Abstract

In femtosecond laser machining, spatial beam shaping can be achieved with wavefront modulators. The wavefront modulator displays a pre-calculated phase mask that modulates the laser wavefront to generate a target intensity distribution in the processing plane. Due to the non-perfect optical response of wavefront modulators, the experimental distribution may significantly differ from the target, especially for continuous shapes. We propose an alternative phase mask calculation method that can be adapted to the phase modulator optical performance. From an adjustable number of Zernike polynomials according to this performance, a least square fitting algorithm numerically determines their coefficients to obtain the desired wavefront modulation. We illustrate the technique with an optically addressed liquid-crystal light valve to produce continuous intensity distributions matching a desired ablation profile, without the need of a wavefront sensor. The projection of the experimental laser distribution shows a 5% RMS error compared to the calculated one. Ablation of steel is achieved following user-defined micro-dimples and micro-grooves targets on mold surfaces. The profiles of the microgrooves and the injected polycarbonate closely match the target (RMS below 4%).

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Imaging-based amplitude laser beam shaping for material processing by 2D reflectivity tuning of a spatial light modulator

Jiangning Li, Zheng Kuang, Stuart Edwardson, Walter Perrie, Dun Liu, and Geoff Dearden
Appl. Opt. 55(5) 1095-1100 (2016)

Femtosecond laser processing with a holographic line-shaped beam

Satoshi Hasegawa, Koji Shiono, and Yoshio Hayasaki
Opt. Express 23(18) 23185-23194 (2015)

Fast spatial beam shaping by acousto-optic diffraction for 3D non-linear microscopy

Walther Akemann, Jean-François Léger, Cathie Ventalon, Benjamin Mathieu, Stéphane Dieudonné, and Laurent Bourdieu
Opt. Express 23(22) 28191-28205 (2015)

References

  • View by:
  • |
  • |
  • |

  1. B. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tuennermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys. A 63, 109–115 (1996).
    [Crossref]
  2. Y. D. Maio, J. Colombier, P. Cazottes, and E. Audouard, “Ultrafast laser ablation characteristics of pzt ceramic: Analysis methods and comparison with metals,” Opt. Lasers Eng. 50, 1582–1591 (2012).
    [Crossref]
  3. X. Zhu, A. Y. Naumov, D. M. Villeneuve, and P. B. Corkum, “Influence of laser parameters and material properties on micro drilling with femtosecond laser pulses,” Appl. Phys. A 69, S367–S371 (1999).
    [Crossref]
  4. S. Hasegawa, Y. Hayasaki, and N. Nishida, “Holographic femtosecond laser processing with multiplexed phase fresnel lenses,” Opt. Lett. 31, 1705–1707 (2006).
    [Crossref] [PubMed]
  5. A. Jesacher and M. J. Booth, “Parallel direct laser writing in three dimensions with spatially dependent aberration correction,” Opt. Express 18, 21090–21099 (2010).
    [Crossref] [PubMed]
  6. C. Mauclair, D. Pietroy, Y. D. Mao, E. Baubeau, J.-P. Colombier, R. Stoian, and F. Pigeon, “Ultrafast laser micro-cutting of stainless steel and pzt using a modulated line of multiple foci formed by spatial beam shaping,” Opt. Lasers Eng. 67, 212–217 (2015).
    [Crossref]
  7. C. Mauclair, G. Cheng, N. Huot, E. Audouard, A. Rosenfeld, I. V. Hertel, and R. Stoian, “Dynamic ultrafast laser spatial tailoring for parallel micromachining of photonic devices in transparent materials,” Opt. Express 17, 3531–3542 (2009).
    [Crossref] [PubMed]
  8. J. P. Parry, R. J. Beck, J. D. Shephard, and D. P. Hand, “Application of a liquid crystal spatial light modulator to laser marking,” Appl. Opt. 50, 1779–1785 (2011).
    [Crossref] [PubMed]
  9. S. Hasegawa and Y. Hayasaki, “Adaptive optimization of a hologram in holographic femtosecond laser processing system,” Opt. Lett. 34, 22–24 (2009).
    [Crossref]
  10. M. Silvennoinen, J. Kaakkunen, K. Paivasaari, and P. Vahimaa, “Parallel femtosecond laser ablation with individually controlled intensity,” Opt. Express 22, 2603–2608 (2014).
    [Crossref] [PubMed]
  11. C. Mauclair, S. Landon, D. Pietroy, E. Baubeau, R. Stoian, and E. Audouard, “Ultrafast laser machining of micro grooves on stainless steel with spatially optimized intensity distribution,” J. Laser Micro Nanoen. 8, 11–14 (2013).
    [Crossref]
  12. V. Arrizón, U. Ruiz, R. Carrada, and L. A. González, “Pixelated phase computer holograms for the accurate encoding of scalar complex fields,” J. Opt. Soc. Am. A 24, 3500–3507 (2007).
    [Crossref]
  13. R. J. Noll, “Zernike polynomials and atmospheric turbulence,” J. Opt. Soc. Am. 66, 207–211 (1976).
    [Crossref]
  14. A. Jewel, V. Akondi, and B. Vohnsen, “A direct comparison between a mems deformable mirror and a liquid crystal spatial light modulator in signal-based wavefront sensing,” J. Eur. Opt. Soc, Rapid Publ. A8 (2013).
  15. L. Zhu, P.-C. Sun, D.-U. Bartsch, W. R. Freeman, and Y. Fainman, “Wave-front generation of zernike polynomial modes with a micromachined membrane deformable mirror,” Appl. Opt. 38, 6019–6026 (1999).
    [Crossref]
  16. E. J. Fernández and P. Artal, “Membrane deformable mirror for adaptive optics: performance limits in visual optics,” Opt. Express 11, 1056–1069 (2003).
    [Crossref] [PubMed]
  17. K. Nemoto, Y. kazu Kanai, T. Fujii, N. Goto, and T. Nayuki, “Transformation of a laser beam intensity profile by a deformable mirror,” Opt. Lett. 21, 168–170 (1996).
    [Crossref] [PubMed]
  18. C. Schulze, A. Dudley, D. Flamm, M. Duparré, and A. Forbes, “Reconstruction of laser beam wavefronts based on mode analysis,” Appl. Opt. 52, 5312–5317 (2013).
    [Crossref] [PubMed]
  19. N. Sanner, N. Huot, E. Audouard, C. Larat, J.-P. Huignard, and B. Loiseaux, “Programmable focal spot shaping of amplified femtosecond laser pulses,” Opt. Lett. 30, 1479–1481 (2005).
    [Crossref] [PubMed]
  20. P. Mannion, J. Magee, E. Coyne, G. O. Connor, and T. Glynn, “The effect of damage accumulation behaviour on ablation thresholds and damage morphology in ultrafast laser micro-machining of common metals in air,” Appl. Surf. Sci. 233, 275–287 (2004).
    [Crossref]
  21. N. Sanner, N. Huot, E. Audouard, C. Larat, P. Laporte, and J. Huignard, “100-khz diffraction-limited femtosecond laser micromachining,” Appl. Phys. B 80, 27–30 (2004).
    [Crossref]
  22. J. Hahn, H. Kim, K. Choi, and B. Lee, “Real-time digital holographic beam-shaping system with a genetic feedback tuning loop,” Appl. Opt. 45, 915–924 (2006).
    [Crossref] [PubMed]
  23. D. Pietroy, E. Baubeau, N. Faure, and C. Mauclair, “Intensity profile distortion at the processing image plane of a focused femtosecond laser below the critical power: analysis and counteraction,” Opt. Lasers Eng. 66, 138–143 (2015).
    [Crossref]
  24. A. Ancona, F. Röser, K. Rademaker, J. Limpert, S. Nolte, and A. Tünnermann, “High speed laser drilling of metals using a high repetition rate, high average power ultrafast fiber cpa system,” Opt. Express 16, 8958–8968 (2008).
    [Crossref] [PubMed]
  25. C. J. Zapata-Rodríguez and M. T. Caballero, “Ultrafast beam shaping with high-numerical-aperture microscope objectives,” Opt. Express 15, 15308–15313 (2007).
    [Crossref] [PubMed]

2015 (2)

C. Mauclair, D. Pietroy, Y. D. Mao, E. Baubeau, J.-P. Colombier, R. Stoian, and F. Pigeon, “Ultrafast laser micro-cutting of stainless steel and pzt using a modulated line of multiple foci formed by spatial beam shaping,” Opt. Lasers Eng. 67, 212–217 (2015).
[Crossref]

D. Pietroy, E. Baubeau, N. Faure, and C. Mauclair, “Intensity profile distortion at the processing image plane of a focused femtosecond laser below the critical power: analysis and counteraction,” Opt. Lasers Eng. 66, 138–143 (2015).
[Crossref]

2014 (1)

2013 (2)

C. Mauclair, S. Landon, D. Pietroy, E. Baubeau, R. Stoian, and E. Audouard, “Ultrafast laser machining of micro grooves on stainless steel with spatially optimized intensity distribution,” J. Laser Micro Nanoen. 8, 11–14 (2013).
[Crossref]

C. Schulze, A. Dudley, D. Flamm, M. Duparré, and A. Forbes, “Reconstruction of laser beam wavefronts based on mode analysis,” Appl. Opt. 52, 5312–5317 (2013).
[Crossref] [PubMed]

2012 (1)

Y. D. Maio, J. Colombier, P. Cazottes, and E. Audouard, “Ultrafast laser ablation characteristics of pzt ceramic: Analysis methods and comparison with metals,” Opt. Lasers Eng. 50, 1582–1591 (2012).
[Crossref]

2011 (1)

2010 (1)

2009 (2)

2008 (1)

2007 (2)

2006 (2)

2005 (1)

2004 (2)

P. Mannion, J. Magee, E. Coyne, G. O. Connor, and T. Glynn, “The effect of damage accumulation behaviour on ablation thresholds and damage morphology in ultrafast laser micro-machining of common metals in air,” Appl. Surf. Sci. 233, 275–287 (2004).
[Crossref]

N. Sanner, N. Huot, E. Audouard, C. Larat, P. Laporte, and J. Huignard, “100-khz diffraction-limited femtosecond laser micromachining,” Appl. Phys. B 80, 27–30 (2004).
[Crossref]

2003 (1)

1999 (2)

L. Zhu, P.-C. Sun, D.-U. Bartsch, W. R. Freeman, and Y. Fainman, “Wave-front generation of zernike polynomial modes with a micromachined membrane deformable mirror,” Appl. Opt. 38, 6019–6026 (1999).
[Crossref]

X. Zhu, A. Y. Naumov, D. M. Villeneuve, and P. B. Corkum, “Influence of laser parameters and material properties on micro drilling with femtosecond laser pulses,” Appl. Phys. A 69, S367–S371 (1999).
[Crossref]

1996 (2)

B. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tuennermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys. A 63, 109–115 (1996).
[Crossref]

K. Nemoto, Y. kazu Kanai, T. Fujii, N. Goto, and T. Nayuki, “Transformation of a laser beam intensity profile by a deformable mirror,” Opt. Lett. 21, 168–170 (1996).
[Crossref] [PubMed]

1976 (1)

Akondi, V.

A. Jewel, V. Akondi, and B. Vohnsen, “A direct comparison between a mems deformable mirror and a liquid crystal spatial light modulator in signal-based wavefront sensing,” J. Eur. Opt. Soc, Rapid Publ. A8 (2013).

Ancona, A.

Arrizón, V.

Artal, P.

Audouard, E.

C. Mauclair, S. Landon, D. Pietroy, E. Baubeau, R. Stoian, and E. Audouard, “Ultrafast laser machining of micro grooves on stainless steel with spatially optimized intensity distribution,” J. Laser Micro Nanoen. 8, 11–14 (2013).
[Crossref]

Y. D. Maio, J. Colombier, P. Cazottes, and E. Audouard, “Ultrafast laser ablation characteristics of pzt ceramic: Analysis methods and comparison with metals,” Opt. Lasers Eng. 50, 1582–1591 (2012).
[Crossref]

C. Mauclair, G. Cheng, N. Huot, E. Audouard, A. Rosenfeld, I. V. Hertel, and R. Stoian, “Dynamic ultrafast laser spatial tailoring for parallel micromachining of photonic devices in transparent materials,” Opt. Express 17, 3531–3542 (2009).
[Crossref] [PubMed]

N. Sanner, N. Huot, E. Audouard, C. Larat, J.-P. Huignard, and B. Loiseaux, “Programmable focal spot shaping of amplified femtosecond laser pulses,” Opt. Lett. 30, 1479–1481 (2005).
[Crossref] [PubMed]

N. Sanner, N. Huot, E. Audouard, C. Larat, P. Laporte, and J. Huignard, “100-khz diffraction-limited femtosecond laser micromachining,” Appl. Phys. B 80, 27–30 (2004).
[Crossref]

Bartsch, D.-U.

Baubeau, E.

C. Mauclair, D. Pietroy, Y. D. Mao, E. Baubeau, J.-P. Colombier, R. Stoian, and F. Pigeon, “Ultrafast laser micro-cutting of stainless steel and pzt using a modulated line of multiple foci formed by spatial beam shaping,” Opt. Lasers Eng. 67, 212–217 (2015).
[Crossref]

D. Pietroy, E. Baubeau, N. Faure, and C. Mauclair, “Intensity profile distortion at the processing image plane of a focused femtosecond laser below the critical power: analysis and counteraction,” Opt. Lasers Eng. 66, 138–143 (2015).
[Crossref]

C. Mauclair, S. Landon, D. Pietroy, E. Baubeau, R. Stoian, and E. Audouard, “Ultrafast laser machining of micro grooves on stainless steel with spatially optimized intensity distribution,” J. Laser Micro Nanoen. 8, 11–14 (2013).
[Crossref]

Beck, R. J.

Booth, M. J.

Caballero, M. T.

Carrada, R.

Cazottes, P.

Y. D. Maio, J. Colombier, P. Cazottes, and E. Audouard, “Ultrafast laser ablation characteristics of pzt ceramic: Analysis methods and comparison with metals,” Opt. Lasers Eng. 50, 1582–1591 (2012).
[Crossref]

Cheng, G.

Chichkov, B.

B. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tuennermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys. A 63, 109–115 (1996).
[Crossref]

Choi, K.

Colombier, J.

Y. D. Maio, J. Colombier, P. Cazottes, and E. Audouard, “Ultrafast laser ablation characteristics of pzt ceramic: Analysis methods and comparison with metals,” Opt. Lasers Eng. 50, 1582–1591 (2012).
[Crossref]

Colombier, J.-P.

C. Mauclair, D. Pietroy, Y. D. Mao, E. Baubeau, J.-P. Colombier, R. Stoian, and F. Pigeon, “Ultrafast laser micro-cutting of stainless steel and pzt using a modulated line of multiple foci formed by spatial beam shaping,” Opt. Lasers Eng. 67, 212–217 (2015).
[Crossref]

Connor, G. O.

P. Mannion, J. Magee, E. Coyne, G. O. Connor, and T. Glynn, “The effect of damage accumulation behaviour on ablation thresholds and damage morphology in ultrafast laser micro-machining of common metals in air,” Appl. Surf. Sci. 233, 275–287 (2004).
[Crossref]

Corkum, P. B.

X. Zhu, A. Y. Naumov, D. M. Villeneuve, and P. B. Corkum, “Influence of laser parameters and material properties on micro drilling with femtosecond laser pulses,” Appl. Phys. A 69, S367–S371 (1999).
[Crossref]

Coyne, E.

P. Mannion, J. Magee, E. Coyne, G. O. Connor, and T. Glynn, “The effect of damage accumulation behaviour on ablation thresholds and damage morphology in ultrafast laser micro-machining of common metals in air,” Appl. Surf. Sci. 233, 275–287 (2004).
[Crossref]

Dudley, A.

Duparré, M.

Fainman, Y.

Faure, N.

D. Pietroy, E. Baubeau, N. Faure, and C. Mauclair, “Intensity profile distortion at the processing image plane of a focused femtosecond laser below the critical power: analysis and counteraction,” Opt. Lasers Eng. 66, 138–143 (2015).
[Crossref]

Fernández, E. J.

Flamm, D.

Forbes, A.

Freeman, W. R.

Fujii, T.

Glynn, T.

P. Mannion, J. Magee, E. Coyne, G. O. Connor, and T. Glynn, “The effect of damage accumulation behaviour on ablation thresholds and damage morphology in ultrafast laser micro-machining of common metals in air,” Appl. Surf. Sci. 233, 275–287 (2004).
[Crossref]

González, L. A.

Goto, N.

Hahn, J.

Hand, D. P.

Hasegawa, S.

Hayasaki, Y.

Hertel, I. V.

Huignard, J.

N. Sanner, N. Huot, E. Audouard, C. Larat, P. Laporte, and J. Huignard, “100-khz diffraction-limited femtosecond laser micromachining,” Appl. Phys. B 80, 27–30 (2004).
[Crossref]

Huignard, J.-P.

Huot, N.

Jesacher, A.

Jewel, A.

A. Jewel, V. Akondi, and B. Vohnsen, “A direct comparison between a mems deformable mirror and a liquid crystal spatial light modulator in signal-based wavefront sensing,” J. Eur. Opt. Soc, Rapid Publ. A8 (2013).

Kaakkunen, J.

kazu Kanai, Y.

Kim, H.

Landon, S.

C. Mauclair, S. Landon, D. Pietroy, E. Baubeau, R. Stoian, and E. Audouard, “Ultrafast laser machining of micro grooves on stainless steel with spatially optimized intensity distribution,” J. Laser Micro Nanoen. 8, 11–14 (2013).
[Crossref]

Laporte, P.

N. Sanner, N. Huot, E. Audouard, C. Larat, P. Laporte, and J. Huignard, “100-khz diffraction-limited femtosecond laser micromachining,” Appl. Phys. B 80, 27–30 (2004).
[Crossref]

Larat, C.

N. Sanner, N. Huot, E. Audouard, C. Larat, J.-P. Huignard, and B. Loiseaux, “Programmable focal spot shaping of amplified femtosecond laser pulses,” Opt. Lett. 30, 1479–1481 (2005).
[Crossref] [PubMed]

N. Sanner, N. Huot, E. Audouard, C. Larat, P. Laporte, and J. Huignard, “100-khz diffraction-limited femtosecond laser micromachining,” Appl. Phys. B 80, 27–30 (2004).
[Crossref]

Lee, B.

Limpert, J.

Loiseaux, B.

Magee, J.

P. Mannion, J. Magee, E. Coyne, G. O. Connor, and T. Glynn, “The effect of damage accumulation behaviour on ablation thresholds and damage morphology in ultrafast laser micro-machining of common metals in air,” Appl. Surf. Sci. 233, 275–287 (2004).
[Crossref]

Maio, Y. D.

Y. D. Maio, J. Colombier, P. Cazottes, and E. Audouard, “Ultrafast laser ablation characteristics of pzt ceramic: Analysis methods and comparison with metals,” Opt. Lasers Eng. 50, 1582–1591 (2012).
[Crossref]

Mannion, P.

P. Mannion, J. Magee, E. Coyne, G. O. Connor, and T. Glynn, “The effect of damage accumulation behaviour on ablation thresholds and damage morphology in ultrafast laser micro-machining of common metals in air,” Appl. Surf. Sci. 233, 275–287 (2004).
[Crossref]

Mao, Y. D.

C. Mauclair, D. Pietroy, Y. D. Mao, E. Baubeau, J.-P. Colombier, R. Stoian, and F. Pigeon, “Ultrafast laser micro-cutting of stainless steel and pzt using a modulated line of multiple foci formed by spatial beam shaping,” Opt. Lasers Eng. 67, 212–217 (2015).
[Crossref]

Mauclair, C.

C. Mauclair, D. Pietroy, Y. D. Mao, E. Baubeau, J.-P. Colombier, R. Stoian, and F. Pigeon, “Ultrafast laser micro-cutting of stainless steel and pzt using a modulated line of multiple foci formed by spatial beam shaping,” Opt. Lasers Eng. 67, 212–217 (2015).
[Crossref]

D. Pietroy, E. Baubeau, N. Faure, and C. Mauclair, “Intensity profile distortion at the processing image plane of a focused femtosecond laser below the critical power: analysis and counteraction,” Opt. Lasers Eng. 66, 138–143 (2015).
[Crossref]

C. Mauclair, S. Landon, D. Pietroy, E. Baubeau, R. Stoian, and E. Audouard, “Ultrafast laser machining of micro grooves on stainless steel with spatially optimized intensity distribution,” J. Laser Micro Nanoen. 8, 11–14 (2013).
[Crossref]

C. Mauclair, G. Cheng, N. Huot, E. Audouard, A. Rosenfeld, I. V. Hertel, and R. Stoian, “Dynamic ultrafast laser spatial tailoring for parallel micromachining of photonic devices in transparent materials,” Opt. Express 17, 3531–3542 (2009).
[Crossref] [PubMed]

Momma, C.

B. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tuennermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys. A 63, 109–115 (1996).
[Crossref]

Naumov, A. Y.

X. Zhu, A. Y. Naumov, D. M. Villeneuve, and P. B. Corkum, “Influence of laser parameters and material properties on micro drilling with femtosecond laser pulses,” Appl. Phys. A 69, S367–S371 (1999).
[Crossref]

Nayuki, T.

Nemoto, K.

Nishida, N.

Noll, R. J.

Nolte, S.

A. Ancona, F. Röser, K. Rademaker, J. Limpert, S. Nolte, and A. Tünnermann, “High speed laser drilling of metals using a high repetition rate, high average power ultrafast fiber cpa system,” Opt. Express 16, 8958–8968 (2008).
[Crossref] [PubMed]

B. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tuennermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys. A 63, 109–115 (1996).
[Crossref]

Paivasaari, K.

Parry, J. P.

Pietroy, D.

C. Mauclair, D. Pietroy, Y. D. Mao, E. Baubeau, J.-P. Colombier, R. Stoian, and F. Pigeon, “Ultrafast laser micro-cutting of stainless steel and pzt using a modulated line of multiple foci formed by spatial beam shaping,” Opt. Lasers Eng. 67, 212–217 (2015).
[Crossref]

D. Pietroy, E. Baubeau, N. Faure, and C. Mauclair, “Intensity profile distortion at the processing image plane of a focused femtosecond laser below the critical power: analysis and counteraction,” Opt. Lasers Eng. 66, 138–143 (2015).
[Crossref]

C. Mauclair, S. Landon, D. Pietroy, E. Baubeau, R. Stoian, and E. Audouard, “Ultrafast laser machining of micro grooves on stainless steel with spatially optimized intensity distribution,” J. Laser Micro Nanoen. 8, 11–14 (2013).
[Crossref]

Pigeon, F.

C. Mauclair, D. Pietroy, Y. D. Mao, E. Baubeau, J.-P. Colombier, R. Stoian, and F. Pigeon, “Ultrafast laser micro-cutting of stainless steel and pzt using a modulated line of multiple foci formed by spatial beam shaping,” Opt. Lasers Eng. 67, 212–217 (2015).
[Crossref]

Rademaker, K.

Rosenfeld, A.

Röser, F.

Ruiz, U.

Sanner, N.

N. Sanner, N. Huot, E. Audouard, C. Larat, J.-P. Huignard, and B. Loiseaux, “Programmable focal spot shaping of amplified femtosecond laser pulses,” Opt. Lett. 30, 1479–1481 (2005).
[Crossref] [PubMed]

N. Sanner, N. Huot, E. Audouard, C. Larat, P. Laporte, and J. Huignard, “100-khz diffraction-limited femtosecond laser micromachining,” Appl. Phys. B 80, 27–30 (2004).
[Crossref]

Schulze, C.

Shephard, J. D.

Silvennoinen, M.

Stoian, R.

C. Mauclair, D. Pietroy, Y. D. Mao, E. Baubeau, J.-P. Colombier, R. Stoian, and F. Pigeon, “Ultrafast laser micro-cutting of stainless steel and pzt using a modulated line of multiple foci formed by spatial beam shaping,” Opt. Lasers Eng. 67, 212–217 (2015).
[Crossref]

C. Mauclair, S. Landon, D. Pietroy, E. Baubeau, R. Stoian, and E. Audouard, “Ultrafast laser machining of micro grooves on stainless steel with spatially optimized intensity distribution,” J. Laser Micro Nanoen. 8, 11–14 (2013).
[Crossref]

C. Mauclair, G. Cheng, N. Huot, E. Audouard, A. Rosenfeld, I. V. Hertel, and R. Stoian, “Dynamic ultrafast laser spatial tailoring for parallel micromachining of photonic devices in transparent materials,” Opt. Express 17, 3531–3542 (2009).
[Crossref] [PubMed]

Sun, P.-C.

Tuennermann, A.

B. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tuennermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys. A 63, 109–115 (1996).
[Crossref]

Tünnermann, A.

Vahimaa, P.

Villeneuve, D. M.

X. Zhu, A. Y. Naumov, D. M. Villeneuve, and P. B. Corkum, “Influence of laser parameters and material properties on micro drilling with femtosecond laser pulses,” Appl. Phys. A 69, S367–S371 (1999).
[Crossref]

Vohnsen, B.

A. Jewel, V. Akondi, and B. Vohnsen, “A direct comparison between a mems deformable mirror and a liquid crystal spatial light modulator in signal-based wavefront sensing,” J. Eur. Opt. Soc, Rapid Publ. A8 (2013).

von Alvensleben, F.

B. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tuennermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys. A 63, 109–115 (1996).
[Crossref]

Zapata-Rodríguez, C. J.

Zhu, L.

Zhu, X.

X. Zhu, A. Y. Naumov, D. M. Villeneuve, and P. B. Corkum, “Influence of laser parameters and material properties on micro drilling with femtosecond laser pulses,” Appl. Phys. A 69, S367–S371 (1999).
[Crossref]

Appl. Opt. (4)

Appl. Phys. A (2)

B. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tuennermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys. A 63, 109–115 (1996).
[Crossref]

X. Zhu, A. Y. Naumov, D. M. Villeneuve, and P. B. Corkum, “Influence of laser parameters and material properties on micro drilling with femtosecond laser pulses,” Appl. Phys. A 69, S367–S371 (1999).
[Crossref]

Appl. Phys. B (1)

N. Sanner, N. Huot, E. Audouard, C. Larat, P. Laporte, and J. Huignard, “100-khz diffraction-limited femtosecond laser micromachining,” Appl. Phys. B 80, 27–30 (2004).
[Crossref]

Appl. Surf. Sci. (1)

P. Mannion, J. Magee, E. Coyne, G. O. Connor, and T. Glynn, “The effect of damage accumulation behaviour on ablation thresholds and damage morphology in ultrafast laser micro-machining of common metals in air,” Appl. Surf. Sci. 233, 275–287 (2004).
[Crossref]

J. Laser Micro Nanoen. (1)

C. Mauclair, S. Landon, D. Pietroy, E. Baubeau, R. Stoian, and E. Audouard, “Ultrafast laser machining of micro grooves on stainless steel with spatially optimized intensity distribution,” J. Laser Micro Nanoen. 8, 11–14 (2013).
[Crossref]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

Opt. Express (6)

Opt. Lasers Eng. (3)

D. Pietroy, E. Baubeau, N. Faure, and C. Mauclair, “Intensity profile distortion at the processing image plane of a focused femtosecond laser below the critical power: analysis and counteraction,” Opt. Lasers Eng. 66, 138–143 (2015).
[Crossref]

C. Mauclair, D. Pietroy, Y. D. Mao, E. Baubeau, J.-P. Colombier, R. Stoian, and F. Pigeon, “Ultrafast laser micro-cutting of stainless steel and pzt using a modulated line of multiple foci formed by spatial beam shaping,” Opt. Lasers Eng. 67, 212–217 (2015).
[Crossref]

Y. D. Maio, J. Colombier, P. Cazottes, and E. Audouard, “Ultrafast laser ablation characteristics of pzt ceramic: Analysis methods and comparison with metals,” Opt. Lasers Eng. 50, 1582–1591 (2012).
[Crossref]

Opt. Lett. (4)

Other (1)

A. Jewel, V. Akondi, and B. Vohnsen, “A direct comparison between a mems deformable mirror and a liquid crystal spatial light modulator in signal-based wavefront sensing,” J. Eur. Opt. Soc, Rapid Publ. A8 (2013).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Scheme of the experimental set-up. The femtosecond laser wavefront is spatially modulated by the optically addressed spatial light modulator (OA-SLM). The phase mask displayed by the video projector (VP) is imaged on the OA-SLM by a converging lens (CVL). The plane OA-SLM plane is optically conjugated with the object focal plane of the scanner head (SH) f-theta lens (f-θ L) through a telescope (100 cm and 75 cm focal lengths). The shaped intensity distribution is employed to process the sample surface and is observed at the focal plane of a lens on a CCD sensor. Also a home made beam analysis set up (not shown) with the same CCD sensor has been used to measure the intensity in the focal plane of the f-theta lens.
Fig. 2
Fig. 2 Calculation strategy for the modulation phase mask I) desired groove profile II) numerical calculation of corresponding fluence distribution based on the empirical ablation rate [11] III) Zernike polynomials coefficients obtained by least square fitting from II) IV) corresponding phase mask obtained numerically that can be applied to the phase modulator. The number of optimized Zernike polynomials can be adjusted according to the performances of the phase modulator.
Fig. 3
Fig. 3 Numerical results of phase mask calculation through optimization of Cj to achieve a top hat disk intensity distribution for an increasing number of optimized Cj (due to the circular symmetry of the target, only the spherical Cj terms where included here). a) d) and g) Optimized calculated phase modulation shown on the unit circle, b) e) and h) optimized calculated intensity distribution, c), f) and i) cross section of the intensity distribution compared with the target shown in the inset bottom right. First row, optimization of the first spherical term C4 alone (defocus) yielding a εRMS of 11%. Second row, optimization with the 3 first spherical terms yielding 6.4% εRMS. Third row, with the 5 first spherical terms yielding 3.1% εRMS.
Fig. 4
Fig. 4 Numerical results of phase mask calculation through optimization of Cj. Comparison of the calculated intensity cross section (red squares) and the target (black disks) for a top-hat distribution a) and ’three steps’ intensity distribution b) at the focal plane of a lens. c) Evaluation of the best attainable RMS error εRMS with the number of Cj involved in the optimization for the top-hat (red squares) and three-steps (black disks) target. A higher number of optimized Cj is required to obtain a satisfactory three-steps profile (εRMS below 5% for 10 Cj and more), than for the top-hat profile (εRMS below 5% for 4 Cj and more).
Fig. 5
Fig. 5 a), c) theoretical and b), d) experimental intensity distributions of spatially shaped beams in the processing focal plane obtained with phase modulation by the SLM. The beam shape in a) is the intensity distribution that permits to generate a three step shaped micro-groove by scanning the beam on the steel surface along the horizontal direction of this Fig. The Zernike polynomials coefficients Cj permitting to obtain a) are represented in Fig. 2 (III) and the corresponding phase in Fig. 2 (IV).
Fig. 6
Fig. 6 a): ”three-steps” shape micro-groove (optical microscopy) processed by translating the spatially shaped beam illustrated in the insert corresponding to the beam in Fig. 5(b), b): micro-dimples achieved with the same beam (zoom in the insert). c) horizontal profile of the micro-groove (black line) a) compared to the targeted ablation profile (red triangles), RMS error is below 4%. d) corresponding injected polycarbonate topology (interferometric microscopy).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ε RMS = i , j ( I ( i , j ) I t ( i , j ) ) 2 i , j I t ( i , j ) 2

Metrics