Abstract

We propose a procedure for characterizing fabrication deviations within a chip and among different chips in a wafer in silicon photonics technology. In particular, independent measurements of SOI thickness and waveguide width deviations can be mapped through the wafer, allowing a precise and non-destructive characterization of how these variations are distributed along the surface of the wafer. These deviations are critical for most wavelength-dependent integrated devices, like microring resonators, filters, etc. We also show that the technique allows for the characterization of proximity effects.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Integrated optical sensor using a liquid-core waveguide in a Mach-Zehnder interferometer

Patrick Dumais, Claire L. Callender, Julian P. Noad, and Christopher J. Ledderhof
Opt. Express 16(22) 18164-18172 (2008)

Minimizing temperature sensitivity of silicon Mach-Zehnder interferometers

Biswajeet Guha, Alexander Gondarenko, and Michal Lipson
Opt. Express 18(3) 1879-1887 (2010)

Optical temperature sensor with enhanced sensitivity by employing hybrid waveguides in a silicon Mach-Zehnder interferometer

Xiaowei Guan, Xiaoyan Wang, and Lars H. Frandsen
Opt. Express 24(15) 16349-16356 (2016)

References

  • View by:
  • |
  • |
  • |

  1. S. K. Selvaraja, W. Bogaerts, P. Dumon, D. Van Thourhout, and R. Baets, “Subnanometer linewidth uniformity in silicon nanophotonic waveguide devices using CMOS fabrication technology,” IEEE J. Sel. Top. Quantum Electron. 16(1), 316–324 (2010).
    [Crossref]
  2. C. Chauveau, P. Labeye, J. M. Fedeli, S. Blaize, and G. Lerondel, “Study of the uniformity of 300mm wafer through ring-resonator analysis,” IEEE International Conference on Photonics in Switching (PS), 1–3, (2012).
  3. P. Dong, W. Qian, H. Liang, R. Shafiiha, D. Feng, G. Li, J. E. Cunningham, A. V. Krishnamoorthy, and M. Asghari, “Thermally tunable silicon racetrack resonators with ultralow tuning power,” Opt. Express 18(19), 20298–20304 (2010).
    [Crossref] [PubMed]
  4. A. Canciamilla, S. Grillanda, F. Morichetti, C. Ferrari, J. Hu, J. D. Musgraves, K. Richardson, A. Agarwal, L. C. Kimerling, and A. Melloni, “Photo-induced trimming of coupled ring-resonator filters and delay lines in As2S3 chalcogenide glass,” Opt. Lett. 36(20), 4002–4004 (2011).
    [Crossref] [PubMed]
  5. S. Dwivedi, H. D’heer, and W. Bogaerts, “Maximizing fabrication and thermal tolerances of all-silicon FIR wavelength filters,” IEEE Photonics Technol. Lett. 27(8), 871–874 (2015).
    [Crossref]
  6. M. Mancinelli, M. Borghi, P. Bettotti, J. M. Fedeli, and L. Pavesi, “An all optical method for fabrication error measurements in integrated photonic circuits,” J. Lightwave Technol. 31(14), 2340–2346 (2013).
    [Crossref]
  7. L. Chrostowski, X. Wang, J. Flueckiger, Y. Wu, Y. Wang, and S. T. Fard, “Impact of fabrication non-uniformity on chip-scale silicon photonic integrated circuits,” in 2014 Optical Fiber Communication Conference (OSA, 2014), paper Th2A–37.
  8. N. Ayotte, A. D. Simard, and S. LaRochelle, “Long integrated Bragg gratings for SoI wafer metrology,” IEEE Photonics Technol. Lett. 27(7), 755–758 (2015).
    [Crossref]
  9. E. Dulkeith, F. Xia, L. Schares, W. M. J. Green, and Y. A. Vlasov, “Group index and group velocity dispersion in silicon-on-insulator photonic wires,” Opt. Express 14(9), 3853–3863 (2006).
    [Crossref] [PubMed]
  10. F. Horst, W. M. J. Green, S. Assefa, S. M. Shank, Y. A. Vlasov, and B. J. Offrein, “Cascaded Mach-Zehnder wavelength filters in silicon photonics for low loss and flat pass-band WDM (de-)multiplexing,” Opt. Express 21(10), 11652–11658 (2013).
    [Crossref] [PubMed]
  11. W. Bogaerts, P. Dumon, D. V. Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. G. Baets, “Compact wavelength-selective functions in silicon-on-insulator photonic wires,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1394–1401 (2006).
    [Crossref]
  12. J. M. Fedeli, R. Orobtchouk, C. Seassal, and L. Vivien, “Integration issues of a photonic layer on top of a CMOS circuit,” Proc. SPIE 6125, 61250H (2006).
    [Crossref]
  13. P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bientsman, D. Van Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photonics Technol. Lett. 16(5), 1328–1330 (2004).
    [Crossref]

2015 (2)

S. Dwivedi, H. D’heer, and W. Bogaerts, “Maximizing fabrication and thermal tolerances of all-silicon FIR wavelength filters,” IEEE Photonics Technol. Lett. 27(8), 871–874 (2015).
[Crossref]

N. Ayotte, A. D. Simard, and S. LaRochelle, “Long integrated Bragg gratings for SoI wafer metrology,” IEEE Photonics Technol. Lett. 27(7), 755–758 (2015).
[Crossref]

2013 (2)

2011 (1)

2010 (2)

S. K. Selvaraja, W. Bogaerts, P. Dumon, D. Van Thourhout, and R. Baets, “Subnanometer linewidth uniformity in silicon nanophotonic waveguide devices using CMOS fabrication technology,” IEEE J. Sel. Top. Quantum Electron. 16(1), 316–324 (2010).
[Crossref]

P. Dong, W. Qian, H. Liang, R. Shafiiha, D. Feng, G. Li, J. E. Cunningham, A. V. Krishnamoorthy, and M. Asghari, “Thermally tunable silicon racetrack resonators with ultralow tuning power,” Opt. Express 18(19), 20298–20304 (2010).
[Crossref] [PubMed]

2006 (3)

W. Bogaerts, P. Dumon, D. V. Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. G. Baets, “Compact wavelength-selective functions in silicon-on-insulator photonic wires,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1394–1401 (2006).
[Crossref]

J. M. Fedeli, R. Orobtchouk, C. Seassal, and L. Vivien, “Integration issues of a photonic layer on top of a CMOS circuit,” Proc. SPIE 6125, 61250H (2006).
[Crossref]

E. Dulkeith, F. Xia, L. Schares, W. M. J. Green, and Y. A. Vlasov, “Group index and group velocity dispersion in silicon-on-insulator photonic wires,” Opt. Express 14(9), 3853–3863 (2006).
[Crossref] [PubMed]

2004 (1)

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bientsman, D. Van Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photonics Technol. Lett. 16(5), 1328–1330 (2004).
[Crossref]

Agarwal, A.

Asghari, M.

Assefa, S.

Ayotte, N.

N. Ayotte, A. D. Simard, and S. LaRochelle, “Long integrated Bragg gratings for SoI wafer metrology,” IEEE Photonics Technol. Lett. 27(7), 755–758 (2015).
[Crossref]

Baets, R.

S. K. Selvaraja, W. Bogaerts, P. Dumon, D. Van Thourhout, and R. Baets, “Subnanometer linewidth uniformity in silicon nanophotonic waveguide devices using CMOS fabrication technology,” IEEE J. Sel. Top. Quantum Electron. 16(1), 316–324 (2010).
[Crossref]

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bientsman, D. Van Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photonics Technol. Lett. 16(5), 1328–1330 (2004).
[Crossref]

Baets, R. G.

W. Bogaerts, P. Dumon, D. V. Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. G. Baets, “Compact wavelength-selective functions in silicon-on-insulator photonic wires,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1394–1401 (2006).
[Crossref]

Beckx, S.

W. Bogaerts, P. Dumon, D. V. Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. G. Baets, “Compact wavelength-selective functions in silicon-on-insulator photonic wires,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1394–1401 (2006).
[Crossref]

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bientsman, D. Van Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photonics Technol. Lett. 16(5), 1328–1330 (2004).
[Crossref]

Bettotti, P.

Bientsman, P.

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bientsman, D. Van Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photonics Technol. Lett. 16(5), 1328–1330 (2004).
[Crossref]

Blaize, S.

C. Chauveau, P. Labeye, J. M. Fedeli, S. Blaize, and G. Lerondel, “Study of the uniformity of 300mm wafer through ring-resonator analysis,” IEEE International Conference on Photonics in Switching (PS), 1–3, (2012).

Bogaerts, W.

S. Dwivedi, H. D’heer, and W. Bogaerts, “Maximizing fabrication and thermal tolerances of all-silicon FIR wavelength filters,” IEEE Photonics Technol. Lett. 27(8), 871–874 (2015).
[Crossref]

S. K. Selvaraja, W. Bogaerts, P. Dumon, D. Van Thourhout, and R. Baets, “Subnanometer linewidth uniformity in silicon nanophotonic waveguide devices using CMOS fabrication technology,” IEEE J. Sel. Top. Quantum Electron. 16(1), 316–324 (2010).
[Crossref]

W. Bogaerts, P. Dumon, D. V. Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. G. Baets, “Compact wavelength-selective functions in silicon-on-insulator photonic wires,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1394–1401 (2006).
[Crossref]

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bientsman, D. Van Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photonics Technol. Lett. 16(5), 1328–1330 (2004).
[Crossref]

Borghi, M.

Canciamilla, A.

Chauveau, C.

C. Chauveau, P. Labeye, J. M. Fedeli, S. Blaize, and G. Lerondel, “Study of the uniformity of 300mm wafer through ring-resonator analysis,” IEEE International Conference on Photonics in Switching (PS), 1–3, (2012).

Cunningham, J. E.

D’heer, H.

S. Dwivedi, H. D’heer, and W. Bogaerts, “Maximizing fabrication and thermal tolerances of all-silicon FIR wavelength filters,” IEEE Photonics Technol. Lett. 27(8), 871–874 (2015).
[Crossref]

Dong, P.

Dulkeith, E.

Dumon, P.

S. K. Selvaraja, W. Bogaerts, P. Dumon, D. Van Thourhout, and R. Baets, “Subnanometer linewidth uniformity in silicon nanophotonic waveguide devices using CMOS fabrication technology,” IEEE J. Sel. Top. Quantum Electron. 16(1), 316–324 (2010).
[Crossref]

W. Bogaerts, P. Dumon, D. V. Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. G. Baets, “Compact wavelength-selective functions in silicon-on-insulator photonic wires,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1394–1401 (2006).
[Crossref]

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bientsman, D. Van Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photonics Technol. Lett. 16(5), 1328–1330 (2004).
[Crossref]

Dwivedi, S.

S. Dwivedi, H. D’heer, and W. Bogaerts, “Maximizing fabrication and thermal tolerances of all-silicon FIR wavelength filters,” IEEE Photonics Technol. Lett. 27(8), 871–874 (2015).
[Crossref]

Fedeli, J. M.

M. Mancinelli, M. Borghi, P. Bettotti, J. M. Fedeli, and L. Pavesi, “An all optical method for fabrication error measurements in integrated photonic circuits,” J. Lightwave Technol. 31(14), 2340–2346 (2013).
[Crossref]

J. M. Fedeli, R. Orobtchouk, C. Seassal, and L. Vivien, “Integration issues of a photonic layer on top of a CMOS circuit,” Proc. SPIE 6125, 61250H (2006).
[Crossref]

C. Chauveau, P. Labeye, J. M. Fedeli, S. Blaize, and G. Lerondel, “Study of the uniformity of 300mm wafer through ring-resonator analysis,” IEEE International Conference on Photonics in Switching (PS), 1–3, (2012).

Feng, D.

Ferrari, C.

Green, W. M. J.

Grillanda, S.

Horst, F.

Hu, J.

Jaenen, P.

W. Bogaerts, P. Dumon, D. V. Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. G. Baets, “Compact wavelength-selective functions in silicon-on-insulator photonic wires,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1394–1401 (2006).
[Crossref]

Kimerling, L. C.

Krishnamoorthy, A. V.

Labeye, P.

C. Chauveau, P. Labeye, J. M. Fedeli, S. Blaize, and G. Lerondel, “Study of the uniformity of 300mm wafer through ring-resonator analysis,” IEEE International Conference on Photonics in Switching (PS), 1–3, (2012).

LaRochelle, S.

N. Ayotte, A. D. Simard, and S. LaRochelle, “Long integrated Bragg gratings for SoI wafer metrology,” IEEE Photonics Technol. Lett. 27(7), 755–758 (2015).
[Crossref]

Lerondel, G.

C. Chauveau, P. Labeye, J. M. Fedeli, S. Blaize, and G. Lerondel, “Study of the uniformity of 300mm wafer through ring-resonator analysis,” IEEE International Conference on Photonics in Switching (PS), 1–3, (2012).

Li, G.

Liang, H.

Luyssaert, B.

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bientsman, D. Van Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photonics Technol. Lett. 16(5), 1328–1330 (2004).
[Crossref]

Mancinelli, M.

Melloni, A.

Morichetti, F.

Musgraves, J. D.

Offrein, B. J.

Orobtchouk, R.

J. M. Fedeli, R. Orobtchouk, C. Seassal, and L. Vivien, “Integration issues of a photonic layer on top of a CMOS circuit,” Proc. SPIE 6125, 61250H (2006).
[Crossref]

Pavesi, L.

Qian, W.

Richardson, K.

Schares, L.

Seassal, C.

J. M. Fedeli, R. Orobtchouk, C. Seassal, and L. Vivien, “Integration issues of a photonic layer on top of a CMOS circuit,” Proc. SPIE 6125, 61250H (2006).
[Crossref]

Selvaraja, S. K.

S. K. Selvaraja, W. Bogaerts, P. Dumon, D. Van Thourhout, and R. Baets, “Subnanometer linewidth uniformity in silicon nanophotonic waveguide devices using CMOS fabrication technology,” IEEE J. Sel. Top. Quantum Electron. 16(1), 316–324 (2010).
[Crossref]

Shafiiha, R.

Shank, S. M.

Simard, A. D.

N. Ayotte, A. D. Simard, and S. LaRochelle, “Long integrated Bragg gratings for SoI wafer metrology,” IEEE Photonics Technol. Lett. 27(7), 755–758 (2015).
[Crossref]

Taillaert, D.

W. Bogaerts, P. Dumon, D. V. Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. G. Baets, “Compact wavelength-selective functions in silicon-on-insulator photonic wires,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1394–1401 (2006).
[Crossref]

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bientsman, D. Van Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photonics Technol. Lett. 16(5), 1328–1330 (2004).
[Crossref]

Thourhout, D. V.

W. Bogaerts, P. Dumon, D. V. Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. G. Baets, “Compact wavelength-selective functions in silicon-on-insulator photonic wires,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1394–1401 (2006).
[Crossref]

Van Campenhout, J.

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bientsman, D. Van Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photonics Technol. Lett. 16(5), 1328–1330 (2004).
[Crossref]

Van Thourhout, D.

S. K. Selvaraja, W. Bogaerts, P. Dumon, D. Van Thourhout, and R. Baets, “Subnanometer linewidth uniformity in silicon nanophotonic waveguide devices using CMOS fabrication technology,” IEEE J. Sel. Top. Quantum Electron. 16(1), 316–324 (2010).
[Crossref]

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bientsman, D. Van Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photonics Technol. Lett. 16(5), 1328–1330 (2004).
[Crossref]

Vivien, L.

J. M. Fedeli, R. Orobtchouk, C. Seassal, and L. Vivien, “Integration issues of a photonic layer on top of a CMOS circuit,” Proc. SPIE 6125, 61250H (2006).
[Crossref]

Vlasov, Y. A.

Wiaux, V.

W. Bogaerts, P. Dumon, D. V. Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. G. Baets, “Compact wavelength-selective functions in silicon-on-insulator photonic wires,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1394–1401 (2006).
[Crossref]

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bientsman, D. Van Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photonics Technol. Lett. 16(5), 1328–1330 (2004).
[Crossref]

Wouters, J.

W. Bogaerts, P. Dumon, D. V. Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. G. Baets, “Compact wavelength-selective functions in silicon-on-insulator photonic wires,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1394–1401 (2006).
[Crossref]

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bientsman, D. Van Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photonics Technol. Lett. 16(5), 1328–1330 (2004).
[Crossref]

Xia, F.

IEEE J. Sel. Top. Quantum Electron. (2)

S. K. Selvaraja, W. Bogaerts, P. Dumon, D. Van Thourhout, and R. Baets, “Subnanometer linewidth uniformity in silicon nanophotonic waveguide devices using CMOS fabrication technology,” IEEE J. Sel. Top. Quantum Electron. 16(1), 316–324 (2010).
[Crossref]

W. Bogaerts, P. Dumon, D. V. Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. G. Baets, “Compact wavelength-selective functions in silicon-on-insulator photonic wires,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1394–1401 (2006).
[Crossref]

IEEE Photonics Technol. Lett. (3)

N. Ayotte, A. D. Simard, and S. LaRochelle, “Long integrated Bragg gratings for SoI wafer metrology,” IEEE Photonics Technol. Lett. 27(7), 755–758 (2015).
[Crossref]

S. Dwivedi, H. D’heer, and W. Bogaerts, “Maximizing fabrication and thermal tolerances of all-silicon FIR wavelength filters,” IEEE Photonics Technol. Lett. 27(8), 871–874 (2015).
[Crossref]

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bientsman, D. Van Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photonics Technol. Lett. 16(5), 1328–1330 (2004).
[Crossref]

J. Lightwave Technol. (1)

Opt. Express (3)

Opt. Lett. (1)

Proc. SPIE (1)

J. M. Fedeli, R. Orobtchouk, C. Seassal, and L. Vivien, “Integration issues of a photonic layer on top of a CMOS circuit,” Proc. SPIE 6125, 61250H (2006).
[Crossref]

Other (2)

C. Chauveau, P. Labeye, J. M. Fedeli, S. Blaize, and G. Lerondel, “Study of the uniformity of 300mm wafer through ring-resonator analysis,” IEEE International Conference on Photonics in Switching (PS), 1–3, (2012).

L. Chrostowski, X. Wang, J. Flueckiger, Y. Wu, Y. Wang, and S. T. Fard, “Impact of fabrication non-uniformity on chip-scale silicon photonic integrated circuits,” in 2014 Optical Fiber Communication Conference (OSA, 2014), paper Th2A–37.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Calculated effective (blue, solid) and group (red, dashed) index versus waveguide width for a 220nm-high silicon strip waveguide fully surrounded by silica. Green dotted lines mark the selected widths to represent the narrow (480 nm) and wide (1500 nm) waveguides, where slopes are also shown in nm−1 units.
Fig. 2
Fig. 2 Sketch of the two elements proposed for the estimations of the fabrication deviations. (a) Widened MZI, sensitive only to height variations; (b) Narrow MZI, sensitive to both width and height. The grey areas are unetched regions which were present in some structures, and can be used as integrated silicon heaters. These were used for the study of proximity effects.
Fig. 3
Fig. 3 (a) Example of MZI measured spectrum of a wide MZI. (b) Group index extracted from the measured FSR for different dice. Values around 3.76 correspond to wide MZIs [Fig. 2(a)], and values around 4.28, to narrow MZIs [Fig. 2(b)]. (c) Wafer map identifying the chips along the wafer surface. From (b) it is clear that widened MZIs are much more stable than narrow MZIs. Apart from a higher die-to-die variation, there are also intra-die patterns due to proximity effects.
Fig. 4
Fig. 4 (a) SOI thickness extracted from group index of wide MZIs. Dashed lines show ellipsometry measurements in three of the chips. (b) Map of SOI thickness along the wafer extracted from the chips, averaging the values within each chip.
Fig. 5
Fig. 5 (a) Waveguide widths estimated from narrow MZIs and the SOI values shown in Fig. 4. The four samples shown for each die correspond, in this order, to the isolated waveguide (dots), and waveguide with heaters at distances of 1, 0.75 and 0.5μm (triangles). (b) Mapping of the isolated waveguide width along the surface of the wafer. (c) CD-SEM metrology results provided by the fabrication foundry.
Fig. 6
Fig. 6 Proximity effects. (a) Width variation of waveguide with heater vs. isolated, for different proximity gaps. Different curves represent 10 different chips, corresponding to the ones shown in Fig. 5(a) with the same colors. (b) SEM micrograph showing a 9-nm variation in width for a nominal proximity gap of 500 nm.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Δ ν FSR = c n g ΔL
Δ n g = n g w Δw+ n g h Δh

Metrics