Abstract

Optical communication using high-speed on-off-keying signal by directly modulated semiconductor lasers (DML) was one of the most significant breakthroughs for telecommunication in 1960s. The wide deployment of 2.5-Gb/s per-channel transoceanic optical fiber links in 1990s drove the internet as a global phenomenon. However, the detrimental frequency chirp of DML prevents its application to the subsequent internet capacity evolution. Today, the state-of-the-art long-haul optical transponder uses external modulators to support high-order complex modulation. In contrast, this paper shows that the “detrimental” chirp effect can be exploited to generate complex modulation with a single DML, which achieves dramatic sensitivity gain of signal-to-noise-ratio compared to the conventional intensity modulation of DML. By using large chirp parameters, complex-modulated DML paves an attractive pathway towards high-order pulse-amplitude modulation with an ultra-low transmitter cost, which has great potential in future medium reach optical communications.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Maximum likelihood sequence estimation for optical complex direct modulation

Di Che, Feng Yuan, and William Shieh
Opt. Express 25(8) 8730-8738 (2017)

Receiver bandwidth effects on complex modulation and detection using directly modulated lasers

Feng Yuan, Di Che, and William Shieh
Opt. Lett. 41(9) 2041-2044 (2016)

Complex modulation and detection with directly modulated lasers

Qian Hu, Di Che, Yifei Wang, Feng Yuan, Qi Yang, and William Shieh
Opt. Express 23(25) 32809-32819 (2015)

References

  • View by:
  • |
  • |
  • |

  1. J. L. Zyskind, C. R. Giles, J. R. Simpson, and D. J. DiGiovanni, “Erbium-doped fiber amplifiers and the next generation of lightwave systems,” ATT Tech. J. 71(1), 53–62 (1992).
    [Crossref]
  2. R. S. Tucker, “High-speed modulation of semiconductor lasers,” IEEE Trans. Electron Dev. 32(12), 2572–2584 (1985).
    [Crossref]
  3. T. L. Koch and R. A. Linke, “Effect of nonlinear gain reduction on semiconductor laser wavelength chirping,” Appl. Phys. Lett. 48(10), 613–615 (1986).
    [Crossref]
  4. B. W. Hakki, “Evaluation of transmission characteristics of chirped DFB lasers in dispersive optical fiber,” J. Lightwave Technol. 10(7), 964–970 (1992).
    [Crossref]
  5. S. Mohrdiek, H. Burkhard, and H. Walter, “Chirp reduction of directly modulated semiconductor lasers at 10 Gb/s by strong CW light injection,” J. Lightwave Technol. 12(3), 418–424 (1994).
    [Crossref]
  6. M. Osinski and J. Buus, “Linewidth broadening factor in semiconductor lasers–An overview,” IEEE J. Quantum Electron. 23(1), 9–29 (1987).
    [Crossref]
  7. Y. Ma, Q. Yang, Y. Tang, S. Chen, and W. Shieh, “1-Tb/s single-channel coherent optical OFDM transmission over 600-km SSMF fiber with subwavelength bandwidth access,” Opt. Express 17(11), 9421–9427 (2009).
    [Crossref] [PubMed]
  8. R. Rios-Muller, J. Renaudier, P. Brindel, H. Mardoyan, P. Jenneve, L. Schmalen, and G. Charlet, “1-Terabit/s Net Data-Rate Transceiver Based on Single-Carrier Nyquist-Shaped 124 GBaud PDM-32QAM,” Proc. OFC, Los Angeles, CA, Th5B.1, 2015.
    [Crossref]
  9. K. Sato, S. Kuwahara, and Y. Miyamoto, “Chirp characteristics of 40-Gb/s directly modulated distributed-feedback laser diodes,” J. Lightwave Technol. 23(11), 3790–3797 (2005).
    [Crossref]
  10. S. Matsuo, T. Kakitsuka, T. Segawa, R. O. Sato, Y. Shibata, R. Takahashi, H. Oohashi, and H. Yasaka, “4×25 Gb/s frequency-modulated DBR laser array for 100-GbE 40-km reach application,” IEEE Photonics Technol. Lett. 20(17), 1494–1496 (2008).
  11. “IEEE P802.3ba 40Gb/s and 100Gb/s Ethernet Task Force” [Online]. Available http://www.ieee802.org/ , 2010.
  12. Z. Liu, J. Kakande, B. Kelly, J. O’Carroll, R. Phelan, D. J. Richardson, and R. Slavík, “Modulator-free quadrature amplitude modulation signal synthesis,” Nat. Commun. 5, 5911 (2014), doi:.
    [Crossref] [PubMed]
  13. C. Xie, S. Spiga, P. Dong, P. Winzer, M. Bergmann, B. Kogel, C. Neumeyr, and M. C. Amann, “Generation and transmission of a 400-Gb/s PDM/WDM signal using a monolithic 2×4 VCSEL array and coherent detection,” Proc. OFC, San Francisco, CA, Th5C.9, 2014.
  14. D. Che, F. Yuan, Q. Hu, and W. Shieh, “Frequency chirp supported complex modulation of directly modulated lasers,” J. Lightwave Technol. 34(8), 1831–1836 (2016).
  15. G. D. Forney, “Maximum-likelihood sequence estimation of digital sequences in the presence of intersymbol interference,” IEEE Trans. Inf. Theory 18(3), 363–378 (1972).
    [Crossref]

2016 (1)

2014 (1)

Z. Liu, J. Kakande, B. Kelly, J. O’Carroll, R. Phelan, D. J. Richardson, and R. Slavík, “Modulator-free quadrature amplitude modulation signal synthesis,” Nat. Commun. 5, 5911 (2014), doi:.
[Crossref] [PubMed]

2009 (1)

2008 (1)

S. Matsuo, T. Kakitsuka, T. Segawa, R. O. Sato, Y. Shibata, R. Takahashi, H. Oohashi, and H. Yasaka, “4×25 Gb/s frequency-modulated DBR laser array for 100-GbE 40-km reach application,” IEEE Photonics Technol. Lett. 20(17), 1494–1496 (2008).

2005 (1)

1994 (1)

S. Mohrdiek, H. Burkhard, and H. Walter, “Chirp reduction of directly modulated semiconductor lasers at 10 Gb/s by strong CW light injection,” J. Lightwave Technol. 12(3), 418–424 (1994).
[Crossref]

1992 (2)

J. L. Zyskind, C. R. Giles, J. R. Simpson, and D. J. DiGiovanni, “Erbium-doped fiber amplifiers and the next generation of lightwave systems,” ATT Tech. J. 71(1), 53–62 (1992).
[Crossref]

B. W. Hakki, “Evaluation of transmission characteristics of chirped DFB lasers in dispersive optical fiber,” J. Lightwave Technol. 10(7), 964–970 (1992).
[Crossref]

1987 (1)

M. Osinski and J. Buus, “Linewidth broadening factor in semiconductor lasers–An overview,” IEEE J. Quantum Electron. 23(1), 9–29 (1987).
[Crossref]

1986 (1)

T. L. Koch and R. A. Linke, “Effect of nonlinear gain reduction on semiconductor laser wavelength chirping,” Appl. Phys. Lett. 48(10), 613–615 (1986).
[Crossref]

1985 (1)

R. S. Tucker, “High-speed modulation of semiconductor lasers,” IEEE Trans. Electron Dev. 32(12), 2572–2584 (1985).
[Crossref]

1972 (1)

G. D. Forney, “Maximum-likelihood sequence estimation of digital sequences in the presence of intersymbol interference,” IEEE Trans. Inf. Theory 18(3), 363–378 (1972).
[Crossref]

Burkhard, H.

S. Mohrdiek, H. Burkhard, and H. Walter, “Chirp reduction of directly modulated semiconductor lasers at 10 Gb/s by strong CW light injection,” J. Lightwave Technol. 12(3), 418–424 (1994).
[Crossref]

Buus, J.

M. Osinski and J. Buus, “Linewidth broadening factor in semiconductor lasers–An overview,” IEEE J. Quantum Electron. 23(1), 9–29 (1987).
[Crossref]

Che, D.

Chen, S.

DiGiovanni, D. J.

J. L. Zyskind, C. R. Giles, J. R. Simpson, and D. J. DiGiovanni, “Erbium-doped fiber amplifiers and the next generation of lightwave systems,” ATT Tech. J. 71(1), 53–62 (1992).
[Crossref]

Forney, G. D.

G. D. Forney, “Maximum-likelihood sequence estimation of digital sequences in the presence of intersymbol interference,” IEEE Trans. Inf. Theory 18(3), 363–378 (1972).
[Crossref]

Giles, C. R.

J. L. Zyskind, C. R. Giles, J. R. Simpson, and D. J. DiGiovanni, “Erbium-doped fiber amplifiers and the next generation of lightwave systems,” ATT Tech. J. 71(1), 53–62 (1992).
[Crossref]

Hakki, B. W.

B. W. Hakki, “Evaluation of transmission characteristics of chirped DFB lasers in dispersive optical fiber,” J. Lightwave Technol. 10(7), 964–970 (1992).
[Crossref]

Hu, Q.

Kakande, J.

Z. Liu, J. Kakande, B. Kelly, J. O’Carroll, R. Phelan, D. J. Richardson, and R. Slavík, “Modulator-free quadrature amplitude modulation signal synthesis,” Nat. Commun. 5, 5911 (2014), doi:.
[Crossref] [PubMed]

Kakitsuka, T.

S. Matsuo, T. Kakitsuka, T. Segawa, R. O. Sato, Y. Shibata, R. Takahashi, H. Oohashi, and H. Yasaka, “4×25 Gb/s frequency-modulated DBR laser array for 100-GbE 40-km reach application,” IEEE Photonics Technol. Lett. 20(17), 1494–1496 (2008).

Kelly, B.

Z. Liu, J. Kakande, B. Kelly, J. O’Carroll, R. Phelan, D. J. Richardson, and R. Slavík, “Modulator-free quadrature amplitude modulation signal synthesis,” Nat. Commun. 5, 5911 (2014), doi:.
[Crossref] [PubMed]

Koch, T. L.

T. L. Koch and R. A. Linke, “Effect of nonlinear gain reduction on semiconductor laser wavelength chirping,” Appl. Phys. Lett. 48(10), 613–615 (1986).
[Crossref]

Kuwahara, S.

Linke, R. A.

T. L. Koch and R. A. Linke, “Effect of nonlinear gain reduction on semiconductor laser wavelength chirping,” Appl. Phys. Lett. 48(10), 613–615 (1986).
[Crossref]

Liu, Z.

Z. Liu, J. Kakande, B. Kelly, J. O’Carroll, R. Phelan, D. J. Richardson, and R. Slavík, “Modulator-free quadrature amplitude modulation signal synthesis,” Nat. Commun. 5, 5911 (2014), doi:.
[Crossref] [PubMed]

Ma, Y.

Matsuo, S.

S. Matsuo, T. Kakitsuka, T. Segawa, R. O. Sato, Y. Shibata, R. Takahashi, H. Oohashi, and H. Yasaka, “4×25 Gb/s frequency-modulated DBR laser array for 100-GbE 40-km reach application,” IEEE Photonics Technol. Lett. 20(17), 1494–1496 (2008).

Miyamoto, Y.

Mohrdiek, S.

S. Mohrdiek, H. Burkhard, and H. Walter, “Chirp reduction of directly modulated semiconductor lasers at 10 Gb/s by strong CW light injection,” J. Lightwave Technol. 12(3), 418–424 (1994).
[Crossref]

O’Carroll, J.

Z. Liu, J. Kakande, B. Kelly, J. O’Carroll, R. Phelan, D. J. Richardson, and R. Slavík, “Modulator-free quadrature amplitude modulation signal synthesis,” Nat. Commun. 5, 5911 (2014), doi:.
[Crossref] [PubMed]

Oohashi, H.

S. Matsuo, T. Kakitsuka, T. Segawa, R. O. Sato, Y. Shibata, R. Takahashi, H. Oohashi, and H. Yasaka, “4×25 Gb/s frequency-modulated DBR laser array for 100-GbE 40-km reach application,” IEEE Photonics Technol. Lett. 20(17), 1494–1496 (2008).

Osinski, M.

M. Osinski and J. Buus, “Linewidth broadening factor in semiconductor lasers–An overview,” IEEE J. Quantum Electron. 23(1), 9–29 (1987).
[Crossref]

Phelan, R.

Z. Liu, J. Kakande, B. Kelly, J. O’Carroll, R. Phelan, D. J. Richardson, and R. Slavík, “Modulator-free quadrature amplitude modulation signal synthesis,” Nat. Commun. 5, 5911 (2014), doi:.
[Crossref] [PubMed]

Richardson, D. J.

Z. Liu, J. Kakande, B. Kelly, J. O’Carroll, R. Phelan, D. J. Richardson, and R. Slavík, “Modulator-free quadrature amplitude modulation signal synthesis,” Nat. Commun. 5, 5911 (2014), doi:.
[Crossref] [PubMed]

Sato, K.

Sato, R. O.

S. Matsuo, T. Kakitsuka, T. Segawa, R. O. Sato, Y. Shibata, R. Takahashi, H. Oohashi, and H. Yasaka, “4×25 Gb/s frequency-modulated DBR laser array for 100-GbE 40-km reach application,” IEEE Photonics Technol. Lett. 20(17), 1494–1496 (2008).

Segawa, T.

S. Matsuo, T. Kakitsuka, T. Segawa, R. O. Sato, Y. Shibata, R. Takahashi, H. Oohashi, and H. Yasaka, “4×25 Gb/s frequency-modulated DBR laser array for 100-GbE 40-km reach application,” IEEE Photonics Technol. Lett. 20(17), 1494–1496 (2008).

Shibata, Y.

S. Matsuo, T. Kakitsuka, T. Segawa, R. O. Sato, Y. Shibata, R. Takahashi, H. Oohashi, and H. Yasaka, “4×25 Gb/s frequency-modulated DBR laser array for 100-GbE 40-km reach application,” IEEE Photonics Technol. Lett. 20(17), 1494–1496 (2008).

Shieh, W.

Simpson, J. R.

J. L. Zyskind, C. R. Giles, J. R. Simpson, and D. J. DiGiovanni, “Erbium-doped fiber amplifiers and the next generation of lightwave systems,” ATT Tech. J. 71(1), 53–62 (1992).
[Crossref]

Slavík, R.

Z. Liu, J. Kakande, B. Kelly, J. O’Carroll, R. Phelan, D. J. Richardson, and R. Slavík, “Modulator-free quadrature amplitude modulation signal synthesis,” Nat. Commun. 5, 5911 (2014), doi:.
[Crossref] [PubMed]

Takahashi, R.

S. Matsuo, T. Kakitsuka, T. Segawa, R. O. Sato, Y. Shibata, R. Takahashi, H. Oohashi, and H. Yasaka, “4×25 Gb/s frequency-modulated DBR laser array for 100-GbE 40-km reach application,” IEEE Photonics Technol. Lett. 20(17), 1494–1496 (2008).

Tang, Y.

Tucker, R. S.

R. S. Tucker, “High-speed modulation of semiconductor lasers,” IEEE Trans. Electron Dev. 32(12), 2572–2584 (1985).
[Crossref]

Walter, H.

S. Mohrdiek, H. Burkhard, and H. Walter, “Chirp reduction of directly modulated semiconductor lasers at 10 Gb/s by strong CW light injection,” J. Lightwave Technol. 12(3), 418–424 (1994).
[Crossref]

Yang, Q.

Yasaka, H.

S. Matsuo, T. Kakitsuka, T. Segawa, R. O. Sato, Y. Shibata, R. Takahashi, H. Oohashi, and H. Yasaka, “4×25 Gb/s frequency-modulated DBR laser array for 100-GbE 40-km reach application,” IEEE Photonics Technol. Lett. 20(17), 1494–1496 (2008).

Yuan, F.

Zyskind, J. L.

J. L. Zyskind, C. R. Giles, J. R. Simpson, and D. J. DiGiovanni, “Erbium-doped fiber amplifiers and the next generation of lightwave systems,” ATT Tech. J. 71(1), 53–62 (1992).
[Crossref]

Appl. Phys. Lett. (1)

T. L. Koch and R. A. Linke, “Effect of nonlinear gain reduction on semiconductor laser wavelength chirping,” Appl. Phys. Lett. 48(10), 613–615 (1986).
[Crossref]

ATT Tech. J. (1)

J. L. Zyskind, C. R. Giles, J. R. Simpson, and D. J. DiGiovanni, “Erbium-doped fiber amplifiers and the next generation of lightwave systems,” ATT Tech. J. 71(1), 53–62 (1992).
[Crossref]

IEEE J. Quantum Electron. (1)

M. Osinski and J. Buus, “Linewidth broadening factor in semiconductor lasers–An overview,” IEEE J. Quantum Electron. 23(1), 9–29 (1987).
[Crossref]

IEEE Photonics Technol. Lett. (1)

S. Matsuo, T. Kakitsuka, T. Segawa, R. O. Sato, Y. Shibata, R. Takahashi, H. Oohashi, and H. Yasaka, “4×25 Gb/s frequency-modulated DBR laser array for 100-GbE 40-km reach application,” IEEE Photonics Technol. Lett. 20(17), 1494–1496 (2008).

IEEE Trans. Electron Dev. (1)

R. S. Tucker, “High-speed modulation of semiconductor lasers,” IEEE Trans. Electron Dev. 32(12), 2572–2584 (1985).
[Crossref]

IEEE Trans. Inf. Theory (1)

G. D. Forney, “Maximum-likelihood sequence estimation of digital sequences in the presence of intersymbol interference,” IEEE Trans. Inf. Theory 18(3), 363–378 (1972).
[Crossref]

J. Lightwave Technol. (4)

K. Sato, S. Kuwahara, and Y. Miyamoto, “Chirp characteristics of 40-Gb/s directly modulated distributed-feedback laser diodes,” J. Lightwave Technol. 23(11), 3790–3797 (2005).
[Crossref]

D. Che, F. Yuan, Q. Hu, and W. Shieh, “Frequency chirp supported complex modulation of directly modulated lasers,” J. Lightwave Technol. 34(8), 1831–1836 (2016).

B. W. Hakki, “Evaluation of transmission characteristics of chirped DFB lasers in dispersive optical fiber,” J. Lightwave Technol. 10(7), 964–970 (1992).
[Crossref]

S. Mohrdiek, H. Burkhard, and H. Walter, “Chirp reduction of directly modulated semiconductor lasers at 10 Gb/s by strong CW light injection,” J. Lightwave Technol. 12(3), 418–424 (1994).
[Crossref]

Nat. Commun. (1)

Z. Liu, J. Kakande, B. Kelly, J. O’Carroll, R. Phelan, D. J. Richardson, and R. Slavík, “Modulator-free quadrature amplitude modulation signal synthesis,” Nat. Commun. 5, 5911 (2014), doi:.
[Crossref] [PubMed]

Opt. Express (1)

Other (3)

C. Xie, S. Spiga, P. Dong, P. Winzer, M. Bergmann, B. Kogel, C. Neumeyr, and M. C. Amann, “Generation and transmission of a 400-Gb/s PDM/WDM signal using a monolithic 2×4 VCSEL array and coherent detection,” Proc. OFC, San Francisco, CA, Th5C.9, 2014.

R. Rios-Muller, J. Renaudier, P. Brindel, H. Mardoyan, P. Jenneve, L. Schmalen, and G. Charlet, “1-Terabit/s Net Data-Rate Transceiver Based on Single-Carrier Nyquist-Shaped 124 GBaud PDM-32QAM,” Proc. OFC, Los Angeles, CA, Th5B.1, 2015.
[Crossref]

“IEEE P802.3ba 40Gb/s and 100Gb/s Ethernet Task Force” [Online]. Available http://www.ieee802.org/ , 2010.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Simulation setup. Mod.: modulation; B-PD: balanced photo-detector; I/Q: in-phase/quadrature.
Fig. 2
Fig. 2 System SNR sensitivity. (a) PAM-4; (b) PAM-8; (c) PAM-16. CM: complex modulation; IM: intensity modulation; FEC: threshold of forward error correction codes.
Fig. 3
Fig. 3 Chirp parameters impact on the differential phase distribution. Each figure shows a 2-D complex plane. Inside figures, each circle represents a power level P(t) of the current sampling point, and each point represents a value of P(t) exp(iΔφ(t)) , where ∆φ(t) is the differential phase between the adjacent sampling points. From (d-f), only 2 power levels are illustrated instead of 8 or 16 levels to simplify the figures.
Fig. 4
Fig. 4 Chirp parameters impact on the system SNR sensitivity. (a) PAM-4; (b) PAM-8; (c) PAM-16. Initial (chirp coefficients): c1 is 2 and c2 is 1.5.
Fig. 5
Fig. 5 Experiment Setup. DAC: digital-to-analog converter; DFB: distributed feedback laser; PBC: polarization beam combiner; SW: optical switch; OF: optical filter; ECL: external cavity laser. Inset (i) optical spectrum of 10-Gbaud DP PAM-4 signal; (ii) PAM-8 constellation; (iii) receiver offline DSP.
Fig. 6
Fig. 6 Experiment results. (a) 40-Gb/s DP PAM-4 system OSNR sensitivity. 60-Gb/s DP PAM-8 system: (b) OSNR sensitivity; (c) BER versus transmission distance.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Δf= α 4π ( d dt lnP(t)+κP(t) )
φ(t)=2π Δfdt= α 2 (lnP(t)+ κP(t)dt )
Δφ= α 2 ( ln P( t 2 ) P( t 1 ) +κ P( t 1 )+P( t 2 ) 2 T )
λ( χ t )=| P(t1) x t1 |+ | P(t) exp(iΔφ(t)) x t exp(iΔ φ E (t)) | 2

Metrics