net radiation: an update,” J. Appl. Meteorol. 27(8), 957–964 (1988).
[Crossref]

1985 (1)

R. T. Pinker and J. A. Ewing, “Modeling surface solar radiation: model formulation and validation,” J. Clim. Appl. Meteorol. 24(5), 389–401 (1985).
[Crossref]

1984 (1)

R. T. Pinker and L. Corio, “Surface radiation budget from satellites,” Mon. Weather Rev. 112(1), 209–215 (1984).
[Crossref]

Bodas, A.

R. Hollmann, A. Bodas, A. Gratzki, K. Dammann, and R. Stuhlmann, “The surface shortwave net flux from the scanner for radiation budget (SCARAB),” Adv. Space Res. 30(11), 2363–2369 (2002).
[Crossref]

Cess, R. D.

R. D. Cess, E. G. Dutton, J. J. DeLuisi, and F. Jiang, “Determining surface solar absorption from broadband satellite measurements for clear skies: comparisons with surface measurements,” J. Clim. 4(2), 236–247 (1991).
[Crossref]

R. D. Cess and I. L. Vulis, “Inferring surface-solar absorption from broadband satellite measurements,” J. Clim. 2(9), 974–985 (1989).
[Crossref]

Corio, L.

R. T. Pinker and L. Corio, “Surface radiation budget from satellites,” Mon. Weather Rev. 112(1), 209–215 (1984).
[Crossref]

Dammann, K.

R. Hollmann, A. Bodas, A. Gratzki, K. Dammann, and R. Stuhlmann, “The surface shortwave net flux from the scanner for radiation budget (SCARAB),” Adv. Space Res. 30(11), 2363–2369 (2002).
[Crossref]

DeLuisi, J. J.

R. D. Cess, E. G. Dutton, J. J. DeLuisi, and F. Jiang, “Determining surface solar absorption from broadband satellite measurements for clear skies: comparisons with surface measurements,” J. Clim. 4(2), 236–247 (1991).
[Crossref]

Duan, S. B.

S. B. Duan, Z. L. Li, B. H. Tang, H. Wu, and R. Tang, “Generation of a time-consistent land surface temperature product from MODIS data,” Remote Sens. Environ. 140, 339–349 (2014).
[Crossref]

S. B. Duan, Z. L. Li, B. H. Tang, H. Wu, and R. Tang, “Direct estimation of land-surface diurnal temperature cycle model parameters from MSG-SEVIRI brightness temperatures under clear sky conditions,” Remote Sens. Environ. 150, 34–43 (2014).
[Crossref]

S. B. Duan, Z. L. Li, N. Wang, H. Wu, and B. H. Tang, “Evaluation of six land-surface diurnal temperature cycle models using clear-sky in situ and satellite data,” Remote Sens. Environ. 124, 15–25 (2012).
[Crossref]

Dutton, E. G.

R. D. Cess, E. G. Dutton, J. J. DeLuisi, and F. Jiang, “Determining surface solar absorption from broadband satellite measurements for clear skies: comparisons with surface measurements,” J. Clim. 4(2), 236–247 (1991).
[Crossref]

Ewing, J. A.

R. T. Pinker and J. A. Ewing, “Modeling surface solar radiation: model formulation and validation,” J. Clim. Appl. Meteorol. 24(5), 389–401 (1985).
[Crossref]

Gratzki, A.

R. Hollmann, A. Bodas, A. Gratzki, K. Dammann, and R. Stuhlmann, “The surface shortwave net flux from the scanner for radiation budget (SCARAB),” Adv. Space Res. 30(11), 2363–2369 (2002).
[Crossref]

Hollmann, R.

R. Hollmann, A. Bodas, A. Gratzki, K. Dammann, and R. Stuhlmann, “The surface shortwave net flux from the scanner for radiation budget (SCARAB),” Adv. Space Res. 30(11), 2363–2369 (2002).
[Crossref]

Huang, G. H.

G. H. Huang, S. M. Liu, and S. L. Liang, “Estimation of net surface shortwave radiation from MODIS data,” Int. J. Remote Sens. 33(3), 804–825 (2012).
[Crossref]

Jia, L.

Z. L. Li, L. Jia, Z. B. Su, Z. M. Wan, and R. H. Zhang, “A new approach for retrieving precipitable water from ATSR2 split-window channel data over land,” Int. J. Remote Sens. 24(24), 5095–5117 (2003).
[Crossref]

Jiang, F.

R. D. Cess, E. G. Dutton, J. J. DeLuisi, and F. Jiang, “Determining surface solar absorption from broadband satellite measurements for clear skies: comparisons with surface measurements,” J. Clim. 4(2), 236–247 (1991).
[Crossref]

Kim, H. Y.

H. Y. Kim and S. L. Liang, “Development of a hybrid method for estimating land surface shortwave net radiation from MODIS data,” Remote Sens. Environ. 114(11), 2393–2402 (2010).
[Crossref]

Leighton, H. G.

K. Masuda, H. G. Leighton, and Z. Q. Li, “A new parameterization for the determination of solar flux absorbed at the surface from satellite measurements,” J. Clim. 8(6), 1615–1629 (1995).
[Crossref]

Z. Q. Li, H. G. Leighton, K. Masuda, and T. Takashima, “Estimation of shortwave flux absorbed at the surface from TOA reflected flux,” J. Clim. 6(2), 317–330 (1993).
[Crossref]

Li, L. L.

X. Y. Zhang, J. Pang, and L. L. Li, “Estimation of land surface temperature under cloudy skies using combined diurnal solar radiation and surface temperature evolution,” Remote Sens. 7(1), 905–921 (2015).
[Crossref]

Li, Z.

Z. Li and A. Trishchenko, “A Study toward an improved understanding of the relationship between visible and shortwave measurements,” J. Atmos. Ocean. Technol. 16(3), 347–360 (1999).
[Crossref]

Li, Z. L.

B. H. Tang, K. Shao, Z. L. Li, H. Wu, F. Nerry, and G. Q. Zhou, “Estimation and validation of land surface temperature from Chinese second generation polar-orbiting FY-3A VIRR data,” Remote Sens. 7(3), 3250–3273 (2015).
[Crossref]

J. Wang, B. H. Tang, X. Y. Zhang, H. Wu, and Z. L. Li, “Estimation of surface longwave radiation over the Tibetan plateau region using MODIS data for cloud-free skies,” IEEE J. Sel. Top. Appl. Earth Observ. Rem. Sens. 7(9), 3695–3730 (2014).

S. B. Duan, Z. L. Li, B. H. Tang, H. Wu, and R. Tang, “Generation of a time-consistent land surface temperature product from MODIS data,” Remote Sens. Environ. 140, 339–349 (2014).
[Crossref]

S. B. Duan, Z. L. Li, B. H. Tang, H. Wu, and R. Tang, “Direct estimation of land-surface diurnal temperature cycle model parameters from MSG-SEVIRI brightness temperatures under clear sky conditions,” Remote Sens. Environ. 150, 34–43 (2014).
[Crossref]

S. B. Duan, Z. L. Li, N. Wang, H. Wu, and B. H. Tang, “Evaluation of six land-surface diurnal temperature cycle models using clear-sky in situ and satellite data,” Remote Sens. Environ. 124, 15–25 (2012).
[Crossref]

B. H. Tang and Z. L. Li, “Estimation of instantaneous net surface longwave radiation from MODIS cloud-free data,” Remote Sens. Environ. 112(9), 3482–3492 (2008).
[Crossref]

B. H. Tang, Z. L. Li, and R. H. Zhang, “A direct method for estimating net surface shortwave radiation from MODIS data,” Remote Sens. Environ. 103(1), 115–126 (2006).
[Crossref]

Z. L. Li, L. Jia, Z. B. Su, Z. M. Wan, and R. H. Zhang, “A new approach for retrieving precipitable water from ATSR2 split-window channel data over land,” Int. J. Remote Sens. 24(24), 5095–5117 (2003).
[Crossref]

Li, Z. Q.

K. Masuda, H. G. Leighton, and Z. Q. Li, “A new parameterization for the determination of solar flux absorbed at the surface from satellite measurements,” J. Clim. 8(6), 1615–1629 (1995).
[Crossref]

Z. Q. Li, H. G. Leighton, K. Masuda, and T. Takashima, “Estimation of shortwave flux absorbed at the surface from TOA reflected flux,” J. Clim. 6(2), 317–330 (1993).
[Crossref]

Liang, S. L.

G. H. Huang, S. M. Liu, and S. L. Liang, “Estimation of net surface shortwave radiation from MODIS data,” Int. J. Remote Sens. 33(3), 804–825 (2012).
[Crossref]

H. Y. Kim and S. L. Liang, “Development of a hybrid method for estimating land surface shortwave net radiation from MODIS data,” Remote Sens. Environ. 114(11), 2393–2402 (2010).
[Crossref]

Liu, S. M.

G. H. Huang, S. M. Liu, and S. L. Liang, “Estimation of net surface shortwave radiation from MODIS data,” Int. J. Remote Sens. 33(3), 804–825 (2012).
[Crossref]

Masuda, K.

K. Masuda, H. G. Leighton, and Z. Q. Li, “A new parameterization for the determination of solar flux absorbed at the surface from satellite measurements,” J. Clim. 8(6), 1615–1629 (1995).
[Crossref]

Z. Q. Li, H. G. Leighton, K. Masuda, and T. Takashima, “Estimation of shortwave flux absorbed at the surface from TOA reflected flux,” J. Clim. 6(2), 317–330 (1993).
[Crossref]

Nerry, F.

B. H. Tang, K. Shao, Z. L. Li, H. Wu, F. Nerry, and G. Q. Zhou, “Estimation and validation of land surface temperature from Chinese second generation polar-orbiting FY-3A VIRR data,” Remote Sens. 7(3), 3250–3273 (2015).
[Crossref]

Pang, J.

X. Y. Zhang, J. Pang, and L. L. Li, “Estimation of land surface temperature under cloudy skies using combined diurnal solar radiation and surface temperature evolution,” Remote Sens. 7(1), 905–921 (2015).
[Crossref]

Pinker, R. T.

R. T. Pinker and J. D. Tarpley, “The relationship between the planetary and surface net radiation: an update,” J. Appl. Meteorol. 27(8), 957–964 (1988).
[Crossref]

R. T. Pinker and J. A. Ewing, “Modeling surface solar radiation: model formulation and validation,” J. Clim. Appl. Meteorol. 24(5), 389–401 (1985).
[Crossref]

R. T. Pinker and L. Corio, “Surface radiation budget from satellites,” Mon. Weather Rev. 112(1), 209–215 (1984).
[Crossref]

Rossow, W. B.

W. B. Rossow and Y. C. Zhang, “Calculation of surface and top-of-atmosphere radiative fluxes from physical quantities based on ISCCP data sets. 2: validation and first results,” J. Geophys. Res. 100(D1), 1167–1198 (1995).
[Crossref]

Shao, K.

B. H. Tang, K. Shao, Z. L. Li, H. Wu, F. Nerry, and G. Q. Zhou, “Estimation and validation of land surface temperature from Chinese second generation polar-orbiting FY-3A VIRR data,” Remote Sens. 7(3), 3250–3273 (2015).
[Crossref]

Stuhlmann, R.

R. Hollmann, A. Bodas, A. Gratzki, K. Dammann, and R. Stuhlmann, “The surface shortwave net flux from the scanner for radiation budget (SCARAB),” Adv. Space Res. 30(11), 2363–2369 (2002).
[Crossref]

Su, Z. B.

Z. L. Li, L. Jia, Z. B. Su, Z. M. Wan, and R. H. Zhang, “A new approach for retrieving precipitable water from ATSR2 split-window channel data over land,” Int. J. Remote Sens. 24(24), 5095–5117 (2003).
[Crossref]

Takashima, T.

Z. Q. Li, H. G. Leighton, K. Masuda, and T. Takashima, “Estimation of shortwave flux absorbed at the surface from TOA reflected flux,” J. Clim. 6(2), 317–330 (1993).
[Crossref]

Tang, B. H.

B. H. Tang, K. Shao, Z. L. Li, H. Wu, F. Nerry, and G. Q. Zhou, “Estimation and validation of land surface temperature from Chinese second generation polar-orbiting FY-3A VIRR data,” Remote Sens. 7(3), 3250–3273 (2015).
[Crossref]

J. Wang, B. H. Tang, X. Y. Zhang, H. Wu, and Z. L. Li, “Estimation of surface longwave radiation over the Tibetan plateau region using MODIS data for cloud-free skies,” IEEE J. Sel. Top. Appl. Earth Observ. Rem. Sens. 7(9), 3695–3730 (2014).

S. B. Duan, Z. L. Li, B. H. Tang, H. Wu, and R. Tang, “Generation of a time-consistent land surface temperature product from MODIS data,” Remote Sens. Environ. 140, 339–349 (2014).
[Crossref]

S. B. Duan, Z. L. Li, B. H. Tang, H. Wu, and R. Tang, “Direct estimation of land-surface diurnal temperature cycle model parameters from MSG-SEVIRI brightness temperatures under clear sky conditions,” Remote Sens. Environ. 150, 34–43 (2014).
[Crossref]

S. B. Duan, Z. L. Li, N. Wang, H. Wu, and B. H. Tang, “Evaluation of six land-surface diurnal temperature cycle models using clear-sky in situ and satellite data,” Remote Sens. Environ. 124, 15–25 (2012).
[Crossref]

B. H. Tang and Z. L. Li, “Estimation of instantaneous net surface longwave radiation from MODIS cloud-free data,” Remote Sens. Environ. 112(9), 3482–3492 (2008).
[Crossref]

B. H. Tang, Z. L. Li, and R. H. Zhang, “A direct method for estimating net surface shortwave radiation from MODIS data,” Remote Sens. Environ. 103(1), 115–126 (2006).
[Crossref]

Tang, R.

S. B. Duan, Z. L. Li, B. H. Tang, H. Wu, and R. Tang, “Generation of a time-consistent land surface temperature product from MODIS data,” Remote Sens. Environ. 140, 339–349 (2014).
[Crossref]

S. B. Duan, Z. L. Li, B. H. Tang, H. Wu, and R. Tang, “Direct estimation of land-surface diurnal temperature cycle model parameters from MSG-SEVIRI brightness temperatures under clear sky conditions,” Remote Sens. Environ. 150, 34–43 (2014).
[Crossref]

Tarpley, J. D.

R. T. Pinker and J. D. Tarpley, “The relationship between the planetary and surface net radiation: an update,” J. Appl. Meteorol. 27(8), 957–964 (1988).
[Crossref]

Trishchenko, A.

Z. Li and A. Trishchenko, “A Study toward an improved understanding of the relationship between visible and shortwave measurements,” J. Atmos. Ocean. Technol. 16(3), 347–360 (1999).
[Crossref]

Vulis, I. L.

R. D. Cess and I. L. Vulis, “Inferring surface-solar absorption from broadband satellite measurements,” J. Clim. 2(9), 974–985 (1989).
[Crossref]

Wan, Z. M.

Z. L. Li, L. Jia, Z. B. Su, Z. M. Wan, and R. H. Zhang, “A new approach for retrieving precipitable water from ATSR2 split-window channel data over land,” Int. J. Remote Sens. 24(24), 5095–5117 (2003).
[Crossref]

Wang, J.

J. Wang, B. H. Tang, X. Y. Zhang, H. Wu, and Z. L. Li, “Estimation of surface longwave radiation over the Tibetan plateau region using MODIS data for cloud-free skies,” IEEE J. Sel. Top. Appl. Earth Observ. Rem. Sens. 7(9), 3695–3730 (2014).

Wang, N.

S. B. Duan, Z. L. Li, N. Wang, H. Wu, and B. H. Tang, “Evaluation of six land-surface diurnal temperature cycle models using clear-sky in situ and satellite data,” Remote Sens. Environ. 124, 15–25 (2012).
[Crossref]

Wu, H.

B. H. Tang, K. Shao, Z. L. Li, H. Wu, F. Nerry, and G. Q. Zhou, “Estimation and validation of land surface temperature from Chinese second generation polar-orbiting FY-3A VIRR data,” Remote Sens. 7(3), 3250–3273 (2015).
[Crossref]

S. B. Duan, Z. L. Li, B. H. Tang, H. Wu, and R. Tang, “Generation of a time-consistent land surface temperature product from MODIS data,” Remote Sens. Environ. 140, 339–349 (2014).
[Crossref]

S. B. Duan, Z. L. Li, B. H. Tang, H. Wu, and R. Tang, “Direct estimation of land-surface diurnal temperature cycle model parameters from MSG-SEVIRI brightness temperatures under clear sky conditions,” Remote Sens. Environ. 150, 34–43 (2014).
[Crossref]

J. Wang, B. H. Tang, X. Y. Zhang, H. Wu, and Z. L. Li, “Estimation of surface longwave radiation over the Tibetan plateau region using MODIS data for cloud-free skies,” IEEE J. Sel. Top. Appl. Earth Observ. Rem. Sens. 7(9), 3695–3730 (2014).

S. B. Duan, Z. L. Li, N. Wang, H. Wu, and B. H. Tang, “Evaluation of six land-surface diurnal temperature cycle models using clear-sky in situ and satellite data,” Remote Sens. Environ. 124, 15–25 (2012).
[Crossref]

Zhang, R. H.

B. H. Tang, Z. L. Li, and R. H. Zhang, “A direct method for estimating net surface shortwave radiation from MODIS data,” Remote Sens. Environ. 103(1), 115–126 (2006).
[Crossref]

Z. L. Li, L. Jia, Z. B. Su, Z. M. Wan, and R. H. Zhang, “A new approach for retrieving precipitable water from ATSR2 split-window channel data over land,” Int. J. Remote Sens. 24(24), 5095–5117 (2003).
[Crossref]

Zhang, X. Y.

X. Y. Zhang, J. Pang, and L. L. Li, “Estimation of land surface temperature under cloudy skies using combined diurnal solar radiation and surface temperature evolution,” Remote Sens. 7(1), 905–921 (2015).
[Crossref]

J. Wang, B. H. Tang, X. Y. Zhang, H. Wu, and Z. L. Li, “Estimation of surface longwave radiation over the Tibetan plateau region using MODIS data for cloud-free skies,” IEEE J. Sel. Top. Appl. Earth Observ. Rem. Sens. 7(9), 3695–3730 (2014).

Zhang, Y. C.

W. B. Rossow and Y. C. Zhang, “Calculation of surface and top-of-atmosphere radiative fluxes from physical quantities based on ISCCP data sets. 2: validation and first results,” J. Geophys. Res. 100(D1), 1167–1198 (1995).
[Crossref]

Zhou, G. Q.

B. H. Tang, K. Shao, Z. L. Li, H. Wu, F. Nerry, and G. Q. Zhou, “Estimation and validation of land surface temperature from Chinese second generation polar-orbiting FY-3A VIRR data,” Remote Sens. 7(3), 3250–3273 (2015).
[Crossref]

Adv. Space Res. (1)

R. Hollmann, A. Bodas, A. Gratzki, K. Dammann, and R. Stuhlmann, “The surface shortwave net flux from the scanner for radiation budget (SCARAB),” Adv. Space Res. 30(11), 2363–2369 (2002).
[Crossref]

IEEE J. Sel. Top. Appl. Earth Observ. Rem. Sens. (1)

J. Wang, B. H. Tang, X. Y. Zhang, H. Wu, and Z. L. Li, “Estimation of surface longwave radiation over the Tibetan plateau region using MODIS data for cloud-free skies,” IEEE J. Sel. Top. Appl. Earth Observ. Rem. Sens. 7(9), 3695–3730 (2014).

Int. J. Remote Sens. (2)

G. H. Huang, S. M. Liu, and S. L. Liang, “Estimation of net surface shortwave radiation from MODIS data,” Int. J. Remote Sens. 33(3), 804–825 (2012).
[Crossref]

Z. L. Li, L. Jia, Z. B. Su, Z. M. Wan, and R. H. Zhang, “A new approach for retrieving precipitable water from ATSR2 split-window channel data over land,” Int. J. Remote Sens. 24(24), 5095–5117 (2003).
[Crossref]

J. Appl. Meteorol. (1)

R. T. Pinker and J. D. Tarpley, “The relationship between the planetary and surface net radiation: an update,” J. Appl. Meteorol. 27(8), 957–964 (1988).
[Crossref]

J. Atmos. Ocean. Technol. (1)

Z. Li and A. Trishchenko, “A Study toward an improved understanding of the relationship between visible and shortwave measurements,” J. Atmos. Ocean. Technol. 16(3), 347–360 (1999).
[Crossref]

J. Clim. (4)

R. D. Cess and I. L. Vulis, “Inferring surface-solar absorption from broadband satellite measurements,” J. Clim. 2(9), 974–985 (1989).
[Crossref]

R. D. Cess, E. G. Dutton, J. J. DeLuisi, and F. Jiang, “Determining surface solar absorption from broadband satellite measurements for clear skies: comparisons with surface measurements,” J. Clim. 4(2), 236–247 (1991).
[Crossref]

Z. Q. Li, H. G. Leighton, K. Masuda, and T. Takashima, “Estimation of shortwave flux absorbed at the surface from TOA reflected flux,” J. Clim. 6(2), 317–330 (1993).
[Crossref]

K. Masuda, H. G. Leighton, and Z. Q. Li, “A new parameterization for the determination of solar flux absorbed at the surface from satellite measurements,” J. Clim. 8(6), 1615–1629 (1995).
[Crossref]

J. Clim. Appl. Meteorol. (1)

R. T. Pinker and J. A. Ewing, “Modeling surface solar radiation: model formulation and validation,” J. Clim. Appl. Meteorol. 24(5), 389–401 (1985).
[Crossref]

J. Geophys. Res. (1)

W. B. Rossow and Y. C. Zhang, “Calculation of surface and top-of-atmosphere radiative fluxes from physical quantities based on ISCCP data sets. 2: validation and first results,” J. Geophys. Res. 100(D1), 1167–1198 (1995).
[Crossref]

Mon. Weather Rev. (1)

R. T. Pinker and L. Corio, “Surface radiation budget from satellites,” Mon. Weather Rev. 112(1), 209–215 (1984).
[Crossref]

Remote Sens. (2)

X. Y. Zhang, J. Pang, and L. L. Li, “Estimation of land surface temperature under cloudy skies using combined diurnal solar radiation and surface temperature evolution,” Remote Sens. 7(1), 905–921 (2015).
[Crossref]

B. H. Tang, K. Shao, Z. L. Li, H. Wu, F. Nerry, and G. Q. Zhou, “Estimation and validation of land surface temperature from Chinese second generation polar-orbiting FY-3A VIRR data,” Remote Sens. 7(3), 3250–3273 (2015).
[Crossref]

Remote Sens. Environ. (6)

H. Y. Kim and S. L. Liang, “Development of a hybrid method for estimating land surface shortwave net radiation from MODIS data,” Remote Sens. Environ. 114(11), 2393–2402 (2010).
[Crossref]

B. H. Tang, Z. L. Li, and R. H. Zhang, “A direct method for estimating net surface shortwave radiation from MODIS data,” Remote Sens. Environ. 103(1), 115–126 (2006).
[Crossref]

B. H. Tang and Z. L. Li, “Estimation of instantaneous net surface longwave radiation from MODIS cloud-free data,” Remote Sens. Environ. 112(9), 3482–3492 (2008).
[Crossref]

S. B. Duan, Z. L. Li, N. Wang, H. Wu, and B. H. Tang, “Evaluation of six land-surface diurnal temperature cycle models using clear-sky in situ and satellite data,” Remote Sens. Environ. 124, 15–25 (2012).
[Crossref]

S. B. Duan, Z. L. Li, B. H. Tang, H. Wu, and R. Tang, “Generation of a time-consistent land surface temperature product from MODIS data,” Remote Sens. Environ. 140, 339–349 (2014).
[Crossref]

S. B. Duan, Z. L. Li, B. H. Tang, H. Wu, and R. Tang, “Direct estimation of land-surface diurnal temperature cycle model parameters from MSG-SEVIRI brightness temperatures under clear sky conditions,” Remote Sens. Environ. 150, 34–43 (2014).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 The relationship between coefficient bi (i = 0,1) in Eq. (1) and VZAs for SZA = 0° and RAA = 60°.
Fig. 2
Fig. 2 Comparison of the actual TOA total shortwave broadband albedos with those estimated using Eqs. (1) and (4) under different conditions.
Fig. 3
Fig. 3 Comparison of actual and estimated NSSR for different surfaces.
Fig. 4
Fig. 4 Difference between estimated and real NSSR after including w errors for Land, Ocean, and Snow&ice surfaces.
Fig. 5
Fig. 5 Difference between estimated and real NSSR after including real TOA reflectivity errors for Land, Ocean, and Snow &ice surfaces.
Fig. 6
Fig. 6 Difference between estimated and real NSSR after including SZA errors for Land, Ocean, and Snow&ice surfaces.
Fig. 7
Fig. 7 Difference between estimated and real NSSR after including VZA errors for Land, Ocean, and Snow&ice surfaces.
Fig. 8
Fig. 8 Comparison of measuredand calculated NSSR.
Fig. 9
Fig. 9 Retrieved NSSR from the Beijing area in China, during FY-2D satellite scanning on January 24, 2012, at 14:30 local time.

Tables (6)

Tables Icon

Table 1 Main technical index of FY2-VISSR radiometer

Tables Icon

Table 2 Errors of estimated NSSR and actual NSSR (W/m2)

Tables Icon

Table 3 RMSEs of the estimated and measured NSSR, including w errors, for different surface types (W/m2), Mean errors are shown in brackets

Tables Icon

Table 4 RMSEs of the estimated and measured NSSR after adding reflectivity noise for different surface types (W/m2). Mean errors are shown in brackets.

Tables Icon

Table 5 RMSEs of the estimated and measured NSSR with SZA errors included for different surface types (W/m2). Mean errors are shown in brackets.

Tables Icon

Table 6 RMSEs of the estimated and measured NSSR with VZA errors for different surface type (W/m−2). Mean errors are shown in brackets.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

r= b 0 + b 1 ρ 1
r= F u d 2 E 0 cos θ s
ρ 1 ( μ s ,μ,φ )= π L 1 ( μ s ,μ,φ) d 2 μ s E ¯ band_1
b i = c 1i (1/cos(VZA))^2+ c 2i (1/cos(VZA))+ c 3i
a s = α β r
a s = NSSR d 2 E 0 cos θ s
α =1 a 1 μ 1 a 2 μ x (1exp(μ))( a 3 + a 4 ω y ) μ 1
β =1+ a 5 + a 6 lnμ+ a 7 ω z
WVC= c 1 + c 2 ( τ j / τ i )
τ j τ i = ε i ε j R ji
R ji = k=1 N ( T i,k T i ¯ )( T j,k T ¯ j ) k=1 N ( T i,k T ¯ i ) 2
c 1 =28.10414.996/cos(VZA)+3.211/ cos 2 (VZA)
c 2 =28.056+14.954/cos(VZA)3.206/ cos 2 (VZA)

Metrics