Abstract

We present experimental and simulation studies of enhanced terahertz (THz) guiding properties of curved two-wire lines for several surface conditions. When a THz-wave propagates through curved two-wire lines, a rough wire surface with dielectric coating contributes to a lower bending loss compared to a smooth or rough wire surface without coating. Dielectric coating and rough surface confine the THz field to the wire surface making the bending loss low. The guiding property at a curve depth of 30 mm of a rough wire surface with 25-μm-thick coating is improved by 34% compared to that of a smooth wire without coating. Furthermore, computer simulation technology (CST) software visually shows the bending loss as same as the experimental studies.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Frequency-dependent characterization of THz Sommerfeld wave propagation on single-wires

M. Wåchter, M. Nagel, and H. Kurz
Opt. Express 13(26) 10815-10822 (2005)

Enhancement of the detection of THz Sommerfeld wave using a conical wire waveguide

Young Bin Ji, Eui Su Lee, Jin Seok Jang, and Tae-In Jeon
Opt. Express 16(1) 271-278 (2008)

Two-wire terahertz fibers with porous dielectric support

Andrey Markov and Maksim Skorobogatiy
Opt. Express 21(10) 12728-12743 (2013)

References

  • View by:
  • |
  • |
  • |

  1. F. Sobel, F. L. Wentworth, and J. C. Wiltse, “Quasi-optical surface waveguide and other components for the 100-to 300-Gc Region,” IRE Trans. Microwave Theor. Tech. 9(6), 512–518 (1961).
    [Crossref]
  2. J. A. Stratton, Electromagnetic Theory (McGraw-Hill, 1941).
  3. G. Goubau, “Surface waves and their application to transmission lines,” J. Appl. Phys. 21(11), 1119–1128 (1950).
    [Crossref]
  4. M. J. King and J. C. Wiltse, “Surface-wave propagation on coated or uncoated metal wires at millimeter wavelengths,” IRE Trans. Antennas Propag. 10(3), 246–254 (1962).
    [Crossref]
  5. A. Sommerfeld, Electrodynamics (Academic, 1952).
  6. T.-I. Jeon, J. Zhang, and D. Grischkowsky, “THz Sommerfeld wave propagation on a single metal wire,” Appl. Phys. Lett. 86(16), 161904 (2005).
    [Crossref]
  7. Y. B. Ji, E. S. Lee, J. S. Jang, and T.-I. Jeon, “Enhancement of the detection of THz Sommerfeld wave using a conical wire waveguide,” Opt. Express 16(1), 271–278 (2008).
    [Crossref] [PubMed]
  8. K. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature 432(7015), 376–379 (2004).
    [Crossref] [PubMed]
  9. J. S. Jo, T.-I. Jeon, and D. Grischkowsky, “Prototype 250 GHz Bandwidth Chip to Chip Electrical Interconnect, Characterized with Ultrafast Optoelectronics,” IEEE Trans. Terahertz Sci. Technol. 3(4), 453–460 (2013).
    [Crossref]
  10. J. S. Jo and T.-I. Jeon, “Characteristics of THz Pulse Propagation on Teflon Covered Two-Wire Lines,” J. Opt. Soc. Korea 19(6), 560–565 (2015).
    [Crossref]
  11. A. Berenguer, M. Baquero-Escudero, D. Sanchez-Escuderos, and M. Ferrando-Bataller, “Reduction of High-Order Modes Coupling on Bends in the Dielectric-Coated Single Wire Waveguide,” 6th European Conference on Antennas and Propagation, (2011).
  12. M. Wächter, M. Nagel, and H. Kurz, “Frequency-dependent characterization of THz Sommerfeld wave propagation on single-wires,” Opt. Express 13(26), 10815–10822 (2005).
    [Crossref] [PubMed]
  13. M. Mbonye, R. Mendis, and D. M. Mittleman, “A terahertz two-wire waveguide with low bending loss,” Appl. Phys. Lett. 95(23), 233506 (2009).
    [Crossref]
  14. M. Gong, T.-I. Jeon, and D. Grischkowsky, “THz surface wave collapse on coated metal surfaces,” Opt. Express 17(19), 17088–17101 (2009).
    [Crossref] [PubMed]
  15. D. L. Mills and A. A. Maradudin, “Surface corrugation and surface-polariton binding in the infrared frequency range,” Phys. Rev. B Condens. Matter 39(3), 1569–1574 (1989).
    [Crossref] [PubMed]
  16. A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3–4), 131–314 (2005).
    [Crossref]
  17. Z. Wang, “The influence of surface roughness on conductor at terahertzfrequencies,” Int. J. Light Electron. Opt. 125(13), 3237–3240 (2014).
    [Crossref]
  18. Y. B. Ji, E. S. Lee, J. S. Jang, S. H. Kim, T.-I. Jeon, M. H. Kwak, S. B. Kang, and K.-Y. Kang, “Coupling properties of a conical tungsten-wire waveguide in the Terahertz frequency range,” J. Korean Phys. Soc. 53(2), 584–589 (2008).
    [Crossref]
  19. M. Naftaly and R. E. Miles, “Terahertz Time-Domain Spectroscopy for Material Characterization,” Proc. IEEE 95(8), 1658–1665 (2007).
    [Crossref]
  20. Y. S. Jin, G. J. Kim, and S. G. Jeon, “Terahertz dielectric properties of polymers,” J. Korean Phys. Soc. 49(2), 513–517 (2006).
  21. N. Nagai and R. Fukasawa, “Abnormal dispersion of polymer films in the THz frequency region,” Chem. Phys. Lett. 388(4–6), 479–482 (2004).
    [Crossref]
  22. S. A. Maier, S. R. Andrews, L. Martín-Moreno, and F. J. García-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97(17), 176805 (2006).
    [Crossref] [PubMed]
  23. A. I. Fern’andez-Dom’ınguez, L. Mart’ın-Moreno, F. J. Garc’ıa-Vidal, S. R. Andrews, and S. A. Maier, “Spoof Surface Plasmon Polariton Modes Propagating Along Periodically Corrugated Wires,” IEEE J. Sel. Top. Quantum Electron. 14(6), 1515–1521 (2008).
    [Crossref]
  24. C. A. Balanis, Advanced Engineering Electromagnetics (John Wiley & Sons, 1989).

2015 (1)

2014 (1)

Z. Wang, “The influence of surface roughness on conductor at terahertzfrequencies,” Int. J. Light Electron. Opt. 125(13), 3237–3240 (2014).
[Crossref]

2013 (1)

J. S. Jo, T.-I. Jeon, and D. Grischkowsky, “Prototype 250 GHz Bandwidth Chip to Chip Electrical Interconnect, Characterized with Ultrafast Optoelectronics,” IEEE Trans. Terahertz Sci. Technol. 3(4), 453–460 (2013).
[Crossref]

2009 (2)

M. Mbonye, R. Mendis, and D. M. Mittleman, “A terahertz two-wire waveguide with low bending loss,” Appl. Phys. Lett. 95(23), 233506 (2009).
[Crossref]

M. Gong, T.-I. Jeon, and D. Grischkowsky, “THz surface wave collapse on coated metal surfaces,” Opt. Express 17(19), 17088–17101 (2009).
[Crossref] [PubMed]

2008 (3)

Y. B. Ji, E. S. Lee, J. S. Jang, S. H. Kim, T.-I. Jeon, M. H. Kwak, S. B. Kang, and K.-Y. Kang, “Coupling properties of a conical tungsten-wire waveguide in the Terahertz frequency range,” J. Korean Phys. Soc. 53(2), 584–589 (2008).
[Crossref]

Y. B. Ji, E. S. Lee, J. S. Jang, and T.-I. Jeon, “Enhancement of the detection of THz Sommerfeld wave using a conical wire waveguide,” Opt. Express 16(1), 271–278 (2008).
[Crossref] [PubMed]

A. I. Fern’andez-Dom’ınguez, L. Mart’ın-Moreno, F. J. Garc’ıa-Vidal, S. R. Andrews, and S. A. Maier, “Spoof Surface Plasmon Polariton Modes Propagating Along Periodically Corrugated Wires,” IEEE J. Sel. Top. Quantum Electron. 14(6), 1515–1521 (2008).
[Crossref]

2007 (1)

M. Naftaly and R. E. Miles, “Terahertz Time-Domain Spectroscopy for Material Characterization,” Proc. IEEE 95(8), 1658–1665 (2007).
[Crossref]

2006 (2)

Y. S. Jin, G. J. Kim, and S. G. Jeon, “Terahertz dielectric properties of polymers,” J. Korean Phys. Soc. 49(2), 513–517 (2006).

S. A. Maier, S. R. Andrews, L. Martín-Moreno, and F. J. García-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97(17), 176805 (2006).
[Crossref] [PubMed]

2005 (3)

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3–4), 131–314 (2005).
[Crossref]

M. Wächter, M. Nagel, and H. Kurz, “Frequency-dependent characterization of THz Sommerfeld wave propagation on single-wires,” Opt. Express 13(26), 10815–10822 (2005).
[Crossref] [PubMed]

T.-I. Jeon, J. Zhang, and D. Grischkowsky, “THz Sommerfeld wave propagation on a single metal wire,” Appl. Phys. Lett. 86(16), 161904 (2005).
[Crossref]

2004 (2)

K. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature 432(7015), 376–379 (2004).
[Crossref] [PubMed]

N. Nagai and R. Fukasawa, “Abnormal dispersion of polymer films in the THz frequency region,” Chem. Phys. Lett. 388(4–6), 479–482 (2004).
[Crossref]

1989 (1)

D. L. Mills and A. A. Maradudin, “Surface corrugation and surface-polariton binding in the infrared frequency range,” Phys. Rev. B Condens. Matter 39(3), 1569–1574 (1989).
[Crossref] [PubMed]

1962 (1)

M. J. King and J. C. Wiltse, “Surface-wave propagation on coated or uncoated metal wires at millimeter wavelengths,” IRE Trans. Antennas Propag. 10(3), 246–254 (1962).
[Crossref]

1961 (1)

F. Sobel, F. L. Wentworth, and J. C. Wiltse, “Quasi-optical surface waveguide and other components for the 100-to 300-Gc Region,” IRE Trans. Microwave Theor. Tech. 9(6), 512–518 (1961).
[Crossref]

1950 (1)

G. Goubau, “Surface waves and their application to transmission lines,” J. Appl. Phys. 21(11), 1119–1128 (1950).
[Crossref]

Andrews, S. R.

A. I. Fern’andez-Dom’ınguez, L. Mart’ın-Moreno, F. J. Garc’ıa-Vidal, S. R. Andrews, and S. A. Maier, “Spoof Surface Plasmon Polariton Modes Propagating Along Periodically Corrugated Wires,” IEEE J. Sel. Top. Quantum Electron. 14(6), 1515–1521 (2008).
[Crossref]

S. A. Maier, S. R. Andrews, L. Martín-Moreno, and F. J. García-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97(17), 176805 (2006).
[Crossref] [PubMed]

Baquero-Escudero, M.

A. Berenguer, M. Baquero-Escudero, D. Sanchez-Escuderos, and M. Ferrando-Bataller, “Reduction of High-Order Modes Coupling on Bends in the Dielectric-Coated Single Wire Waveguide,” 6th European Conference on Antennas and Propagation, (2011).

Berenguer, A.

A. Berenguer, M. Baquero-Escudero, D. Sanchez-Escuderos, and M. Ferrando-Bataller, “Reduction of High-Order Modes Coupling on Bends in the Dielectric-Coated Single Wire Waveguide,” 6th European Conference on Antennas and Propagation, (2011).

Fern’andez-Dom’inguez, A. I.

A. I. Fern’andez-Dom’ınguez, L. Mart’ın-Moreno, F. J. Garc’ıa-Vidal, S. R. Andrews, and S. A. Maier, “Spoof Surface Plasmon Polariton Modes Propagating Along Periodically Corrugated Wires,” IEEE J. Sel. Top. Quantum Electron. 14(6), 1515–1521 (2008).
[Crossref]

Ferrando-Bataller, M.

A. Berenguer, M. Baquero-Escudero, D. Sanchez-Escuderos, and M. Ferrando-Bataller, “Reduction of High-Order Modes Coupling on Bends in the Dielectric-Coated Single Wire Waveguide,” 6th European Conference on Antennas and Propagation, (2011).

Fukasawa, R.

N. Nagai and R. Fukasawa, “Abnormal dispersion of polymer films in the THz frequency region,” Chem. Phys. Lett. 388(4–6), 479–482 (2004).
[Crossref]

Garc’ia-Vidal, F. J.

A. I. Fern’andez-Dom’ınguez, L. Mart’ın-Moreno, F. J. Garc’ıa-Vidal, S. R. Andrews, and S. A. Maier, “Spoof Surface Plasmon Polariton Modes Propagating Along Periodically Corrugated Wires,” IEEE J. Sel. Top. Quantum Electron. 14(6), 1515–1521 (2008).
[Crossref]

García-Vidal, F. J.

S. A. Maier, S. R. Andrews, L. Martín-Moreno, and F. J. García-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97(17), 176805 (2006).
[Crossref] [PubMed]

Gong, M.

Goubau, G.

G. Goubau, “Surface waves and their application to transmission lines,” J. Appl. Phys. 21(11), 1119–1128 (1950).
[Crossref]

Grischkowsky, D.

J. S. Jo, T.-I. Jeon, and D. Grischkowsky, “Prototype 250 GHz Bandwidth Chip to Chip Electrical Interconnect, Characterized with Ultrafast Optoelectronics,” IEEE Trans. Terahertz Sci. Technol. 3(4), 453–460 (2013).
[Crossref]

M. Gong, T.-I. Jeon, and D. Grischkowsky, “THz surface wave collapse on coated metal surfaces,” Opt. Express 17(19), 17088–17101 (2009).
[Crossref] [PubMed]

T.-I. Jeon, J. Zhang, and D. Grischkowsky, “THz Sommerfeld wave propagation on a single metal wire,” Appl. Phys. Lett. 86(16), 161904 (2005).
[Crossref]

Jang, J. S.

Y. B. Ji, E. S. Lee, J. S. Jang, and T.-I. Jeon, “Enhancement of the detection of THz Sommerfeld wave using a conical wire waveguide,” Opt. Express 16(1), 271–278 (2008).
[Crossref] [PubMed]

Y. B. Ji, E. S. Lee, J. S. Jang, S. H. Kim, T.-I. Jeon, M. H. Kwak, S. B. Kang, and K.-Y. Kang, “Coupling properties of a conical tungsten-wire waveguide in the Terahertz frequency range,” J. Korean Phys. Soc. 53(2), 584–589 (2008).
[Crossref]

Jeon, S. G.

Y. S. Jin, G. J. Kim, and S. G. Jeon, “Terahertz dielectric properties of polymers,” J. Korean Phys. Soc. 49(2), 513–517 (2006).

Jeon, T.-I.

J. S. Jo and T.-I. Jeon, “Characteristics of THz Pulse Propagation on Teflon Covered Two-Wire Lines,” J. Opt. Soc. Korea 19(6), 560–565 (2015).
[Crossref]

J. S. Jo, T.-I. Jeon, and D. Grischkowsky, “Prototype 250 GHz Bandwidth Chip to Chip Electrical Interconnect, Characterized with Ultrafast Optoelectronics,” IEEE Trans. Terahertz Sci. Technol. 3(4), 453–460 (2013).
[Crossref]

M. Gong, T.-I. Jeon, and D. Grischkowsky, “THz surface wave collapse on coated metal surfaces,” Opt. Express 17(19), 17088–17101 (2009).
[Crossref] [PubMed]

Y. B. Ji, E. S. Lee, J. S. Jang, and T.-I. Jeon, “Enhancement of the detection of THz Sommerfeld wave using a conical wire waveguide,” Opt. Express 16(1), 271–278 (2008).
[Crossref] [PubMed]

Y. B. Ji, E. S. Lee, J. S. Jang, S. H. Kim, T.-I. Jeon, M. H. Kwak, S. B. Kang, and K.-Y. Kang, “Coupling properties of a conical tungsten-wire waveguide in the Terahertz frequency range,” J. Korean Phys. Soc. 53(2), 584–589 (2008).
[Crossref]

T.-I. Jeon, J. Zhang, and D. Grischkowsky, “THz Sommerfeld wave propagation on a single metal wire,” Appl. Phys. Lett. 86(16), 161904 (2005).
[Crossref]

Ji, Y. B.

Y. B. Ji, E. S. Lee, J. S. Jang, and T.-I. Jeon, “Enhancement of the detection of THz Sommerfeld wave using a conical wire waveguide,” Opt. Express 16(1), 271–278 (2008).
[Crossref] [PubMed]

Y. B. Ji, E. S. Lee, J. S. Jang, S. H. Kim, T.-I. Jeon, M. H. Kwak, S. B. Kang, and K.-Y. Kang, “Coupling properties of a conical tungsten-wire waveguide in the Terahertz frequency range,” J. Korean Phys. Soc. 53(2), 584–589 (2008).
[Crossref]

Jin, Y. S.

Y. S. Jin, G. J. Kim, and S. G. Jeon, “Terahertz dielectric properties of polymers,” J. Korean Phys. Soc. 49(2), 513–517 (2006).

Jo, J. S.

J. S. Jo and T.-I. Jeon, “Characteristics of THz Pulse Propagation on Teflon Covered Two-Wire Lines,” J. Opt. Soc. Korea 19(6), 560–565 (2015).
[Crossref]

J. S. Jo, T.-I. Jeon, and D. Grischkowsky, “Prototype 250 GHz Bandwidth Chip to Chip Electrical Interconnect, Characterized with Ultrafast Optoelectronics,” IEEE Trans. Terahertz Sci. Technol. 3(4), 453–460 (2013).
[Crossref]

Kang, K.-Y.

Y. B. Ji, E. S. Lee, J. S. Jang, S. H. Kim, T.-I. Jeon, M. H. Kwak, S. B. Kang, and K.-Y. Kang, “Coupling properties of a conical tungsten-wire waveguide in the Terahertz frequency range,” J. Korean Phys. Soc. 53(2), 584–589 (2008).
[Crossref]

Kang, S. B.

Y. B. Ji, E. S. Lee, J. S. Jang, S. H. Kim, T.-I. Jeon, M. H. Kwak, S. B. Kang, and K.-Y. Kang, “Coupling properties of a conical tungsten-wire waveguide in the Terahertz frequency range,” J. Korean Phys. Soc. 53(2), 584–589 (2008).
[Crossref]

Kim, G. J.

Y. S. Jin, G. J. Kim, and S. G. Jeon, “Terahertz dielectric properties of polymers,” J. Korean Phys. Soc. 49(2), 513–517 (2006).

Kim, S. H.

Y. B. Ji, E. S. Lee, J. S. Jang, S. H. Kim, T.-I. Jeon, M. H. Kwak, S. B. Kang, and K.-Y. Kang, “Coupling properties of a conical tungsten-wire waveguide in the Terahertz frequency range,” J. Korean Phys. Soc. 53(2), 584–589 (2008).
[Crossref]

King, M. J.

M. J. King and J. C. Wiltse, “Surface-wave propagation on coated or uncoated metal wires at millimeter wavelengths,” IRE Trans. Antennas Propag. 10(3), 246–254 (1962).
[Crossref]

Kurz, H.

Kwak, M. H.

Y. B. Ji, E. S. Lee, J. S. Jang, S. H. Kim, T.-I. Jeon, M. H. Kwak, S. B. Kang, and K.-Y. Kang, “Coupling properties of a conical tungsten-wire waveguide in the Terahertz frequency range,” J. Korean Phys. Soc. 53(2), 584–589 (2008).
[Crossref]

Lee, E. S.

Y. B. Ji, E. S. Lee, J. S. Jang, S. H. Kim, T.-I. Jeon, M. H. Kwak, S. B. Kang, and K.-Y. Kang, “Coupling properties of a conical tungsten-wire waveguide in the Terahertz frequency range,” J. Korean Phys. Soc. 53(2), 584–589 (2008).
[Crossref]

Y. B. Ji, E. S. Lee, J. S. Jang, and T.-I. Jeon, “Enhancement of the detection of THz Sommerfeld wave using a conical wire waveguide,” Opt. Express 16(1), 271–278 (2008).
[Crossref] [PubMed]

Maier, S. A.

A. I. Fern’andez-Dom’ınguez, L. Mart’ın-Moreno, F. J. Garc’ıa-Vidal, S. R. Andrews, and S. A. Maier, “Spoof Surface Plasmon Polariton Modes Propagating Along Periodically Corrugated Wires,” IEEE J. Sel. Top. Quantum Electron. 14(6), 1515–1521 (2008).
[Crossref]

S. A. Maier, S. R. Andrews, L. Martín-Moreno, and F. J. García-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97(17), 176805 (2006).
[Crossref] [PubMed]

Maradudin, A. A.

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3–4), 131–314 (2005).
[Crossref]

D. L. Mills and A. A. Maradudin, “Surface corrugation and surface-polariton binding in the infrared frequency range,” Phys. Rev. B Condens. Matter 39(3), 1569–1574 (1989).
[Crossref] [PubMed]

Mart’in-Moreno, L.

A. I. Fern’andez-Dom’ınguez, L. Mart’ın-Moreno, F. J. Garc’ıa-Vidal, S. R. Andrews, and S. A. Maier, “Spoof Surface Plasmon Polariton Modes Propagating Along Periodically Corrugated Wires,” IEEE J. Sel. Top. Quantum Electron. 14(6), 1515–1521 (2008).
[Crossref]

Martín-Moreno, L.

S. A. Maier, S. R. Andrews, L. Martín-Moreno, and F. J. García-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97(17), 176805 (2006).
[Crossref] [PubMed]

Mbonye, M.

M. Mbonye, R. Mendis, and D. M. Mittleman, “A terahertz two-wire waveguide with low bending loss,” Appl. Phys. Lett. 95(23), 233506 (2009).
[Crossref]

Mendis, R.

M. Mbonye, R. Mendis, and D. M. Mittleman, “A terahertz two-wire waveguide with low bending loss,” Appl. Phys. Lett. 95(23), 233506 (2009).
[Crossref]

Miles, R. E.

M. Naftaly and R. E. Miles, “Terahertz Time-Domain Spectroscopy for Material Characterization,” Proc. IEEE 95(8), 1658–1665 (2007).
[Crossref]

Mills, D. L.

D. L. Mills and A. A. Maradudin, “Surface corrugation and surface-polariton binding in the infrared frequency range,” Phys. Rev. B Condens. Matter 39(3), 1569–1574 (1989).
[Crossref] [PubMed]

Mittleman, D. M.

M. Mbonye, R. Mendis, and D. M. Mittleman, “A terahertz two-wire waveguide with low bending loss,” Appl. Phys. Lett. 95(23), 233506 (2009).
[Crossref]

K. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature 432(7015), 376–379 (2004).
[Crossref] [PubMed]

Naftaly, M.

M. Naftaly and R. E. Miles, “Terahertz Time-Domain Spectroscopy for Material Characterization,” Proc. IEEE 95(8), 1658–1665 (2007).
[Crossref]

Nagai, N.

N. Nagai and R. Fukasawa, “Abnormal dispersion of polymer films in the THz frequency region,” Chem. Phys. Lett. 388(4–6), 479–482 (2004).
[Crossref]

Nagel, M.

Sanchez-Escuderos, D.

A. Berenguer, M. Baquero-Escudero, D. Sanchez-Escuderos, and M. Ferrando-Bataller, “Reduction of High-Order Modes Coupling on Bends in the Dielectric-Coated Single Wire Waveguide,” 6th European Conference on Antennas and Propagation, (2011).

Smolyaninov, I. I.

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3–4), 131–314 (2005).
[Crossref]

Sobel, F.

F. Sobel, F. L. Wentworth, and J. C. Wiltse, “Quasi-optical surface waveguide and other components for the 100-to 300-Gc Region,” IRE Trans. Microwave Theor. Tech. 9(6), 512–518 (1961).
[Crossref]

Wächter, M.

Wang, K.

K. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature 432(7015), 376–379 (2004).
[Crossref] [PubMed]

Wang, Z.

Z. Wang, “The influence of surface roughness on conductor at terahertzfrequencies,” Int. J. Light Electron. Opt. 125(13), 3237–3240 (2014).
[Crossref]

Wentworth, F. L.

F. Sobel, F. L. Wentworth, and J. C. Wiltse, “Quasi-optical surface waveguide and other components for the 100-to 300-Gc Region,” IRE Trans. Microwave Theor. Tech. 9(6), 512–518 (1961).
[Crossref]

Wiltse, J. C.

M. J. King and J. C. Wiltse, “Surface-wave propagation on coated or uncoated metal wires at millimeter wavelengths,” IRE Trans. Antennas Propag. 10(3), 246–254 (1962).
[Crossref]

F. Sobel, F. L. Wentworth, and J. C. Wiltse, “Quasi-optical surface waveguide and other components for the 100-to 300-Gc Region,” IRE Trans. Microwave Theor. Tech. 9(6), 512–518 (1961).
[Crossref]

Zayats, A. V.

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3–4), 131–314 (2005).
[Crossref]

Zhang, J.

T.-I. Jeon, J. Zhang, and D. Grischkowsky, “THz Sommerfeld wave propagation on a single metal wire,” Appl. Phys. Lett. 86(16), 161904 (2005).
[Crossref]

Appl. Phys. Lett. (2)

T.-I. Jeon, J. Zhang, and D. Grischkowsky, “THz Sommerfeld wave propagation on a single metal wire,” Appl. Phys. Lett. 86(16), 161904 (2005).
[Crossref]

M. Mbonye, R. Mendis, and D. M. Mittleman, “A terahertz two-wire waveguide with low bending loss,” Appl. Phys. Lett. 95(23), 233506 (2009).
[Crossref]

Chem. Phys. Lett. (1)

N. Nagai and R. Fukasawa, “Abnormal dispersion of polymer films in the THz frequency region,” Chem. Phys. Lett. 388(4–6), 479–482 (2004).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

A. I. Fern’andez-Dom’ınguez, L. Mart’ın-Moreno, F. J. Garc’ıa-Vidal, S. R. Andrews, and S. A. Maier, “Spoof Surface Plasmon Polariton Modes Propagating Along Periodically Corrugated Wires,” IEEE J. Sel. Top. Quantum Electron. 14(6), 1515–1521 (2008).
[Crossref]

IEEE Trans. Terahertz Sci. Technol. (1)

J. S. Jo, T.-I. Jeon, and D. Grischkowsky, “Prototype 250 GHz Bandwidth Chip to Chip Electrical Interconnect, Characterized with Ultrafast Optoelectronics,” IEEE Trans. Terahertz Sci. Technol. 3(4), 453–460 (2013).
[Crossref]

Int. J. Light Electron. Opt. (1)

Z. Wang, “The influence of surface roughness on conductor at terahertzfrequencies,” Int. J. Light Electron. Opt. 125(13), 3237–3240 (2014).
[Crossref]

IRE Trans. Antennas Propag. (1)

M. J. King and J. C. Wiltse, “Surface-wave propagation on coated or uncoated metal wires at millimeter wavelengths,” IRE Trans. Antennas Propag. 10(3), 246–254 (1962).
[Crossref]

IRE Trans. Microwave Theor. Tech. (1)

F. Sobel, F. L. Wentworth, and J. C. Wiltse, “Quasi-optical surface waveguide and other components for the 100-to 300-Gc Region,” IRE Trans. Microwave Theor. Tech. 9(6), 512–518 (1961).
[Crossref]

J. Appl. Phys. (1)

G. Goubau, “Surface waves and their application to transmission lines,” J. Appl. Phys. 21(11), 1119–1128 (1950).
[Crossref]

J. Korean Phys. Soc. (2)

Y. B. Ji, E. S. Lee, J. S. Jang, S. H. Kim, T.-I. Jeon, M. H. Kwak, S. B. Kang, and K.-Y. Kang, “Coupling properties of a conical tungsten-wire waveguide in the Terahertz frequency range,” J. Korean Phys. Soc. 53(2), 584–589 (2008).
[Crossref]

Y. S. Jin, G. J. Kim, and S. G. Jeon, “Terahertz dielectric properties of polymers,” J. Korean Phys. Soc. 49(2), 513–517 (2006).

J. Opt. Soc. Korea (1)

Nature (1)

K. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature 432(7015), 376–379 (2004).
[Crossref] [PubMed]

Opt. Express (3)

Phys. Rep. (1)

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3–4), 131–314 (2005).
[Crossref]

Phys. Rev. B Condens. Matter (1)

D. L. Mills and A. A. Maradudin, “Surface corrugation and surface-polariton binding in the infrared frequency range,” Phys. Rev. B Condens. Matter 39(3), 1569–1574 (1989).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

S. A. Maier, S. R. Andrews, L. Martín-Moreno, and F. J. García-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97(17), 176805 (2006).
[Crossref] [PubMed]

Proc. IEEE (1)

M. Naftaly and R. E. Miles, “Terahertz Time-Domain Spectroscopy for Material Characterization,” Proc. IEEE 95(8), 1658–1665 (2007).
[Crossref]

Other (4)

A. Berenguer, M. Baquero-Escudero, D. Sanchez-Escuderos, and M. Ferrando-Bataller, “Reduction of High-Order Modes Coupling on Bends in the Dielectric-Coated Single Wire Waveguide,” 6th European Conference on Antennas and Propagation, (2011).

J. A. Stratton, Electromagnetic Theory (McGraw-Hill, 1941).

A. Sommerfeld, Electrodynamics (Academic, 1952).

C. A. Balanis, Advanced Engineering Electromagnetics (John Wiley & Sons, 1989).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Experiment setup to measure the guiding properties. The center-to-center distance of two wire lines is 1 mm. The left inset shows the schematic diagram of tungsten probe tips which are contacted near by a dipole antenna. The right inset shows the THz field distribution pattern simulated using a CST software.
Fig. 2
Fig. 2 Photo of the curved two wire line.
Fig. 3
Fig. 3 THz-TDS measurements of the silicone varnish spray. (a) Power absorption. (b) Refractive index.
Fig. 4
Fig. 4 (a) Measured THz pulses for the uncoated smooth two-wire line. (b) Their spectra. (c) The measured THz pulses for the uncoated rough two-wire line. (d) Their spectra.
Fig. 5
Fig. 5 (a) Measured THz pulses for the 25-μm-thick-coated smooth two-wire line. (b) Their spectra. (c) The measured THz pulses for the 25-μm-thick-coated rough two-wire line. (d) Their spectra.
Fig. 6
Fig. 6 Normalized peak-to-peak amplitudes of the THz pulses as functions of the curve depth. The height of the error bars indicates the difference between the maximal and minimal normalized peak-to-peak amplitudes obtained in the five measurements. The circles on the error bars depict the average magnitudes after the five measurements. The dashed and solid lines indicate the fitting lines of the rough and smooth wire measurements, respectively.
Fig. 7
Fig. 7 Frequency dependent amplitude variations of the spectra according to the wire surface conditions. (a) The smooth wire without coating. (b) The rough wire without coating. (c) The smooth wire with 25-μm-thick coating. (d) The rough wire with 25-μm-thick coating.
Fig. 8
Fig. 8 THz field pattern around the curved uncoated smooth two-wire lines. (a) The 100 GHz field pattern. (b) The 150 GHz field pattern. The dashed lines indicate the curve positions.
Fig. 9
Fig. 9 Cross sections of the THz field at top (A), middle (B), and bottom (C) faces of Fig. 9(a). The two circles indicate the cross section of the two-wire line. (a) The 150 GHz field pattern for the smooth wire without coating. (b) The 150 GHz field pattern for the smooth wire with 25-μm-thick coating.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

δ= 2 ω μ 0 σ

Metrics