Abstract

We report the use of localized annealing via in situ heaters to induce a semi-permanent change in the refractive index of the cladding in ring resonator filters. When compared to other methods for post-fabrication trimming, this method has the advantage that no additional equipment, other than a supply of electrical power, is necessary to cause the index change. Two cladding materials were used: hydrogen silsesquioxane (HSQ) for samples that were externally annealed, and PECVD oxide for samples that were annealed with in situ heaters. The resonant wavelengths could be adjusted by as much as 3.0 nm and 1.7 nm for the HSQ and PECVD cladded filters, respectively. The trimming of a 5 channel, single ring filter bank, and a single, double ring filter is demonstrated.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Trimming of silicon-on-insulator ring-resonators via localized laser annealing

Vera Biryukova, Graham J. Sharp, Charalambos Klitis, and Marc Sorel
Opt. Express 28(8) 11156-11164 (2020)

Real-time monitoring and gradient feedback enable accurate trimming of ion-implanted silicon photonic devices

Bigeng Chen, Xingshi Yu, Xia Chen, Milan M. Milosevic, David J. Thomson, Ali Z. Khokhar, Shinichi Saito, Otto L. Muskens, and Graham T. Reed
Opt. Express 26(19) 24953-24963 (2018)

Post-trimming of photonic crystal nanobeam cavities by controlled electron beam exposure

Yuguang Zhang and Yaocheng Shi
Opt. Express 24(12) 12542-12548 (2016)

References

  • View by:
  • |
  • |
  • |

  1. A. Canciamilla, F. Morichetti, S. Grillanda, P. Velha, M. Sorel, V. Singh, A. Agarwal, L. C. Kimerling, and A. Melloni, “Photo-induced trimming of chalcogenide-assisted silicon waveguides,” Opt. Express 20(14), 15807–15817 (2012).
    [Crossref] [PubMed]
  2. S. Grillanda, V. Raghunathan, V. Singh, F. Morichetti, J. Michel, L. Kimerling, A. Melloni, and A. Agarwal, “Post-fabrication trimming of athermal silicon waveguides,” Opt. Lett. 38(24), 5450–5453 (2013).
    [Crossref] [PubMed]
  3. D. K. Sparacin, C. Y. Hong, L. C. Kimerling, J. Michel, J. P. Lock, and K. K. Gleason, “Trimming of microring resonators by photooxidation of a plasma-polymerized organosilane cladding material,” Opt. Lett. 30(17), 2251–2253 (2005).
    [Crossref] [PubMed]
  4. J. Schrauwen, D. Van Thourhout, and R. Baets, “Trimming of silicon ring resonator by electron beam induced compaction and strain,” Opt. Express 16(6), 3738–3743 (2008).
    [Crossref] [PubMed]
  5. Y. Shen, I. Divliansky, D. Basov, and S. Mookherjea, “Perfect set-and-forget alignment of silicon photonic resonators and interferometers,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2011, OSA Technical Digest (CD) (Optical Society of America, 2011), paper PDPC3.
    [Crossref]
  6. A. H. Atabaki, A. A. Eftekhar, M. Askari, and A. Adibi, “Accurate post-fabrication trimming of ultra-compact resonators on silicon,” Opt. Express 21(12), 14139–14145 (2013).
    [Crossref] [PubMed]
  7. M. Abe, Y. Inoue, K. Moriwaki, M. Okuno, and Y. Ohmori, “Optical path length trimming technique using thin film heaters for silica-based waveguides on Si,” Electron. Lett. 32(19), 1818–1820 (1996).
    [Crossref]
  8. T. Mizuno, M. Kohtoku, M. Oguma, Y. Hida, and Y. Inoue, “Birefringence and path length adjustment of silica-based waveguide using permanent heater trimming,” Electron. Lett. 40(6), 371–372 (2004).
    [Crossref]
  9. S. Spector, J. M. Knecht, and P. W. Juodawlkis, “Permanent Trimming of Silicon Ring Resonator Filters by Thermal Modification,” in Conference on Lasers and Electro-Optics: Laser Science to Photonic Applications, OSA Technical Digest (CD) (Optical Society of America, 2015), paper JTh2A.46.
    [Crossref]
  10. M. Watts, W. Zortman, D. Trotter, G. Nielson, D. Luck, and R. Young, “Adiabatic Resonant Microrings (ARMs) with Directly Integrated Thermal Microphotonics,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper CPDB10.
    [Crossref]
  11. M. S. Haque, H. A. Naseem, and W. D. Brown, “Stress in high rate deposited silicon dioxide films for MCM applications,” in Proceedings of IEEE Symposium on Reliability Physics (IEEE, 1996), pp. 274–280.
    [Crossref]
  12. D. Többen, P. Weiganda, M. J. Shapiro, and S. A. Cohen, “Influence of the cure process on the properties of hydrogen silsesquioxane spin-on-glass,” in Proceedings of the Materials Research Society Symposium, (Materials Research Society, 1996), pp. 195–200.
    [Crossref]
  13. S. Spector, A. Khilo, M. Peng, F. Kaertner, and T. Lyszczarz, “Thermally tuned dual 20-channel ring resonator filter bank in SOI (Silicon-on-Insulator),” in Conference on Lasers and Electro-Optics: Laser Applications to Photonic Applications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper CWM2.
    [Crossref]

2013 (2)

2012 (1)

2008 (1)

2005 (1)

2004 (1)

T. Mizuno, M. Kohtoku, M. Oguma, Y. Hida, and Y. Inoue, “Birefringence and path length adjustment of silica-based waveguide using permanent heater trimming,” Electron. Lett. 40(6), 371–372 (2004).
[Crossref]

1996 (1)

M. Abe, Y. Inoue, K. Moriwaki, M. Okuno, and Y. Ohmori, “Optical path length trimming technique using thin film heaters for silica-based waveguides on Si,” Electron. Lett. 32(19), 1818–1820 (1996).
[Crossref]

Abe, M.

M. Abe, Y. Inoue, K. Moriwaki, M. Okuno, and Y. Ohmori, “Optical path length trimming technique using thin film heaters for silica-based waveguides on Si,” Electron. Lett. 32(19), 1818–1820 (1996).
[Crossref]

Adibi, A.

Agarwal, A.

Askari, M.

Atabaki, A. H.

Baets, R.

Brown, W. D.

M. S. Haque, H. A. Naseem, and W. D. Brown, “Stress in high rate deposited silicon dioxide films for MCM applications,” in Proceedings of IEEE Symposium on Reliability Physics (IEEE, 1996), pp. 274–280.
[Crossref]

Canciamilla, A.

Cohen, S. A.

D. Többen, P. Weiganda, M. J. Shapiro, and S. A. Cohen, “Influence of the cure process on the properties of hydrogen silsesquioxane spin-on-glass,” in Proceedings of the Materials Research Society Symposium, (Materials Research Society, 1996), pp. 195–200.
[Crossref]

Eftekhar, A. A.

Gleason, K. K.

Grillanda, S.

Haque, M. S.

M. S. Haque, H. A. Naseem, and W. D. Brown, “Stress in high rate deposited silicon dioxide films for MCM applications,” in Proceedings of IEEE Symposium on Reliability Physics (IEEE, 1996), pp. 274–280.
[Crossref]

Hida, Y.

T. Mizuno, M. Kohtoku, M. Oguma, Y. Hida, and Y. Inoue, “Birefringence and path length adjustment of silica-based waveguide using permanent heater trimming,” Electron. Lett. 40(6), 371–372 (2004).
[Crossref]

Hong, C. Y.

Inoue, Y.

T. Mizuno, M. Kohtoku, M. Oguma, Y. Hida, and Y. Inoue, “Birefringence and path length adjustment of silica-based waveguide using permanent heater trimming,” Electron. Lett. 40(6), 371–372 (2004).
[Crossref]

M. Abe, Y. Inoue, K. Moriwaki, M. Okuno, and Y. Ohmori, “Optical path length trimming technique using thin film heaters for silica-based waveguides on Si,” Electron. Lett. 32(19), 1818–1820 (1996).
[Crossref]

Kimerling, L.

Kimerling, L. C.

Kohtoku, M.

T. Mizuno, M. Kohtoku, M. Oguma, Y. Hida, and Y. Inoue, “Birefringence and path length adjustment of silica-based waveguide using permanent heater trimming,” Electron. Lett. 40(6), 371–372 (2004).
[Crossref]

Lock, J. P.

Melloni, A.

Michel, J.

Mizuno, T.

T. Mizuno, M. Kohtoku, M. Oguma, Y. Hida, and Y. Inoue, “Birefringence and path length adjustment of silica-based waveguide using permanent heater trimming,” Electron. Lett. 40(6), 371–372 (2004).
[Crossref]

Morichetti, F.

Moriwaki, K.

M. Abe, Y. Inoue, K. Moriwaki, M. Okuno, and Y. Ohmori, “Optical path length trimming technique using thin film heaters for silica-based waveguides on Si,” Electron. Lett. 32(19), 1818–1820 (1996).
[Crossref]

Naseem, H. A.

M. S. Haque, H. A. Naseem, and W. D. Brown, “Stress in high rate deposited silicon dioxide films for MCM applications,” in Proceedings of IEEE Symposium on Reliability Physics (IEEE, 1996), pp. 274–280.
[Crossref]

Oguma, M.

T. Mizuno, M. Kohtoku, M. Oguma, Y. Hida, and Y. Inoue, “Birefringence and path length adjustment of silica-based waveguide using permanent heater trimming,” Electron. Lett. 40(6), 371–372 (2004).
[Crossref]

Ohmori, Y.

M. Abe, Y. Inoue, K. Moriwaki, M. Okuno, and Y. Ohmori, “Optical path length trimming technique using thin film heaters for silica-based waveguides on Si,” Electron. Lett. 32(19), 1818–1820 (1996).
[Crossref]

Okuno, M.

M. Abe, Y. Inoue, K. Moriwaki, M. Okuno, and Y. Ohmori, “Optical path length trimming technique using thin film heaters for silica-based waveguides on Si,” Electron. Lett. 32(19), 1818–1820 (1996).
[Crossref]

Raghunathan, V.

Schrauwen, J.

Shapiro, M. J.

D. Többen, P. Weiganda, M. J. Shapiro, and S. A. Cohen, “Influence of the cure process on the properties of hydrogen silsesquioxane spin-on-glass,” in Proceedings of the Materials Research Society Symposium, (Materials Research Society, 1996), pp. 195–200.
[Crossref]

Singh, V.

Sorel, M.

Sparacin, D. K.

Többen, D.

D. Többen, P. Weiganda, M. J. Shapiro, and S. A. Cohen, “Influence of the cure process on the properties of hydrogen silsesquioxane spin-on-glass,” in Proceedings of the Materials Research Society Symposium, (Materials Research Society, 1996), pp. 195–200.
[Crossref]

Van Thourhout, D.

Velha, P.

Weiganda, P.

D. Többen, P. Weiganda, M. J. Shapiro, and S. A. Cohen, “Influence of the cure process on the properties of hydrogen silsesquioxane spin-on-glass,” in Proceedings of the Materials Research Society Symposium, (Materials Research Society, 1996), pp. 195–200.
[Crossref]

Electron. Lett. (2)

M. Abe, Y. Inoue, K. Moriwaki, M. Okuno, and Y. Ohmori, “Optical path length trimming technique using thin film heaters for silica-based waveguides on Si,” Electron. Lett. 32(19), 1818–1820 (1996).
[Crossref]

T. Mizuno, M. Kohtoku, M. Oguma, Y. Hida, and Y. Inoue, “Birefringence and path length adjustment of silica-based waveguide using permanent heater trimming,” Electron. Lett. 40(6), 371–372 (2004).
[Crossref]

Opt. Express (3)

Opt. Lett. (2)

Other (6)

S. Spector, J. M. Knecht, and P. W. Juodawlkis, “Permanent Trimming of Silicon Ring Resonator Filters by Thermal Modification,” in Conference on Lasers and Electro-Optics: Laser Science to Photonic Applications, OSA Technical Digest (CD) (Optical Society of America, 2015), paper JTh2A.46.
[Crossref]

M. Watts, W. Zortman, D. Trotter, G. Nielson, D. Luck, and R. Young, “Adiabatic Resonant Microrings (ARMs) with Directly Integrated Thermal Microphotonics,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper CPDB10.
[Crossref]

M. S. Haque, H. A. Naseem, and W. D. Brown, “Stress in high rate deposited silicon dioxide films for MCM applications,” in Proceedings of IEEE Symposium on Reliability Physics (IEEE, 1996), pp. 274–280.
[Crossref]

D. Többen, P. Weiganda, M. J. Shapiro, and S. A. Cohen, “Influence of the cure process on the properties of hydrogen silsesquioxane spin-on-glass,” in Proceedings of the Materials Research Society Symposium, (Materials Research Society, 1996), pp. 195–200.
[Crossref]

S. Spector, A. Khilo, M. Peng, F. Kaertner, and T. Lyszczarz, “Thermally tuned dual 20-channel ring resonator filter bank in SOI (Silicon-on-Insulator),” in Conference on Lasers and Electro-Optics: Laser Applications to Photonic Applications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper CWM2.
[Crossref]

Y. Shen, I. Divliansky, D. Basov, and S. Mookherjea, “Perfect set-and-forget alignment of silicon photonic resonators and interferometers,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2011, OSA Technical Digest (CD) (Optical Society of America, 2011), paper PDPC3.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 The bake induced change in the resonant wavelengths of HSQ coated ring resonators. The left axis indicates the measured shift in resonance. The right axis shows an estimate of the index change in the HSQ required for the change in resonant wavelength.
Fig. 2
Fig. 2 Sketch and SEM image of filter with two coupled rings. This image was taken after the rings and heaters were exposed, just prior to the application of the PECVD oxide. A pair of heaters surround the sides of each ring.
Fig. 3
Fig. 3 The induced change in the resonant wavelengths of low temperature PECVD oxide coated ring resonators. The changes in resonant wavelengths were induced by in situ heaters using the amount of power shown. The measurements were made with the heaters off. Note the y scale is reversed, and that the shifts in resonant wavelengths were negative.
Fig. 4
Fig. 4 An example of an 5 channel filter bank measured (a) before and (b) after trimming. Shown is the through port data for the filter bank. The resonance wavelengths are shown by the local minima. Before trimming, the spacing of the resonant frequencies is random. b) After trimming, the resonant frequencies are equally spaced by 0.8 nm. Shown in (c) is a diagram of the 5 channel filter bank.
Fig. 5
Fig. 5 Trimming of a filter channel with two coupled rings. (a) Shows the drop port transmission, so both ring resonances are visible. One ring can be adjusted independent of the other. In this example, the initial resonance wavelength of one ring is at 1543.4 nm. After the maximum practical adjustment, the resonance of that ring shifts to 1541.7 nm, with no observable effect on the resonant wavelength of the adjacent ring at 1543 nm. (b) The adjacent ring is then brought into co-resonance with the first ring at 1541.7 nm.
Fig. 6
Fig. 6 The stability of the trimming. After a day of storage the resonant wavelength of each ring begins to shift back to its initial wavelength. Storing the sample with a desiccant reduces this shift.

Tables (1)

Tables Icon

Table 1 Temperature-induced changes of refractive indices of cladding materials.

Metrics