Abstract

In this work, we present a close-range ultraviolet imaging spectrometer with high spatial resolution, and reasonably high spectral resolution. As the transmissive optical components cause chromatic aberration in the ultraviolet (UV) spectral range, an all-reflective imaging scheme is introduced to promote the image quality. The proposed instrument consists of an oscillating mirror, a Cassegrain objective, a Michelson structure, an Offner relay, and a UV enhanced CCD. The finished spectrometer has a spatial resolution of 29.30μm on the target plane; the spectral scope covers both near and middle UV band; and can obtain approximately 100 wavelength samples over the range of 240~370nm. The control computer coordinates all the components of the instrument and enables capturing a series of images, which can be reconstructed into an interferogram datacube. The datacube can be converted into a spectrum datacube, which contains spectral information of each pixel with many wavelength samples. A spectral calibration is carried out by using a high pressure mercury discharge lamp. A test run demonstrated that this interferometric configuration can obtain high resolution spectrum datacube. The pattern recognition algorithm is introduced to analyze the datacube and distinguish the latent traces from the base materials. This design is particularly good at identifying the latent traces in the application field of forensic imaging.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High resolution snapshot imaging spectrometer using a fusion algorithm based on grouping principal component analysis

Shuaishuai Zhu, Yu Zhang, Jie Lin, Liangyu Zhao, Yanmei Shen, and Peng Jin
Opt. Express 24(21) 24624-24640 (2016)

References

  • View by:
  • |
  • |
  • |

  1. J. Li and R. K. Y. Chan, “Toward a UV-visible-near-infrared hyperspectral imaging platform for fast multiplex reflection spectroscopy,” Opt. Lett. 35(20), 3330–3332 (2010).
    [Crossref] [PubMed]
  2. F. G. France, “Advanced spectral imaging for noninvasive microanalysis of cultural heritage materials: review of application to documents in the U.S. Library of Congress,” Appl. Spectrosc. 65(6), 565–574 (2011).
    [Crossref] [PubMed]
  3. G. J. Edelman, T. G. van Leeuwen, and M. C. Aalders, “Visualization of latent blood stains using visible reflectance hyperspectral imaging and chemometrics,” J. Forensic Sci. 60(S1), S188–S192 (2015).
    [Crossref] [PubMed]
  4. T. Dubroca, G. Brown, and R. E. Hummel, “Detection of explosives by differential hyperspectral imaging,” Opt. Eng. 53(2), 021112 (2014).
    [Crossref]
  5. A. Makrushin, T. Scheidat, and C. Vielhauer, “Capturing latent fingerprints from metallic painted surfaces using UV-VIS spectroscope,” Proc. SPIE 9409, 94090B (2015).
    [Crossref]
  6. G. Reed, K. Savage, D. Edwards, and N. Nic Daeid, “Hyperspectral imaging of gel pen inks: an emerging tool in document analysis,” Sci. Justice 54(1), 71–80 (2014).
    [Crossref] [PubMed]
  7. V. V. Abrameshin, Yu. B. Grudzino, A. I. Shmidt, V. I. Fokin, and E. A. Sukhanov, “A device that uses the UV region to detect and photographically record fingerprints at an event site,” J. Opt. Technol. 80(4), 256–258 (2013).
    [Crossref]
  8. M. Aikio, T. Vaarala, and H. Keränen, “Intelligent prism-grating-prism spectrograph for multipoint fibre optic remote spectroscopy,” in 12th International Conference on Optical Fiber Sensors, Vol. 16 of 1997 OSA Technical Digest Series (Optical Society of America, 1997), paper OThC37.
    [Crossref]
  9. NASA technical report, “Hyperspectral systems increase imaging capabilities,” (NASA, 2010), http://naca.larc.nasa.gov/search.jsp?R=20110000755
  10. R. F. Horton, “Optical design for a high-etendue imaging Fourier-transform spectrometer,” Proc. SPIE 2819, 300–315 (1996).
    [Crossref]
  11. V. Caricato, A. Egidi, M. Pisani, M. Zucco, and M. Zangirolami, “A device for hyperspectral imaging in the UV,” in Precision Electromagnetic Measurements (CPEM 2014), (IEEE, 2014), pp. 706–707.
  12. W. Posselt, K. Holota, H.-O. Tittel, and B. Harnisch, “Compact fourier transform imaging spectrometer for remote sensing,” in Fourier Transform Spectroscopy, (Optical Society of America, 2001), paper FMD10.
  13. A. Barducci, D. Guzzi, C. Lastri, P. Marcoionni, V. Nardino, and I. Pippi, “Theoretical aspects of Fourier transform spectrometry and common path triangular interferometers,” Opt. Express 18(11), 11622–11649 (2010).
    [Crossref] [PubMed]
  14. C. J. Sansonetti, M. L. Salit, and J. Reader, “Wavelengths of spectral lines in mercury pencil lamps,” Appl. Opt. 35(1), 74–77 (1996).
    [Crossref] [PubMed]
  15. L. R. Rabiner, R. W. Schafer, and C. M. Rader, “The chirp z-transform algorithm,” IEEE Trans. Audio and Elec. 17(2), 86–92 (1969).
  16. K. Bloechl, H. Hamlin, and R. L. Easton., “Text recovery from the ultraviolet-fluorescent spectrum for treatises of the Archimedes Palimpsest,” Proc. SPIE 7531, 753109 (2010).
    [Crossref]
  17. K. T. Knox, “Enhancement of overwritten text in the Archimedes Palimpsest,” Proc. SPIE 6810, 681004 (2008).
    [Crossref]
  18. D. J. Campbell, W. B. Bosma, S. J. Bannon, M. M. Gunter, and M. K. Hammar, “Demonstration of thermodynamics and kinetics using FriXion erasable pens,” J. Chem. Educ. 89(4), 526–528 (2012).
    [Crossref]

2015 (2)

G. J. Edelman, T. G. van Leeuwen, and M. C. Aalders, “Visualization of latent blood stains using visible reflectance hyperspectral imaging and chemometrics,” J. Forensic Sci. 60(S1), S188–S192 (2015).
[Crossref] [PubMed]

A. Makrushin, T. Scheidat, and C. Vielhauer, “Capturing latent fingerprints from metallic painted surfaces using UV-VIS spectroscope,” Proc. SPIE 9409, 94090B (2015).
[Crossref]

2014 (2)

G. Reed, K. Savage, D. Edwards, and N. Nic Daeid, “Hyperspectral imaging of gel pen inks: an emerging tool in document analysis,” Sci. Justice 54(1), 71–80 (2014).
[Crossref] [PubMed]

T. Dubroca, G. Brown, and R. E. Hummel, “Detection of explosives by differential hyperspectral imaging,” Opt. Eng. 53(2), 021112 (2014).
[Crossref]

2013 (1)

2012 (1)

D. J. Campbell, W. B. Bosma, S. J. Bannon, M. M. Gunter, and M. K. Hammar, “Demonstration of thermodynamics and kinetics using FriXion erasable pens,” J. Chem. Educ. 89(4), 526–528 (2012).
[Crossref]

2011 (1)

2010 (3)

2008 (1)

K. T. Knox, “Enhancement of overwritten text in the Archimedes Palimpsest,” Proc. SPIE 6810, 681004 (2008).
[Crossref]

1996 (2)

C. J. Sansonetti, M. L. Salit, and J. Reader, “Wavelengths of spectral lines in mercury pencil lamps,” Appl. Opt. 35(1), 74–77 (1996).
[Crossref] [PubMed]

R. F. Horton, “Optical design for a high-etendue imaging Fourier-transform spectrometer,” Proc. SPIE 2819, 300–315 (1996).
[Crossref]

1969 (1)

L. R. Rabiner, R. W. Schafer, and C. M. Rader, “The chirp z-transform algorithm,” IEEE Trans. Audio and Elec. 17(2), 86–92 (1969).

Aalders, M. C.

G. J. Edelman, T. G. van Leeuwen, and M. C. Aalders, “Visualization of latent blood stains using visible reflectance hyperspectral imaging and chemometrics,” J. Forensic Sci. 60(S1), S188–S192 (2015).
[Crossref] [PubMed]

Abrameshin, V. V.

Bannon, S. J.

D. J. Campbell, W. B. Bosma, S. J. Bannon, M. M. Gunter, and M. K. Hammar, “Demonstration of thermodynamics and kinetics using FriXion erasable pens,” J. Chem. Educ. 89(4), 526–528 (2012).
[Crossref]

Barducci, A.

Bloechl, K.

K. Bloechl, H. Hamlin, and R. L. Easton., “Text recovery from the ultraviolet-fluorescent spectrum for treatises of the Archimedes Palimpsest,” Proc. SPIE 7531, 753109 (2010).
[Crossref]

Bosma, W. B.

D. J. Campbell, W. B. Bosma, S. J. Bannon, M. M. Gunter, and M. K. Hammar, “Demonstration of thermodynamics and kinetics using FriXion erasable pens,” J. Chem. Educ. 89(4), 526–528 (2012).
[Crossref]

Brown, G.

T. Dubroca, G. Brown, and R. E. Hummel, “Detection of explosives by differential hyperspectral imaging,” Opt. Eng. 53(2), 021112 (2014).
[Crossref]

Campbell, D. J.

D. J. Campbell, W. B. Bosma, S. J. Bannon, M. M. Gunter, and M. K. Hammar, “Demonstration of thermodynamics and kinetics using FriXion erasable pens,” J. Chem. Educ. 89(4), 526–528 (2012).
[Crossref]

Chan, R. K. Y.

Dubroca, T.

T. Dubroca, G. Brown, and R. E. Hummel, “Detection of explosives by differential hyperspectral imaging,” Opt. Eng. 53(2), 021112 (2014).
[Crossref]

Easton, R. L.

K. Bloechl, H. Hamlin, and R. L. Easton., “Text recovery from the ultraviolet-fluorescent spectrum for treatises of the Archimedes Palimpsest,” Proc. SPIE 7531, 753109 (2010).
[Crossref]

Edelman, G. J.

G. J. Edelman, T. G. van Leeuwen, and M. C. Aalders, “Visualization of latent blood stains using visible reflectance hyperspectral imaging and chemometrics,” J. Forensic Sci. 60(S1), S188–S192 (2015).
[Crossref] [PubMed]

Edwards, D.

G. Reed, K. Savage, D. Edwards, and N. Nic Daeid, “Hyperspectral imaging of gel pen inks: an emerging tool in document analysis,” Sci. Justice 54(1), 71–80 (2014).
[Crossref] [PubMed]

Fokin, V. I.

France, F. G.

Grudzino, Yu. B.

Gunter, M. M.

D. J. Campbell, W. B. Bosma, S. J. Bannon, M. M. Gunter, and M. K. Hammar, “Demonstration of thermodynamics and kinetics using FriXion erasable pens,” J. Chem. Educ. 89(4), 526–528 (2012).
[Crossref]

Guzzi, D.

Hamlin, H.

K. Bloechl, H. Hamlin, and R. L. Easton., “Text recovery from the ultraviolet-fluorescent spectrum for treatises of the Archimedes Palimpsest,” Proc. SPIE 7531, 753109 (2010).
[Crossref]

Hammar, M. K.

D. J. Campbell, W. B. Bosma, S. J. Bannon, M. M. Gunter, and M. K. Hammar, “Demonstration of thermodynamics and kinetics using FriXion erasable pens,” J. Chem. Educ. 89(4), 526–528 (2012).
[Crossref]

Horton, R. F.

R. F. Horton, “Optical design for a high-etendue imaging Fourier-transform spectrometer,” Proc. SPIE 2819, 300–315 (1996).
[Crossref]

Hummel, R. E.

T. Dubroca, G. Brown, and R. E. Hummel, “Detection of explosives by differential hyperspectral imaging,” Opt. Eng. 53(2), 021112 (2014).
[Crossref]

Knox, K. T.

K. T. Knox, “Enhancement of overwritten text in the Archimedes Palimpsest,” Proc. SPIE 6810, 681004 (2008).
[Crossref]

Lastri, C.

Li, J.

Makrushin, A.

A. Makrushin, T. Scheidat, and C. Vielhauer, “Capturing latent fingerprints from metallic painted surfaces using UV-VIS spectroscope,” Proc. SPIE 9409, 94090B (2015).
[Crossref]

Marcoionni, P.

Nardino, V.

Nic Daeid, N.

G. Reed, K. Savage, D. Edwards, and N. Nic Daeid, “Hyperspectral imaging of gel pen inks: an emerging tool in document analysis,” Sci. Justice 54(1), 71–80 (2014).
[Crossref] [PubMed]

Pippi, I.

Rabiner, L. R.

L. R. Rabiner, R. W. Schafer, and C. M. Rader, “The chirp z-transform algorithm,” IEEE Trans. Audio and Elec. 17(2), 86–92 (1969).

Rader, C. M.

L. R. Rabiner, R. W. Schafer, and C. M. Rader, “The chirp z-transform algorithm,” IEEE Trans. Audio and Elec. 17(2), 86–92 (1969).

Reader, J.

Reed, G.

G. Reed, K. Savage, D. Edwards, and N. Nic Daeid, “Hyperspectral imaging of gel pen inks: an emerging tool in document analysis,” Sci. Justice 54(1), 71–80 (2014).
[Crossref] [PubMed]

Salit, M. L.

Sansonetti, C. J.

Savage, K.

G. Reed, K. Savage, D. Edwards, and N. Nic Daeid, “Hyperspectral imaging of gel pen inks: an emerging tool in document analysis,” Sci. Justice 54(1), 71–80 (2014).
[Crossref] [PubMed]

Schafer, R. W.

L. R. Rabiner, R. W. Schafer, and C. M. Rader, “The chirp z-transform algorithm,” IEEE Trans. Audio and Elec. 17(2), 86–92 (1969).

Scheidat, T.

A. Makrushin, T. Scheidat, and C. Vielhauer, “Capturing latent fingerprints from metallic painted surfaces using UV-VIS spectroscope,” Proc. SPIE 9409, 94090B (2015).
[Crossref]

Shmidt, A. I.

Sukhanov, E. A.

van Leeuwen, T. G.

G. J. Edelman, T. G. van Leeuwen, and M. C. Aalders, “Visualization of latent blood stains using visible reflectance hyperspectral imaging and chemometrics,” J. Forensic Sci. 60(S1), S188–S192 (2015).
[Crossref] [PubMed]

Vielhauer, C.

A. Makrushin, T. Scheidat, and C. Vielhauer, “Capturing latent fingerprints from metallic painted surfaces using UV-VIS spectroscope,” Proc. SPIE 9409, 94090B (2015).
[Crossref]

Appl. Opt. (1)

Appl. Spectrosc. (1)

IEEE Trans. Audio and Elec. (1)

L. R. Rabiner, R. W. Schafer, and C. M. Rader, “The chirp z-transform algorithm,” IEEE Trans. Audio and Elec. 17(2), 86–92 (1969).

J. Chem. Educ. (1)

D. J. Campbell, W. B. Bosma, S. J. Bannon, M. M. Gunter, and M. K. Hammar, “Demonstration of thermodynamics and kinetics using FriXion erasable pens,” J. Chem. Educ. 89(4), 526–528 (2012).
[Crossref]

J. Forensic Sci. (1)

G. J. Edelman, T. G. van Leeuwen, and M. C. Aalders, “Visualization of latent blood stains using visible reflectance hyperspectral imaging and chemometrics,” J. Forensic Sci. 60(S1), S188–S192 (2015).
[Crossref] [PubMed]

J. Opt. Technol. (1)

Opt. Eng. (1)

T. Dubroca, G. Brown, and R. E. Hummel, “Detection of explosives by differential hyperspectral imaging,” Opt. Eng. 53(2), 021112 (2014).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Proc. SPIE (4)

A. Makrushin, T. Scheidat, and C. Vielhauer, “Capturing latent fingerprints from metallic painted surfaces using UV-VIS spectroscope,” Proc. SPIE 9409, 94090B (2015).
[Crossref]

K. Bloechl, H. Hamlin, and R. L. Easton., “Text recovery from the ultraviolet-fluorescent spectrum for treatises of the Archimedes Palimpsest,” Proc. SPIE 7531, 753109 (2010).
[Crossref]

K. T. Knox, “Enhancement of overwritten text in the Archimedes Palimpsest,” Proc. SPIE 6810, 681004 (2008).
[Crossref]

R. F. Horton, “Optical design for a high-etendue imaging Fourier-transform spectrometer,” Proc. SPIE 2819, 300–315 (1996).
[Crossref]

Sci. Justice (1)

G. Reed, K. Savage, D. Edwards, and N. Nic Daeid, “Hyperspectral imaging of gel pen inks: an emerging tool in document analysis,” Sci. Justice 54(1), 71–80 (2014).
[Crossref] [PubMed]

Other (4)

M. Aikio, T. Vaarala, and H. Keränen, “Intelligent prism-grating-prism spectrograph for multipoint fibre optic remote spectroscopy,” in 12th International Conference on Optical Fiber Sensors, Vol. 16 of 1997 OSA Technical Digest Series (Optical Society of America, 1997), paper OThC37.
[Crossref]

NASA technical report, “Hyperspectral systems increase imaging capabilities,” (NASA, 2010), http://naca.larc.nasa.gov/search.jsp?R=20110000755

V. Caricato, A. Egidi, M. Pisani, M. Zucco, and M. Zangirolami, “A device for hyperspectral imaging in the UV,” in Precision Electromagnetic Measurements (CPEM 2014), (IEEE, 2014), pp. 706–707.

W. Posselt, K. Holota, H.-O. Tittel, and B. Harnisch, “Compact fourier transform imaging spectrometer for remote sensing,” in Fourier Transform Spectroscopy, (Optical Society of America, 2001), paper FMD10.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Layout scheme of the proposed imaging spectrometer. The subfigure shows the wedge-shaped Michelson structure.
Fig. 2
Fig. 2 Interferogram datacube structure.
Fig. 3
Fig. 3 Spectral calibration results. (a) Interferogram on white ceramic illuminated by a HP mercury lamp. (b) Spectra of HP mercury lamp, the curve were normalized to arbitrary units.
Fig. 4
Fig. 4 Experiment setup with the prototype of the imaging spectrometer.
Fig. 5
Fig. 5 Color CCD camera measurement results of the forged handwriting. (a) Image illuminated with a white LED. (b) Image illuminated with a broadband UV light source.
Fig. 6
Fig. 6 UV enhanced camera measurement results of the forged handwriting. (a) Image illuminated with LED#1. (b) Image illuminated with LED#2.
Fig. 7
Fig. 7 Images of selected wavelengths extract from the spectrum datacube. (a) Image at 276.9nm. (b) Image at 297.4nm. (c) Image at 327.8nm. (d) Image at 356.9nm.
Fig. 8
Fig. 8 Clustering result of the forged handwriting.
Fig. 9
Fig. 9 Normalized reflective spectra of the ink of pen#1, the ink of pen#2, and the white printing paper.

Metrics