Abstract

Metallic glass film of Pr60Al10Ni10Cu20 is proposed to be used as a resist of phase-change lithography (PCL). PCL is a mask-less lithography technology by using laser-direct-writing to create the intended nanopatterns. Thermal distribution in the PrAlNiCu film after exposure is calculated by finite element method (FEM). Thin films are exposed by continuous-wave laser and selective etched by nitric-acid solution, and the patterns are discerned by optical and atomic force microscope. The etching rate of as-deposited PrAlNiCu is thus nearly five times of the crystalline film. These results indicate that PrAlNiCu metallic glass film is a promising resist for phase-change lithography.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Chalcogenide phase-change thin films used as grayscale photolithography materials

Rui Wang, Jingsong Wei, and Yongtao Fan
Opt. Express 22(5) 4973-4984 (2014)

Laser-induced phase transitions of Ge2Sb2Te5 thin films used in optical and electronic data storage and in thermal lithography

Cheng Hung Chu, Chiun Da Shiue, Hsuen Wei Cheng, Ming Lun Tseng, Hai-Pang Chiang, Masud Mansuripur, and Din Ping Tsai
Opt. Express 18(17) 18383-18393 (2010)

Laser microstructured metal thin films as promising alternative for indium based transparent electrodes

Sebastian Eckhardt, Mathias Siebold, and Andrés Fabián Lasagni
Opt. Express 24(6) A553-A568 (2016)

References

  • View by:
  • |
  • |
  • |

  1. G. Marsh, “Moore’s law at extremes,” Mater. Today 6(5), 28–33 (2003).
    [Crossref]
  2. S. Hamilton, “Intel research expands Moore’s law,” IEEE Computer 36(1), 31–40 (2003).
    [Crossref]
  3. Z. Luo, Y. Jiang, B. D. Myers, D. Isheim, J. Wu, J. F. Zimmerman, Z. Wang, Q. Li, Y. Wang, X. Chen, V. P. Dravid, D. N. Seidman, and B. Tian, “Atomic gold-enabled three-dimensional lithography for silicon mesostructures,” Science 348(6242), 1451–1455 (2015).
    [Crossref] [PubMed]
  4. Y. Huang, Q. Zhao, L. Kamyab, A. Rostami, F. Capolino, and O. Boyraz, “Sub-micron silicon nitride waveguide fabrication using conventional optical lithography,” Opt. Express 23(5), 6780–6786 (2015).
    [Crossref] [PubMed]
  5. X. Zhang and Z. Liu, “Superlenses to overcome the diffraction limit,” Nat. Mater. 7(6), 435–441 (2008).
    [Crossref] [PubMed]
  6. S. Fan, F. Qi, T. Notake, K. Nawata, Y. Takida, T. Matsukawa, and H. Minamide, “Diffraction-limited real-time terahertz imaging by optical frequency up-conversion in a DAST crystal,” Opt. Express 23(6), 7611–7618 (2015).
    [Crossref] [PubMed]
  7. A. Grbic and G. V. Eleftheriades, “Overcoming the diffraction limit with a planar left-handed transmission-line lens,” Phys. Rev. Lett. 92(11), 117403 (2004).
    [Crossref] [PubMed]
  8. M. Mivelle, P. Viktorovitch, F. I. Baida, A. El Eter, Z. Xie, T. P. Vo, E. Atie, G. W. Burr, D. Nedeljkovic, J. Y. Rauch, S. Callard, and T. Grosjean, “Light funneling from a photonic crystal laser cavity to a nano-antenna: overcoming the diffraction limit in optical energy transfer down to the nanoscale,” Opt. Express 22(12), 15075–15087 (2014).
    [Crossref] [PubMed]
  9. T. Ito and S. Okazaki, “Pushing the limits of lithography,” Nature 406(6799), 1027–1031 (2000).
    [Crossref] [PubMed]
  10. R. Drevinskas, M. Gecevičius, M. Beresna, Y. Bellouard, and P. G. Kazansky, “Tailored surface birefringence by femtosecond laser assisted wet etching,” Opt. Express 23(2), 1428–1437 (2015).
    [Crossref] [PubMed]
  11. Y. Lin, M. H. Hong, T. C. Chong, C. S. Lim, G. X. Chen, L. S. Tan, Z. B. Wang, and L. P. Shi, “Ultrafast-laser induced parallel phase-change nanolithography,” Appl. Phys. Lett. 89, 0411081 (2006).
  12. T. Shintani, Y. Anzai, H. Minemura, H. Miyamoto, and J. Ushiyama, “Nanosize fabrication using etching of phase-change recording films,” Appl. Phys. Lett. 85(4), 639–641 (2004).
    [Crossref]
  13. X. Yu and J. Robertson, “Modeling of switching mechanism in GeSbTe chalcogenide superlattices,” Sci. Rep. 5, 12612 (2015).
    [Crossref] [PubMed]
  14. C. H. Chu, C. Da Shiue, H. W. Cheng, M. L. Tseng, H.-P. Chiang, M. Mansuripur, and D. P. Tsai, “Laser-induced phase transitions of Ge2Sb2Te5 thin films used in optical and electronic data storage and in thermal lithography,” Opt. Express 18(17), 18383–18393 (2010).
    [Crossref] [PubMed]
  15. M. L. Tseng, B. H. Chen, C. H. Chu, C. M. Chang, W. C. Lin, N. N. Chu, M. Mansuripur, A. Q. Liu, and D. P. Tsai, “Fabrication of phase-change chalcogenide Ge2Sb2Te5 patterns by laser-induced forward transfer,” Opt. Express 19(18), 16975–16984 (2011).
    [Crossref] [PubMed]
  16. B. J. Zeng, J. Z. Huang, R. W. Ni, N. N. Yu, W. Wei, Y. Z. Hu, Z. Li, and X. S. Miao, “Metallic resist for phase-change lithography,” Sci. Rep. 4, 5300 (2014).
    [Crossref] [PubMed]
  17. Q. G. Meng, S. G. Zhang, J. G. Li, and X. F. Bian, “Dilatometric measurement and glass-forming ability in Pr-based bulk metallic glasses,” Scr. Metall. 55(6), 517–520 (2006).
    [Crossref]
  18. Z. F. Zhao, P. Wen, R. J. Wang, D. Q. Zhao, M. X. Pan, and W. H. Wang, “Formation and properties of Pr-Based bulk metallic glasses,” J. Mater. Res. 21(02), 369–374 (2006).
    [Crossref]
  19. Z. F. Zhao, Z. Zhang, P. Wen, M. X. Pan, D. Q. Zhao, W. H. Wang, and W. L. Wang, “A highly glass-forming alloy with low glass transition temperature,” Appl. Phys. Lett. 82(26), 4699–4701 (2003).
    [Crossref]
  20. N. H. Pryds, M. Eldrup, M. Ohnuma, A. S. Pedersen, J. Hattel, and S. Linderoth, “Preparation and properties of Mg-Cu-Y-Al bulk amorphous alloys,” Mater. Trans. 41(11), 1435–1442 (2000).
    [Crossref]
  21. X. X. Xia, W. H. Wang, and A. L. Greer, “Plastic zone at crack tip: a nanolab for formation and study of metallic glassy nanostructures,” J. Mater. Res. 24(09), 2986–2992 (2009).
    [Crossref]
  22. Q. G. Meng, S. G. Zhang, J. G. Li, and X. F. Bian, “Strong liquid behavior of Pr55Ni25Al20 bulk metallic glass,” J. Alloys Compd. 431(1-2), 191–196 (2007).
    [Crossref]
  23. X. M. Long, X. S. Miao, J. J. Sun, X. M. Cheng, H. Tong, Y. Li, D. H. Yang, J. D. Huang, and C. Liu, “Dynamic switching characteristic dependence on sidewall angle for phase change memory,” Solid-State Electron. 67(1), 1–5 (2012).
    [Crossref]
  24. K. E. Petersen, “Dynamic micromechanics on silicon: techniques and devices, IEEE. Trans. Electron. Dev 25(10), 1241–1250 (1978).
    [Crossref]
  25. M. Mezbahul-Islam and M. Medraj, “Phase equilibrium in Mg-Cu-Y,” Sci. Rep. 3, 3033 (2013).
    [Crossref] [PubMed]
  26. F. Su and K. Yao, “Facile fabrication of superhydrophobic surface with excellent mechanical abrasion and corrosion resistance on copper substrate by a novel method,” ACS Appl. Mater. Interfaces 6(11), 8762–8770 (2014).
    [Crossref] [PubMed]
  27. T. B. Wei, F. Y. Yan, and J. Tian, “Characterization and wear- and corrosion-resistance of microarc oxidation ceramic coatings on aluminum alloy,” J. Alloys Compd. 389(1-2), 169–176 (2005).
    [Crossref]

2015 (5)

2014 (3)

B. J. Zeng, J. Z. Huang, R. W. Ni, N. N. Yu, W. Wei, Y. Z. Hu, Z. Li, and X. S. Miao, “Metallic resist for phase-change lithography,” Sci. Rep. 4, 5300 (2014).
[Crossref] [PubMed]

M. Mivelle, P. Viktorovitch, F. I. Baida, A. El Eter, Z. Xie, T. P. Vo, E. Atie, G. W. Burr, D. Nedeljkovic, J. Y. Rauch, S. Callard, and T. Grosjean, “Light funneling from a photonic crystal laser cavity to a nano-antenna: overcoming the diffraction limit in optical energy transfer down to the nanoscale,” Opt. Express 22(12), 15075–15087 (2014).
[Crossref] [PubMed]

F. Su and K. Yao, “Facile fabrication of superhydrophobic surface with excellent mechanical abrasion and corrosion resistance on copper substrate by a novel method,” ACS Appl. Mater. Interfaces 6(11), 8762–8770 (2014).
[Crossref] [PubMed]

2013 (1)

M. Mezbahul-Islam and M. Medraj, “Phase equilibrium in Mg-Cu-Y,” Sci. Rep. 3, 3033 (2013).
[Crossref] [PubMed]

2012 (1)

X. M. Long, X. S. Miao, J. J. Sun, X. M. Cheng, H. Tong, Y. Li, D. H. Yang, J. D. Huang, and C. Liu, “Dynamic switching characteristic dependence on sidewall angle for phase change memory,” Solid-State Electron. 67(1), 1–5 (2012).
[Crossref]

2011 (1)

2010 (1)

2009 (1)

X. X. Xia, W. H. Wang, and A. L. Greer, “Plastic zone at crack tip: a nanolab for formation and study of metallic glassy nanostructures,” J. Mater. Res. 24(09), 2986–2992 (2009).
[Crossref]

2008 (1)

X. Zhang and Z. Liu, “Superlenses to overcome the diffraction limit,” Nat. Mater. 7(6), 435–441 (2008).
[Crossref] [PubMed]

2007 (1)

Q. G. Meng, S. G. Zhang, J. G. Li, and X. F. Bian, “Strong liquid behavior of Pr55Ni25Al20 bulk metallic glass,” J. Alloys Compd. 431(1-2), 191–196 (2007).
[Crossref]

2006 (3)

Y. Lin, M. H. Hong, T. C. Chong, C. S. Lim, G. X. Chen, L. S. Tan, Z. B. Wang, and L. P. Shi, “Ultrafast-laser induced parallel phase-change nanolithography,” Appl. Phys. Lett. 89, 0411081 (2006).

Q. G. Meng, S. G. Zhang, J. G. Li, and X. F. Bian, “Dilatometric measurement and glass-forming ability in Pr-based bulk metallic glasses,” Scr. Metall. 55(6), 517–520 (2006).
[Crossref]

Z. F. Zhao, P. Wen, R. J. Wang, D. Q. Zhao, M. X. Pan, and W. H. Wang, “Formation and properties of Pr-Based bulk metallic glasses,” J. Mater. Res. 21(02), 369–374 (2006).
[Crossref]

2005 (1)

T. B. Wei, F. Y. Yan, and J. Tian, “Characterization and wear- and corrosion-resistance of microarc oxidation ceramic coatings on aluminum alloy,” J. Alloys Compd. 389(1-2), 169–176 (2005).
[Crossref]

2004 (2)

T. Shintani, Y. Anzai, H. Minemura, H. Miyamoto, and J. Ushiyama, “Nanosize fabrication using etching of phase-change recording films,” Appl. Phys. Lett. 85(4), 639–641 (2004).
[Crossref]

A. Grbic and G. V. Eleftheriades, “Overcoming the diffraction limit with a planar left-handed transmission-line lens,” Phys. Rev. Lett. 92(11), 117403 (2004).
[Crossref] [PubMed]

2003 (3)

G. Marsh, “Moore’s law at extremes,” Mater. Today 6(5), 28–33 (2003).
[Crossref]

S. Hamilton, “Intel research expands Moore’s law,” IEEE Computer 36(1), 31–40 (2003).
[Crossref]

Z. F. Zhao, Z. Zhang, P. Wen, M. X. Pan, D. Q. Zhao, W. H. Wang, and W. L. Wang, “A highly glass-forming alloy with low glass transition temperature,” Appl. Phys. Lett. 82(26), 4699–4701 (2003).
[Crossref]

2000 (2)

N. H. Pryds, M. Eldrup, M. Ohnuma, A. S. Pedersen, J. Hattel, and S. Linderoth, “Preparation and properties of Mg-Cu-Y-Al bulk amorphous alloys,” Mater. Trans. 41(11), 1435–1442 (2000).
[Crossref]

T. Ito and S. Okazaki, “Pushing the limits of lithography,” Nature 406(6799), 1027–1031 (2000).
[Crossref] [PubMed]

1978 (1)

K. E. Petersen, “Dynamic micromechanics on silicon: techniques and devices, IEEE. Trans. Electron. Dev 25(10), 1241–1250 (1978).
[Crossref]

Anzai, Y.

T. Shintani, Y. Anzai, H. Minemura, H. Miyamoto, and J. Ushiyama, “Nanosize fabrication using etching of phase-change recording films,” Appl. Phys. Lett. 85(4), 639–641 (2004).
[Crossref]

Atie, E.

Baida, F. I.

Bellouard, Y.

Beresna, M.

Bian, X. F.

Q. G. Meng, S. G. Zhang, J. G. Li, and X. F. Bian, “Strong liquid behavior of Pr55Ni25Al20 bulk metallic glass,” J. Alloys Compd. 431(1-2), 191–196 (2007).
[Crossref]

Q. G. Meng, S. G. Zhang, J. G. Li, and X. F. Bian, “Dilatometric measurement and glass-forming ability in Pr-based bulk metallic glasses,” Scr. Metall. 55(6), 517–520 (2006).
[Crossref]

Boyraz, O.

Burr, G. W.

Callard, S.

Capolino, F.

Chang, C. M.

Chen, B. H.

Chen, G. X.

Y. Lin, M. H. Hong, T. C. Chong, C. S. Lim, G. X. Chen, L. S. Tan, Z. B. Wang, and L. P. Shi, “Ultrafast-laser induced parallel phase-change nanolithography,” Appl. Phys. Lett. 89, 0411081 (2006).

Chen, X.

Z. Luo, Y. Jiang, B. D. Myers, D. Isheim, J. Wu, J. F. Zimmerman, Z. Wang, Q. Li, Y. Wang, X. Chen, V. P. Dravid, D. N. Seidman, and B. Tian, “Atomic gold-enabled three-dimensional lithography for silicon mesostructures,” Science 348(6242), 1451–1455 (2015).
[Crossref] [PubMed]

Cheng, H. W.

Cheng, X. M.

X. M. Long, X. S. Miao, J. J. Sun, X. M. Cheng, H. Tong, Y. Li, D. H. Yang, J. D. Huang, and C. Liu, “Dynamic switching characteristic dependence on sidewall angle for phase change memory,” Solid-State Electron. 67(1), 1–5 (2012).
[Crossref]

Chiang, H.-P.

Chong, T. C.

Y. Lin, M. H. Hong, T. C. Chong, C. S. Lim, G. X. Chen, L. S. Tan, Z. B. Wang, and L. P. Shi, “Ultrafast-laser induced parallel phase-change nanolithography,” Appl. Phys. Lett. 89, 0411081 (2006).

Chu, C. H.

Chu, N. N.

Da Shiue, C.

Dravid, V. P.

Z. Luo, Y. Jiang, B. D. Myers, D. Isheim, J. Wu, J. F. Zimmerman, Z. Wang, Q. Li, Y. Wang, X. Chen, V. P. Dravid, D. N. Seidman, and B. Tian, “Atomic gold-enabled three-dimensional lithography for silicon mesostructures,” Science 348(6242), 1451–1455 (2015).
[Crossref] [PubMed]

Drevinskas, R.

El Eter, A.

Eldrup, M.

N. H. Pryds, M. Eldrup, M. Ohnuma, A. S. Pedersen, J. Hattel, and S. Linderoth, “Preparation and properties of Mg-Cu-Y-Al bulk amorphous alloys,” Mater. Trans. 41(11), 1435–1442 (2000).
[Crossref]

Eleftheriades, G. V.

A. Grbic and G. V. Eleftheriades, “Overcoming the diffraction limit with a planar left-handed transmission-line lens,” Phys. Rev. Lett. 92(11), 117403 (2004).
[Crossref] [PubMed]

Fan, S.

Gecevicius, M.

Grbic, A.

A. Grbic and G. V. Eleftheriades, “Overcoming the diffraction limit with a planar left-handed transmission-line lens,” Phys. Rev. Lett. 92(11), 117403 (2004).
[Crossref] [PubMed]

Greer, A. L.

X. X. Xia, W. H. Wang, and A. L. Greer, “Plastic zone at crack tip: a nanolab for formation and study of metallic glassy nanostructures,” J. Mater. Res. 24(09), 2986–2992 (2009).
[Crossref]

Grosjean, T.

Hamilton, S.

S. Hamilton, “Intel research expands Moore’s law,” IEEE Computer 36(1), 31–40 (2003).
[Crossref]

Hattel, J.

N. H. Pryds, M. Eldrup, M. Ohnuma, A. S. Pedersen, J. Hattel, and S. Linderoth, “Preparation and properties of Mg-Cu-Y-Al bulk amorphous alloys,” Mater. Trans. 41(11), 1435–1442 (2000).
[Crossref]

Hong, M. H.

Y. Lin, M. H. Hong, T. C. Chong, C. S. Lim, G. X. Chen, L. S. Tan, Z. B. Wang, and L. P. Shi, “Ultrafast-laser induced parallel phase-change nanolithography,” Appl. Phys. Lett. 89, 0411081 (2006).

Hu, Y. Z.

B. J. Zeng, J. Z. Huang, R. W. Ni, N. N. Yu, W. Wei, Y. Z. Hu, Z. Li, and X. S. Miao, “Metallic resist for phase-change lithography,” Sci. Rep. 4, 5300 (2014).
[Crossref] [PubMed]

Huang, J. D.

X. M. Long, X. S. Miao, J. J. Sun, X. M. Cheng, H. Tong, Y. Li, D. H. Yang, J. D. Huang, and C. Liu, “Dynamic switching characteristic dependence on sidewall angle for phase change memory,” Solid-State Electron. 67(1), 1–5 (2012).
[Crossref]

Huang, J. Z.

B. J. Zeng, J. Z. Huang, R. W. Ni, N. N. Yu, W. Wei, Y. Z. Hu, Z. Li, and X. S. Miao, “Metallic resist for phase-change lithography,” Sci. Rep. 4, 5300 (2014).
[Crossref] [PubMed]

Huang, Y.

Isheim, D.

Z. Luo, Y. Jiang, B. D. Myers, D. Isheim, J. Wu, J. F. Zimmerman, Z. Wang, Q. Li, Y. Wang, X. Chen, V. P. Dravid, D. N. Seidman, and B. Tian, “Atomic gold-enabled three-dimensional lithography for silicon mesostructures,” Science 348(6242), 1451–1455 (2015).
[Crossref] [PubMed]

Ito, T.

T. Ito and S. Okazaki, “Pushing the limits of lithography,” Nature 406(6799), 1027–1031 (2000).
[Crossref] [PubMed]

Jiang, Y.

Z. Luo, Y. Jiang, B. D. Myers, D. Isheim, J. Wu, J. F. Zimmerman, Z. Wang, Q. Li, Y. Wang, X. Chen, V. P. Dravid, D. N. Seidman, and B. Tian, “Atomic gold-enabled three-dimensional lithography for silicon mesostructures,” Science 348(6242), 1451–1455 (2015).
[Crossref] [PubMed]

Kamyab, L.

Kazansky, P. G.

Li, J. G.

Q. G. Meng, S. G. Zhang, J. G. Li, and X. F. Bian, “Strong liquid behavior of Pr55Ni25Al20 bulk metallic glass,” J. Alloys Compd. 431(1-2), 191–196 (2007).
[Crossref]

Q. G. Meng, S. G. Zhang, J. G. Li, and X. F. Bian, “Dilatometric measurement and glass-forming ability in Pr-based bulk metallic glasses,” Scr. Metall. 55(6), 517–520 (2006).
[Crossref]

Li, Q.

Z. Luo, Y. Jiang, B. D. Myers, D. Isheim, J. Wu, J. F. Zimmerman, Z. Wang, Q. Li, Y. Wang, X. Chen, V. P. Dravid, D. N. Seidman, and B. Tian, “Atomic gold-enabled three-dimensional lithography for silicon mesostructures,” Science 348(6242), 1451–1455 (2015).
[Crossref] [PubMed]

Li, Y.

X. M. Long, X. S. Miao, J. J. Sun, X. M. Cheng, H. Tong, Y. Li, D. H. Yang, J. D. Huang, and C. Liu, “Dynamic switching characteristic dependence on sidewall angle for phase change memory,” Solid-State Electron. 67(1), 1–5 (2012).
[Crossref]

Li, Z.

B. J. Zeng, J. Z. Huang, R. W. Ni, N. N. Yu, W. Wei, Y. Z. Hu, Z. Li, and X. S. Miao, “Metallic resist for phase-change lithography,” Sci. Rep. 4, 5300 (2014).
[Crossref] [PubMed]

Lim, C. S.

Y. Lin, M. H. Hong, T. C. Chong, C. S. Lim, G. X. Chen, L. S. Tan, Z. B. Wang, and L. P. Shi, “Ultrafast-laser induced parallel phase-change nanolithography,” Appl. Phys. Lett. 89, 0411081 (2006).

Lin, W. C.

Lin, Y.

Y. Lin, M. H. Hong, T. C. Chong, C. S. Lim, G. X. Chen, L. S. Tan, Z. B. Wang, and L. P. Shi, “Ultrafast-laser induced parallel phase-change nanolithography,” Appl. Phys. Lett. 89, 0411081 (2006).

Linderoth, S.

N. H. Pryds, M. Eldrup, M. Ohnuma, A. S. Pedersen, J. Hattel, and S. Linderoth, “Preparation and properties of Mg-Cu-Y-Al bulk amorphous alloys,” Mater. Trans. 41(11), 1435–1442 (2000).
[Crossref]

Liu, A. Q.

Liu, C.

X. M. Long, X. S. Miao, J. J. Sun, X. M. Cheng, H. Tong, Y. Li, D. H. Yang, J. D. Huang, and C. Liu, “Dynamic switching characteristic dependence on sidewall angle for phase change memory,” Solid-State Electron. 67(1), 1–5 (2012).
[Crossref]

Liu, Z.

X. Zhang and Z. Liu, “Superlenses to overcome the diffraction limit,” Nat. Mater. 7(6), 435–441 (2008).
[Crossref] [PubMed]

Long, X. M.

X. M. Long, X. S. Miao, J. J. Sun, X. M. Cheng, H. Tong, Y. Li, D. H. Yang, J. D. Huang, and C. Liu, “Dynamic switching characteristic dependence on sidewall angle for phase change memory,” Solid-State Electron. 67(1), 1–5 (2012).
[Crossref]

Luo, Z.

Z. Luo, Y. Jiang, B. D. Myers, D. Isheim, J. Wu, J. F. Zimmerman, Z. Wang, Q. Li, Y. Wang, X. Chen, V. P. Dravid, D. N. Seidman, and B. Tian, “Atomic gold-enabled three-dimensional lithography for silicon mesostructures,” Science 348(6242), 1451–1455 (2015).
[Crossref] [PubMed]

Mansuripur, M.

Marsh, G.

G. Marsh, “Moore’s law at extremes,” Mater. Today 6(5), 28–33 (2003).
[Crossref]

Matsukawa, T.

Medraj, M.

M. Mezbahul-Islam and M. Medraj, “Phase equilibrium in Mg-Cu-Y,” Sci. Rep. 3, 3033 (2013).
[Crossref] [PubMed]

Meng, Q. G.

Q. G. Meng, S. G. Zhang, J. G. Li, and X. F. Bian, “Strong liquid behavior of Pr55Ni25Al20 bulk metallic glass,” J. Alloys Compd. 431(1-2), 191–196 (2007).
[Crossref]

Q. G. Meng, S. G. Zhang, J. G. Li, and X. F. Bian, “Dilatometric measurement and glass-forming ability in Pr-based bulk metallic glasses,” Scr. Metall. 55(6), 517–520 (2006).
[Crossref]

Mezbahul-Islam, M.

M. Mezbahul-Islam and M. Medraj, “Phase equilibrium in Mg-Cu-Y,” Sci. Rep. 3, 3033 (2013).
[Crossref] [PubMed]

Miao, X. S.

B. J. Zeng, J. Z. Huang, R. W. Ni, N. N. Yu, W. Wei, Y. Z. Hu, Z. Li, and X. S. Miao, “Metallic resist for phase-change lithography,” Sci. Rep. 4, 5300 (2014).
[Crossref] [PubMed]

X. M. Long, X. S. Miao, J. J. Sun, X. M. Cheng, H. Tong, Y. Li, D. H. Yang, J. D. Huang, and C. Liu, “Dynamic switching characteristic dependence on sidewall angle for phase change memory,” Solid-State Electron. 67(1), 1–5 (2012).
[Crossref]

Minamide, H.

Minemura, H.

T. Shintani, Y. Anzai, H. Minemura, H. Miyamoto, and J. Ushiyama, “Nanosize fabrication using etching of phase-change recording films,” Appl. Phys. Lett. 85(4), 639–641 (2004).
[Crossref]

Mivelle, M.

Miyamoto, H.

T. Shintani, Y. Anzai, H. Minemura, H. Miyamoto, and J. Ushiyama, “Nanosize fabrication using etching of phase-change recording films,” Appl. Phys. Lett. 85(4), 639–641 (2004).
[Crossref]

Myers, B. D.

Z. Luo, Y. Jiang, B. D. Myers, D. Isheim, J. Wu, J. F. Zimmerman, Z. Wang, Q. Li, Y. Wang, X. Chen, V. P. Dravid, D. N. Seidman, and B. Tian, “Atomic gold-enabled three-dimensional lithography for silicon mesostructures,” Science 348(6242), 1451–1455 (2015).
[Crossref] [PubMed]

Nawata, K.

Nedeljkovic, D.

Ni, R. W.

B. J. Zeng, J. Z. Huang, R. W. Ni, N. N. Yu, W. Wei, Y. Z. Hu, Z. Li, and X. S. Miao, “Metallic resist for phase-change lithography,” Sci. Rep. 4, 5300 (2014).
[Crossref] [PubMed]

Notake, T.

Ohnuma, M.

N. H. Pryds, M. Eldrup, M. Ohnuma, A. S. Pedersen, J. Hattel, and S. Linderoth, “Preparation and properties of Mg-Cu-Y-Al bulk amorphous alloys,” Mater. Trans. 41(11), 1435–1442 (2000).
[Crossref]

Okazaki, S.

T. Ito and S. Okazaki, “Pushing the limits of lithography,” Nature 406(6799), 1027–1031 (2000).
[Crossref] [PubMed]

Pan, M. X.

Z. F. Zhao, P. Wen, R. J. Wang, D. Q. Zhao, M. X. Pan, and W. H. Wang, “Formation and properties of Pr-Based bulk metallic glasses,” J. Mater. Res. 21(02), 369–374 (2006).
[Crossref]

Z. F. Zhao, Z. Zhang, P. Wen, M. X. Pan, D. Q. Zhao, W. H. Wang, and W. L. Wang, “A highly glass-forming alloy with low glass transition temperature,” Appl. Phys. Lett. 82(26), 4699–4701 (2003).
[Crossref]

Pedersen, A. S.

N. H. Pryds, M. Eldrup, M. Ohnuma, A. S. Pedersen, J. Hattel, and S. Linderoth, “Preparation and properties of Mg-Cu-Y-Al bulk amorphous alloys,” Mater. Trans. 41(11), 1435–1442 (2000).
[Crossref]

Petersen, K. E.

K. E. Petersen, “Dynamic micromechanics on silicon: techniques and devices, IEEE. Trans. Electron. Dev 25(10), 1241–1250 (1978).
[Crossref]

Pryds, N. H.

N. H. Pryds, M. Eldrup, M. Ohnuma, A. S. Pedersen, J. Hattel, and S. Linderoth, “Preparation and properties of Mg-Cu-Y-Al bulk amorphous alloys,” Mater. Trans. 41(11), 1435–1442 (2000).
[Crossref]

Qi, F.

Rauch, J. Y.

Robertson, J.

X. Yu and J. Robertson, “Modeling of switching mechanism in GeSbTe chalcogenide superlattices,” Sci. Rep. 5, 12612 (2015).
[Crossref] [PubMed]

Rostami, A.

Seidman, D. N.

Z. Luo, Y. Jiang, B. D. Myers, D. Isheim, J. Wu, J. F. Zimmerman, Z. Wang, Q. Li, Y. Wang, X. Chen, V. P. Dravid, D. N. Seidman, and B. Tian, “Atomic gold-enabled three-dimensional lithography for silicon mesostructures,” Science 348(6242), 1451–1455 (2015).
[Crossref] [PubMed]

Shi, L. P.

Y. Lin, M. H. Hong, T. C. Chong, C. S. Lim, G. X. Chen, L. S. Tan, Z. B. Wang, and L. P. Shi, “Ultrafast-laser induced parallel phase-change nanolithography,” Appl. Phys. Lett. 89, 0411081 (2006).

Shintani, T.

T. Shintani, Y. Anzai, H. Minemura, H. Miyamoto, and J. Ushiyama, “Nanosize fabrication using etching of phase-change recording films,” Appl. Phys. Lett. 85(4), 639–641 (2004).
[Crossref]

Su, F.

F. Su and K. Yao, “Facile fabrication of superhydrophobic surface with excellent mechanical abrasion and corrosion resistance on copper substrate by a novel method,” ACS Appl. Mater. Interfaces 6(11), 8762–8770 (2014).
[Crossref] [PubMed]

Sun, J. J.

X. M. Long, X. S. Miao, J. J. Sun, X. M. Cheng, H. Tong, Y. Li, D. H. Yang, J. D. Huang, and C. Liu, “Dynamic switching characteristic dependence on sidewall angle for phase change memory,” Solid-State Electron. 67(1), 1–5 (2012).
[Crossref]

Takida, Y.

Tan, L. S.

Y. Lin, M. H. Hong, T. C. Chong, C. S. Lim, G. X. Chen, L. S. Tan, Z. B. Wang, and L. P. Shi, “Ultrafast-laser induced parallel phase-change nanolithography,” Appl. Phys. Lett. 89, 0411081 (2006).

Tian, B.

Z. Luo, Y. Jiang, B. D. Myers, D. Isheim, J. Wu, J. F. Zimmerman, Z. Wang, Q. Li, Y. Wang, X. Chen, V. P. Dravid, D. N. Seidman, and B. Tian, “Atomic gold-enabled three-dimensional lithography for silicon mesostructures,” Science 348(6242), 1451–1455 (2015).
[Crossref] [PubMed]

Tian, J.

T. B. Wei, F. Y. Yan, and J. Tian, “Characterization and wear- and corrosion-resistance of microarc oxidation ceramic coatings on aluminum alloy,” J. Alloys Compd. 389(1-2), 169–176 (2005).
[Crossref]

Tong, H.

X. M. Long, X. S. Miao, J. J. Sun, X. M. Cheng, H. Tong, Y. Li, D. H. Yang, J. D. Huang, and C. Liu, “Dynamic switching characteristic dependence on sidewall angle for phase change memory,” Solid-State Electron. 67(1), 1–5 (2012).
[Crossref]

Tsai, D. P.

Tseng, M. L.

Ushiyama, J.

T. Shintani, Y. Anzai, H. Minemura, H. Miyamoto, and J. Ushiyama, “Nanosize fabrication using etching of phase-change recording films,” Appl. Phys. Lett. 85(4), 639–641 (2004).
[Crossref]

Viktorovitch, P.

Vo, T. P.

Wang, R. J.

Z. F. Zhao, P. Wen, R. J. Wang, D. Q. Zhao, M. X. Pan, and W. H. Wang, “Formation and properties of Pr-Based bulk metallic glasses,” J. Mater. Res. 21(02), 369–374 (2006).
[Crossref]

Wang, W. H.

X. X. Xia, W. H. Wang, and A. L. Greer, “Plastic zone at crack tip: a nanolab for formation and study of metallic glassy nanostructures,” J. Mater. Res. 24(09), 2986–2992 (2009).
[Crossref]

Z. F. Zhao, P. Wen, R. J. Wang, D. Q. Zhao, M. X. Pan, and W. H. Wang, “Formation and properties of Pr-Based bulk metallic glasses,” J. Mater. Res. 21(02), 369–374 (2006).
[Crossref]

Z. F. Zhao, Z. Zhang, P. Wen, M. X. Pan, D. Q. Zhao, W. H. Wang, and W. L. Wang, “A highly glass-forming alloy with low glass transition temperature,” Appl. Phys. Lett. 82(26), 4699–4701 (2003).
[Crossref]

Wang, W. L.

Z. F. Zhao, Z. Zhang, P. Wen, M. X. Pan, D. Q. Zhao, W. H. Wang, and W. L. Wang, “A highly glass-forming alloy with low glass transition temperature,” Appl. Phys. Lett. 82(26), 4699–4701 (2003).
[Crossref]

Wang, Y.

Z. Luo, Y. Jiang, B. D. Myers, D. Isheim, J. Wu, J. F. Zimmerman, Z. Wang, Q. Li, Y. Wang, X. Chen, V. P. Dravid, D. N. Seidman, and B. Tian, “Atomic gold-enabled three-dimensional lithography for silicon mesostructures,” Science 348(6242), 1451–1455 (2015).
[Crossref] [PubMed]

Wang, Z.

Z. Luo, Y. Jiang, B. D. Myers, D. Isheim, J. Wu, J. F. Zimmerman, Z. Wang, Q. Li, Y. Wang, X. Chen, V. P. Dravid, D. N. Seidman, and B. Tian, “Atomic gold-enabled three-dimensional lithography for silicon mesostructures,” Science 348(6242), 1451–1455 (2015).
[Crossref] [PubMed]

Wang, Z. B.

Y. Lin, M. H. Hong, T. C. Chong, C. S. Lim, G. X. Chen, L. S. Tan, Z. B. Wang, and L. P. Shi, “Ultrafast-laser induced parallel phase-change nanolithography,” Appl. Phys. Lett. 89, 0411081 (2006).

Wei, T. B.

T. B. Wei, F. Y. Yan, and J. Tian, “Characterization and wear- and corrosion-resistance of microarc oxidation ceramic coatings on aluminum alloy,” J. Alloys Compd. 389(1-2), 169–176 (2005).
[Crossref]

Wei, W.

B. J. Zeng, J. Z. Huang, R. W. Ni, N. N. Yu, W. Wei, Y. Z. Hu, Z. Li, and X. S. Miao, “Metallic resist for phase-change lithography,” Sci. Rep. 4, 5300 (2014).
[Crossref] [PubMed]

Wen, P.

Z. F. Zhao, P. Wen, R. J. Wang, D. Q. Zhao, M. X. Pan, and W. H. Wang, “Formation and properties of Pr-Based bulk metallic glasses,” J. Mater. Res. 21(02), 369–374 (2006).
[Crossref]

Z. F. Zhao, Z. Zhang, P. Wen, M. X. Pan, D. Q. Zhao, W. H. Wang, and W. L. Wang, “A highly glass-forming alloy with low glass transition temperature,” Appl. Phys. Lett. 82(26), 4699–4701 (2003).
[Crossref]

Wu, J.

Z. Luo, Y. Jiang, B. D. Myers, D. Isheim, J. Wu, J. F. Zimmerman, Z. Wang, Q. Li, Y. Wang, X. Chen, V. P. Dravid, D. N. Seidman, and B. Tian, “Atomic gold-enabled three-dimensional lithography for silicon mesostructures,” Science 348(6242), 1451–1455 (2015).
[Crossref] [PubMed]

Xia, X. X.

X. X. Xia, W. H. Wang, and A. L. Greer, “Plastic zone at crack tip: a nanolab for formation and study of metallic glassy nanostructures,” J. Mater. Res. 24(09), 2986–2992 (2009).
[Crossref]

Xie, Z.

Yan, F. Y.

T. B. Wei, F. Y. Yan, and J. Tian, “Characterization and wear- and corrosion-resistance of microarc oxidation ceramic coatings on aluminum alloy,” J. Alloys Compd. 389(1-2), 169–176 (2005).
[Crossref]

Yang, D. H.

X. M. Long, X. S. Miao, J. J. Sun, X. M. Cheng, H. Tong, Y. Li, D. H. Yang, J. D. Huang, and C. Liu, “Dynamic switching characteristic dependence on sidewall angle for phase change memory,” Solid-State Electron. 67(1), 1–5 (2012).
[Crossref]

Yao, K.

F. Su and K. Yao, “Facile fabrication of superhydrophobic surface with excellent mechanical abrasion and corrosion resistance on copper substrate by a novel method,” ACS Appl. Mater. Interfaces 6(11), 8762–8770 (2014).
[Crossref] [PubMed]

Yu, N. N.

B. J. Zeng, J. Z. Huang, R. W. Ni, N. N. Yu, W. Wei, Y. Z. Hu, Z. Li, and X. S. Miao, “Metallic resist for phase-change lithography,” Sci. Rep. 4, 5300 (2014).
[Crossref] [PubMed]

Yu, X.

X. Yu and J. Robertson, “Modeling of switching mechanism in GeSbTe chalcogenide superlattices,” Sci. Rep. 5, 12612 (2015).
[Crossref] [PubMed]

Zeng, B. J.

B. J. Zeng, J. Z. Huang, R. W. Ni, N. N. Yu, W. Wei, Y. Z. Hu, Z. Li, and X. S. Miao, “Metallic resist for phase-change lithography,” Sci. Rep. 4, 5300 (2014).
[Crossref] [PubMed]

Zhang, S. G.

Q. G. Meng, S. G. Zhang, J. G. Li, and X. F. Bian, “Strong liquid behavior of Pr55Ni25Al20 bulk metallic glass,” J. Alloys Compd. 431(1-2), 191–196 (2007).
[Crossref]

Q. G. Meng, S. G. Zhang, J. G. Li, and X. F. Bian, “Dilatometric measurement and glass-forming ability in Pr-based bulk metallic glasses,” Scr. Metall. 55(6), 517–520 (2006).
[Crossref]

Zhang, X.

X. Zhang and Z. Liu, “Superlenses to overcome the diffraction limit,” Nat. Mater. 7(6), 435–441 (2008).
[Crossref] [PubMed]

Zhang, Z.

Z. F. Zhao, Z. Zhang, P. Wen, M. X. Pan, D. Q. Zhao, W. H. Wang, and W. L. Wang, “A highly glass-forming alloy with low glass transition temperature,” Appl. Phys. Lett. 82(26), 4699–4701 (2003).
[Crossref]

Zhao, D. Q.

Z. F. Zhao, P. Wen, R. J. Wang, D. Q. Zhao, M. X. Pan, and W. H. Wang, “Formation and properties of Pr-Based bulk metallic glasses,” J. Mater. Res. 21(02), 369–374 (2006).
[Crossref]

Z. F. Zhao, Z. Zhang, P. Wen, M. X. Pan, D. Q. Zhao, W. H. Wang, and W. L. Wang, “A highly glass-forming alloy with low glass transition temperature,” Appl. Phys. Lett. 82(26), 4699–4701 (2003).
[Crossref]

Zhao, Q.

Zhao, Z. F.

Z. F. Zhao, P. Wen, R. J. Wang, D. Q. Zhao, M. X. Pan, and W. H. Wang, “Formation and properties of Pr-Based bulk metallic glasses,” J. Mater. Res. 21(02), 369–374 (2006).
[Crossref]

Z. F. Zhao, Z. Zhang, P. Wen, M. X. Pan, D. Q. Zhao, W. H. Wang, and W. L. Wang, “A highly glass-forming alloy with low glass transition temperature,” Appl. Phys. Lett. 82(26), 4699–4701 (2003).
[Crossref]

Zimmerman, J. F.

Z. Luo, Y. Jiang, B. D. Myers, D. Isheim, J. Wu, J. F. Zimmerman, Z. Wang, Q. Li, Y. Wang, X. Chen, V. P. Dravid, D. N. Seidman, and B. Tian, “Atomic gold-enabled three-dimensional lithography for silicon mesostructures,” Science 348(6242), 1451–1455 (2015).
[Crossref] [PubMed]

ACS Appl. Mater. Interfaces (1)

F. Su and K. Yao, “Facile fabrication of superhydrophobic surface with excellent mechanical abrasion and corrosion resistance on copper substrate by a novel method,” ACS Appl. Mater. Interfaces 6(11), 8762–8770 (2014).
[Crossref] [PubMed]

Appl. Phys. Lett. (3)

Y. Lin, M. H. Hong, T. C. Chong, C. S. Lim, G. X. Chen, L. S. Tan, Z. B. Wang, and L. P. Shi, “Ultrafast-laser induced parallel phase-change nanolithography,” Appl. Phys. Lett. 89, 0411081 (2006).

T. Shintani, Y. Anzai, H. Minemura, H. Miyamoto, and J. Ushiyama, “Nanosize fabrication using etching of phase-change recording films,” Appl. Phys. Lett. 85(4), 639–641 (2004).
[Crossref]

Z. F. Zhao, Z. Zhang, P. Wen, M. X. Pan, D. Q. Zhao, W. H. Wang, and W. L. Wang, “A highly glass-forming alloy with low glass transition temperature,” Appl. Phys. Lett. 82(26), 4699–4701 (2003).
[Crossref]

IEEE Computer (1)

S. Hamilton, “Intel research expands Moore’s law,” IEEE Computer 36(1), 31–40 (2003).
[Crossref]

IEEE. Trans. Electron. Dev (1)

K. E. Petersen, “Dynamic micromechanics on silicon: techniques and devices, IEEE. Trans. Electron. Dev 25(10), 1241–1250 (1978).
[Crossref]

J. Alloys Compd. (2)

T. B. Wei, F. Y. Yan, and J. Tian, “Characterization and wear- and corrosion-resistance of microarc oxidation ceramic coatings on aluminum alloy,” J. Alloys Compd. 389(1-2), 169–176 (2005).
[Crossref]

Q. G. Meng, S. G. Zhang, J. G. Li, and X. F. Bian, “Strong liquid behavior of Pr55Ni25Al20 bulk metallic glass,” J. Alloys Compd. 431(1-2), 191–196 (2007).
[Crossref]

J. Mater. Res. (2)

Z. F. Zhao, P. Wen, R. J. Wang, D. Q. Zhao, M. X. Pan, and W. H. Wang, “Formation and properties of Pr-Based bulk metallic glasses,” J. Mater. Res. 21(02), 369–374 (2006).
[Crossref]

X. X. Xia, W. H. Wang, and A. L. Greer, “Plastic zone at crack tip: a nanolab for formation and study of metallic glassy nanostructures,” J. Mater. Res. 24(09), 2986–2992 (2009).
[Crossref]

Mater. Today (1)

G. Marsh, “Moore’s law at extremes,” Mater. Today 6(5), 28–33 (2003).
[Crossref]

Mater. Trans. (1)

N. H. Pryds, M. Eldrup, M. Ohnuma, A. S. Pedersen, J. Hattel, and S. Linderoth, “Preparation and properties of Mg-Cu-Y-Al bulk amorphous alloys,” Mater. Trans. 41(11), 1435–1442 (2000).
[Crossref]

Nat. Mater. (1)

X. Zhang and Z. Liu, “Superlenses to overcome the diffraction limit,” Nat. Mater. 7(6), 435–441 (2008).
[Crossref] [PubMed]

Nature (1)

T. Ito and S. Okazaki, “Pushing the limits of lithography,” Nature 406(6799), 1027–1031 (2000).
[Crossref] [PubMed]

Opt. Express (6)

S. Fan, F. Qi, T. Notake, K. Nawata, Y. Takida, T. Matsukawa, and H. Minamide, “Diffraction-limited real-time terahertz imaging by optical frequency up-conversion in a DAST crystal,” Opt. Express 23(6), 7611–7618 (2015).
[Crossref] [PubMed]

M. L. Tseng, B. H. Chen, C. H. Chu, C. M. Chang, W. C. Lin, N. N. Chu, M. Mansuripur, A. Q. Liu, and D. P. Tsai, “Fabrication of phase-change chalcogenide Ge2Sb2Te5 patterns by laser-induced forward transfer,” Opt. Express 19(18), 16975–16984 (2011).
[Crossref] [PubMed]

Y. Huang, Q. Zhao, L. Kamyab, A. Rostami, F. Capolino, and O. Boyraz, “Sub-micron silicon nitride waveguide fabrication using conventional optical lithography,” Opt. Express 23(5), 6780–6786 (2015).
[Crossref] [PubMed]

M. Mivelle, P. Viktorovitch, F. I. Baida, A. El Eter, Z. Xie, T. P. Vo, E. Atie, G. W. Burr, D. Nedeljkovic, J. Y. Rauch, S. Callard, and T. Grosjean, “Light funneling from a photonic crystal laser cavity to a nano-antenna: overcoming the diffraction limit in optical energy transfer down to the nanoscale,” Opt. Express 22(12), 15075–15087 (2014).
[Crossref] [PubMed]

C. H. Chu, C. Da Shiue, H. W. Cheng, M. L. Tseng, H.-P. Chiang, M. Mansuripur, and D. P. Tsai, “Laser-induced phase transitions of Ge2Sb2Te5 thin films used in optical and electronic data storage and in thermal lithography,” Opt. Express 18(17), 18383–18393 (2010).
[Crossref] [PubMed]

R. Drevinskas, M. Gecevičius, M. Beresna, Y. Bellouard, and P. G. Kazansky, “Tailored surface birefringence by femtosecond laser assisted wet etching,” Opt. Express 23(2), 1428–1437 (2015).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

A. Grbic and G. V. Eleftheriades, “Overcoming the diffraction limit with a planar left-handed transmission-line lens,” Phys. Rev. Lett. 92(11), 117403 (2004).
[Crossref] [PubMed]

Sci. Rep. (3)

X. Yu and J. Robertson, “Modeling of switching mechanism in GeSbTe chalcogenide superlattices,” Sci. Rep. 5, 12612 (2015).
[Crossref] [PubMed]

B. J. Zeng, J. Z. Huang, R. W. Ni, N. N. Yu, W. Wei, Y. Z. Hu, Z. Li, and X. S. Miao, “Metallic resist for phase-change lithography,” Sci. Rep. 4, 5300 (2014).
[Crossref] [PubMed]

M. Mezbahul-Islam and M. Medraj, “Phase equilibrium in Mg-Cu-Y,” Sci. Rep. 3, 3033 (2013).
[Crossref] [PubMed]

Science (1)

Z. Luo, Y. Jiang, B. D. Myers, D. Isheim, J. Wu, J. F. Zimmerman, Z. Wang, Q. Li, Y. Wang, X. Chen, V. P. Dravid, D. N. Seidman, and B. Tian, “Atomic gold-enabled three-dimensional lithography for silicon mesostructures,” Science 348(6242), 1451–1455 (2015).
[Crossref] [PubMed]

Scr. Metall. (1)

Q. G. Meng, S. G. Zhang, J. G. Li, and X. F. Bian, “Dilatometric measurement and glass-forming ability in Pr-based bulk metallic glasses,” Scr. Metall. 55(6), 517–520 (2006).
[Crossref]

Solid-State Electron. (1)

X. M. Long, X. S. Miao, J. J. Sun, X. M. Cheng, H. Tong, Y. Li, D. H. Yang, J. D. Huang, and C. Liu, “Dynamic switching characteristic dependence on sidewall angle for phase change memory,” Solid-State Electron. 67(1), 1–5 (2012).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 3D model of PrAlNiCu or MgCuY thin film on the substrate for FEM simulation. The film was 300-nm-thickness and glass substrate was 10-μm-thickness.
Fig. 2
Fig. 2 Schematic diagram of exposure system. The wavelength of laser beam is 661 nm, beam expander collimates and expands laser beam, auto-focus system makes the thin film focused accurately, the numerical aperture of the objective lens is 0.4, sample moves with X-Y stepping translation stage based on the data we imported in the computer to form the crystalline patterns.
Fig. 3
Fig. 3 XRD curves for the as-deposited and annealed PrAlNiCu thin films. Red curve stands for the annealed thin film while black curve stands for the as-deposited thin film. The annealing condition was at 350 °C for 30 min.
Fig. 4
Fig. 4 Temperature distribution simulation curves along X-direction of PrAlNiCu or MgCuY. (a) Temperature curves for the upper surface of the PrAlNiCu or MgCuY thin films along X-direction. The laser power was 20 mW for the both samples, pulse width of MgCuY was 80 ms and PrAlNiCu was 150 ns. The center temperature was roughly the same at 300 °C. (b) Temperature curves for the upper surface of PrAlNiCu in six different laser powers and pulse widths. The center temperature was controlled at 275 °C.
Fig. 5
Fig. 5 Temperature contour images on X-Z cross section of PrAlNiCu. The laser power was 10 mW and the pulse widths were 200 ns, 250 ns, 300 ns, 400 ns, 500 ns From A to E. The crystalline temperature of PrAlNiCu was approximately 180 °C, regions in which temperatures are greater than crystalline temperature were set as chromatic and the rest regions were black.
Fig. 6
Fig. 6 Surface step diagram of PrAlNiCu thin films. (a) Step diagram of as-deposited PrAlNiCu thin film before exposure. (b) Step diagram of PrAlNiCu thin film after exposure and before wet etching. (c) Step diagram of PrAlNiCu thin film after wet etching. (d) Surface topography of PrAlNiCu thin film after wet etching. The laser was continuous-wave laser and the laser power was set at 60 mW, the etching solution was 0.5-wt% aqueous solution of nitric-acid and the etching time was 5 s.
Fig. 7
Fig. 7 Optical micrographs of laser-induced crystallized lines on the PrAlNiCu thin film. Four lines from left to right (a-d), the laser power was 60 mW, 70 mW, 80 mW and 90 mW respectively.
Fig. 8
Fig. 8 Etching rate curves for amorphous and crystalline PrAlNiCu thin films. The etching solution was 0.5-wt% aqueous solution of nitric-acid, etching time of amorphous sample was set from 2.5 s to 20 s with 2.5 s step, etching time of crystalline sample was set from 5 s to 50 s with 5 s step. The etching rate of amorphous sample was about 10 nm/ s while crystalline sample was about 2 nm/ s.

Tables (1)

Tables Icon

Table 1 Material parameters [18,20–24] applied in the simulation.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

y=2.004x+1.627
y=10.053x0.529

Metrics