Abstract

We report on a technique for monitoring the crystallization of water and aqueous solution of NaCl at atmospheric pressure, when cooled via liquid nitrogen, using a Fresnel reflection-based optical fiber sensor. The crystallization of distilled water and the associated changes in refractive index inferred from the sensor response comply with the previous reports on physical properties of supercooled water. The phase separation of NaCl.2H2O and the formation of eutectic mixture were inferred from the distinct features of the sensor signal during the cooling of NaCl solution. But the thermocouple did not detect the exothermic heat of crystallization due to rapid cooling. The influence of temperature gradients while interpreting the optical signals during this rapid cooling process and the effects of sensor debonding during the heating phase are discussed. The results demonstrate the potential of Fresnel sensors for monitoring the crystallization-induced phase changes in supercooled salt solutions and offers applications in areas where monitoring and controlling crystallization is important.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Detecting phase transitions in a CaCl2–H2O system at low temperatures using a fiber-optic Fresnel reflection sensor

Mani Priyadarshini, Venkata Rajanikanth Machavaram, Akella Sivaramakrishna, and Pachiyappan Arulmozhivarman
Appl. Opt. 56(11) 3229-3239 (2017)

Photochemical reflective optical fiber sensor for selective detection of phenol in aqueous solutions

Zhengkun Wang, Nianbing Zhong, Ming Chen, Haixing Chang, Dengjie Zhong, Yongwu Wu, Huimin Liu, Xin Xin, Mingfu Zhao, Bing Tang, Tao Song, and Shenghui Shi
Appl. Opt. 58(8) 2091-2099 (2019)

High sensitivity fiber sensor for measurement of Cd2+ concentration in aqueous solution based on reflective Mach-Zehnder interference with temperature calibration

Zhenrong Pan, Jianxun Feng, Xiduo Hu, Chuanyu Jia, and Xuguang Huang
Opt. Express 27(22) 32621-32629 (2019)

References

  • View by:
  • |
  • |
  • |

  1. H. Kiani and D. W. Sun, “Water crystallization and its importance to freezing of foods: A review,” Trends Food Sci. Technol. 22(8), 407–426 (2011).
    [Crossref]
  2. L. X. Yu, R. A. Lionberger, A. S. Raw, R. D’Costa, H. Wu, and A. S. Hussain, “Applications of process analytical technology to crystallization processes,” Adv. Drug Deliv. Rev. 56(3), 349–369 (2004).
    [Crossref] [PubMed]
  3. X. Shi, M. Akin, T. Pan, L. Fray, Y. Liu, and Z. Yang, “Deicer impacts on pavement materials: Introduction and recent developments,” The Open Civil Eng. J. 3, 16–27 (2009).
  4. R. W. Gent, N. P. Dart, and J. T. Cansdale, “Aircraft icing,” Phil. Trans.: Mathematical, Phys. and Eng. Sci. 358, 2873–2911 (2000).
  5. P. G. Debenedetti, “Supercooled and glassy water,” J. Phys. Condens. Matter 15(45), R1669–R1726 (2003).
    [Crossref]
  6. J. Y. Chen and C. S. Yoo, “High density amorphous ice at room temperature,” Proc. Natl. Acad. Sci. U.S.A. 108(19), 7685–7688 (2011).
    [Crossref] [PubMed]
  7. P. W. Wilson, J. W. Arthur, and A. D. J. Haymet, “Ice premelting during differential scanning calorimetry,” Biophys. J. 77(5), 2850–2855 (1999).
    [Crossref] [PubMed]
  8. M. A. Afromowitz and K. Y. Lam, “The optical properties of curing epoxies and applications to the fiber-optic epoxy cure sensor,” Sens. Actuat. A21(1-3), 1107–1110 (1990).
    [Crossref]
  9. P. A. Crosby, G. R. Powell, G. F. Fernando, C. M. France, R. C. Spooncer, and D. N. Waters, “In situ cure monitoring of epoxy resins using optical fibre sensors,” Smart Mater. Struct. 5(4), 415–428 (1996).
    [Crossref]
  10. M. Giordano, A. Laudati, M. Russo, J. Nasser, G. V. Persiano, and A. Cusano, “Advanced cure monitoring by optoelectronic multifunction sensing system,” Thin Solid Films 450(1), 191–194 (2004).
    [Crossref]
  11. S. Pu, X. Chen, Y. Chen, W. Liao, L. Chen, and Y. Xia, “Measurement of the refractive index of a magnetic fluid by the retroreflection on the fiber-optic end face,” Appl. Phys. Lett. 86(17), 171904 (2005).
    [Crossref]
  12. C. B. Kim and C. B. Su, “Measurements of the refractive index of liquids at 1.3 and 1.5 micron using a fiber-optic Fresnel ratio meter,” Meas. Sci. Technol. 15(9), 1683–1686 (2004).
    [Crossref]
  13. A. K. Nair, V. R. Machavaram, R. S. Mahendran, S. D. Pandita, C. Paget, C. Barrow, and G. F. Fernando, “Process monitoring of fibre reinforced composites using a multi-measurand fibre-optic sensor,” Sens. Actuat. B 212, 93–106 (2015).
    [Crossref]
  14. D. Prada, C. Martelli, C. C. Kato, A. M. B. Braga, and M. S. P. Gomes, “CO2 phase study using an optical fiber refractometer,” Proc. SPIE 7753, 775366 (2011).
    [Crossref]
  15. G. Burton, L. Melo, S. Warwick, M. Jun, B. Bao, D. Sinton, and P. Wild, “Fiber refractometer to detect and distinguish carbon dioxide and methane leakage in the deep ocean,” Int. J. Greenh. Gas Control 31, 41–47 (2014).
    [Crossref]
  16. E. J. Fordham, A. Holmes, R. T. Ramos, S. Simonian, S. M. Huang, and C. P. Lenn, “Multi-phase-fluid discrimination with local fibre-optical probes: I. Liquid/liquid flows,” Meas. Sci. Technol. 10(12), 1329–1337 (1999).
    [Crossref]
  17. J. Zou, L. Ye, J. Ge, and C. Zhao, “Novel fiber optic sensor for ice type detection,” Measurement 46(2), 881–886 (2013).
    [Crossref]
  18. A. D. Wallace, M. Boerkamp, P. Lye, D. W. Lamb, W. Doherty, and C. Fellows, “Assessment of an intrinsic optical fiber sensor for in situ monitoring of scale-forming salts,” Ind. Eng. Chem. Res. 47(4), 1066–1070 (2008).
    [Crossref]
  19. J. D. Toner, D. C. Catling, and B. Light, “The formation of supercooled brines, viscous liquids, and low-temperature perchlorate glasses in aqueous solutions relevant to Mars,” Icarus 233, 36–47 (2014).
    [Crossref]
  20. T. Mizunami, H. Tatehata, and H. Kawashima, “High-sensitivity cryogenic fiber-Bragg grating temperature sensors using teflon substrates,” Meas. Sci. Technol. 12, 914–917 (2001).
  21. A. Chiuchiolo, M. Bajko, J. C. Perez, H. Bajas, M. Consales, M. Giordano, G. Breglio, and A. Cusano, “Fiber Bragg grating cryosensors for superconducting accelerator magnets,” IEEE Photonics J. 6(6), 1–10 (2014).
    [Crossref]
  22. D. Lee, R. Haynes, and D. J. Skeen, “Properties of optical fibres at cryogenic temperatures,” R. Astron. Soc. 326(2), 774–780 (2001).
    [Crossref]
  23. V. R. Machavaram, L. Wang, S. D. Pandita, S. Hellmann, F. N. Bogonez, and G. F. Fernando, “Multi-point monitoring of cross-linking reactions,” J. Appl. Polym. 131(22), 1–11 (2014).
    [Crossref]
  24. H. E. Johns and J. O. Wilhelm, “The refractive indices of liquid oxygen, nitrogen and hydrogen,” Can. J. Res. 15a(7), 101–108 (1937).
    [Crossref]
  25. J. Badoz, M. L. Liboux, R. Nahoum, G. Israel, F. Raulin, and J. P. Torre, “A sensitive cryogenic refractometer. Application to the refractive index determination of pure or mixed liquid methane, ethane, and nitrogen,” Rev. Sci. Instrum. 63(5), 2967–2973 (1992).
    [Crossref]
  26. G. Abbate, U. Bernini, E. Ragozzino, and F. Somma, “The temperature dependence of the refractive index of water,” Appl. Phys. (Berl.) 11, 1167–1172 (1978).
  27. I. Thormahlen, J. Straub, and U. Grigull, “Refractive index of water and its dependence on wavelength, temperature and density,” J. Phys. Chem. 14, 933 (1985).
  28. G. N. Ramachandran and T. Radhakrishnan, “The relation between thermo-optic and piezo-optic phenomena in crystals,” Philos. Mag. 43(338), 317–326 (1952).
    [Crossref]
  29. W. B. Bald, “On crystal size and cooling rate,” J. Microsc. 143(1), 89–102 (1986).
    [Crossref] [PubMed]
  30. D. H. Rasmussen and A. P. MacKenzie, “Clustering in supercooled water,” J. Chem. Phys. 59(9), 5003–5013 (1973).
    [Crossref]
  31. G. P. Johari and S. J. Jones, “Infrared polarisability of hexagonal ice,” Nature 263(5579), 672–673 (1976).
    [Crossref]
  32. W. Wagner, A. Saul, and A. Prub, “International equations for the pressure along the melting and along the Sublimation curve of ordinary water substance,” J. Phys. Chem. 23, 524–527 (1994).
  33. D. G. Archer and R. W. Carter, “Thermodynamic properties of the NaCl + H2O system. 4. Heat capacities of H2O and NaCl(aq) in cold-stable and supercooled states,” J. Phys. Chem. B 104(35), 8563–8584 (2000).
    [Crossref]
  34. P. V. Hobbs, Ice Physics (Oxford University 1974), Chap 5.
  35. J. Workman, and L. Weyer, Practical Guide to Interpretative Near-Infrared Spectroscopy (CRC, 2007), Ch.6.
  36. G. K. White, “Reference materials for thermal expansion: certified or not?” Thermochim. Acta 218, 83–99 (1993).
    [Crossref]
  37. J.G. Baust, and J.M. Baust, Advances in Biopreservation (CRC, 2007), Ch. 13.
  38. M. Jakob and S. Erk, “Warmedehnung des eises zwischen 0 und −253°,” Z. Ges. Kalte-Ind. 35, 125–130 (1928).
  39. C. A. Angell, “Liquid fragility and the glass transition in water and aqueous solutions,” Chem. Rev. 102(8), 2627–2650 (2002).
    [Crossref] [PubMed]
  40. M. V. Mironenko, G. E. Boitnott, S. A. Grant, and R. S. Sletten, “Experimental determination of the volumetric properties of NaCl solutions to 253K,” J. Phys. Chem. B 105(41), 9909–9912 (2001).
    [Crossref]

2015 (1)

A. K. Nair, V. R. Machavaram, R. S. Mahendran, S. D. Pandita, C. Paget, C. Barrow, and G. F. Fernando, “Process monitoring of fibre reinforced composites using a multi-measurand fibre-optic sensor,” Sens. Actuat. B 212, 93–106 (2015).
[Crossref]

2014 (4)

G. Burton, L. Melo, S. Warwick, M. Jun, B. Bao, D. Sinton, and P. Wild, “Fiber refractometer to detect and distinguish carbon dioxide and methane leakage in the deep ocean,” Int. J. Greenh. Gas Control 31, 41–47 (2014).
[Crossref]

J. D. Toner, D. C. Catling, and B. Light, “The formation of supercooled brines, viscous liquids, and low-temperature perchlorate glasses in aqueous solutions relevant to Mars,” Icarus 233, 36–47 (2014).
[Crossref]

A. Chiuchiolo, M. Bajko, J. C. Perez, H. Bajas, M. Consales, M. Giordano, G. Breglio, and A. Cusano, “Fiber Bragg grating cryosensors for superconducting accelerator magnets,” IEEE Photonics J. 6(6), 1–10 (2014).
[Crossref]

V. R. Machavaram, L. Wang, S. D. Pandita, S. Hellmann, F. N. Bogonez, and G. F. Fernando, “Multi-point monitoring of cross-linking reactions,” J. Appl. Polym. 131(22), 1–11 (2014).
[Crossref]

2013 (1)

J. Zou, L. Ye, J. Ge, and C. Zhao, “Novel fiber optic sensor for ice type detection,” Measurement 46(2), 881–886 (2013).
[Crossref]

2011 (3)

D. Prada, C. Martelli, C. C. Kato, A. M. B. Braga, and M. S. P. Gomes, “CO2 phase study using an optical fiber refractometer,” Proc. SPIE 7753, 775366 (2011).
[Crossref]

H. Kiani and D. W. Sun, “Water crystallization and its importance to freezing of foods: A review,” Trends Food Sci. Technol. 22(8), 407–426 (2011).
[Crossref]

J. Y. Chen and C. S. Yoo, “High density amorphous ice at room temperature,” Proc. Natl. Acad. Sci. U.S.A. 108(19), 7685–7688 (2011).
[Crossref] [PubMed]

2009 (1)

X. Shi, M. Akin, T. Pan, L. Fray, Y. Liu, and Z. Yang, “Deicer impacts on pavement materials: Introduction and recent developments,” The Open Civil Eng. J. 3, 16–27 (2009).

2008 (1)

A. D. Wallace, M. Boerkamp, P. Lye, D. W. Lamb, W. Doherty, and C. Fellows, “Assessment of an intrinsic optical fiber sensor for in situ monitoring of scale-forming salts,” Ind. Eng. Chem. Res. 47(4), 1066–1070 (2008).
[Crossref]

2005 (1)

S. Pu, X. Chen, Y. Chen, W. Liao, L. Chen, and Y. Xia, “Measurement of the refractive index of a magnetic fluid by the retroreflection on the fiber-optic end face,” Appl. Phys. Lett. 86(17), 171904 (2005).
[Crossref]

2004 (3)

C. B. Kim and C. B. Su, “Measurements of the refractive index of liquids at 1.3 and 1.5 micron using a fiber-optic Fresnel ratio meter,” Meas. Sci. Technol. 15(9), 1683–1686 (2004).
[Crossref]

L. X. Yu, R. A. Lionberger, A. S. Raw, R. D’Costa, H. Wu, and A. S. Hussain, “Applications of process analytical technology to crystallization processes,” Adv. Drug Deliv. Rev. 56(3), 349–369 (2004).
[Crossref] [PubMed]

M. Giordano, A. Laudati, M. Russo, J. Nasser, G. V. Persiano, and A. Cusano, “Advanced cure monitoring by optoelectronic multifunction sensing system,” Thin Solid Films 450(1), 191–194 (2004).
[Crossref]

2003 (1)

P. G. Debenedetti, “Supercooled and glassy water,” J. Phys. Condens. Matter 15(45), R1669–R1726 (2003).
[Crossref]

2002 (1)

C. A. Angell, “Liquid fragility and the glass transition in water and aqueous solutions,” Chem. Rev. 102(8), 2627–2650 (2002).
[Crossref] [PubMed]

2001 (3)

M. V. Mironenko, G. E. Boitnott, S. A. Grant, and R. S. Sletten, “Experimental determination of the volumetric properties of NaCl solutions to 253K,” J. Phys. Chem. B 105(41), 9909–9912 (2001).
[Crossref]

D. Lee, R. Haynes, and D. J. Skeen, “Properties of optical fibres at cryogenic temperatures,” R. Astron. Soc. 326(2), 774–780 (2001).
[Crossref]

T. Mizunami, H. Tatehata, and H. Kawashima, “High-sensitivity cryogenic fiber-Bragg grating temperature sensors using teflon substrates,” Meas. Sci. Technol. 12, 914–917 (2001).

2000 (2)

D. G. Archer and R. W. Carter, “Thermodynamic properties of the NaCl + H2O system. 4. Heat capacities of H2O and NaCl(aq) in cold-stable and supercooled states,” J. Phys. Chem. B 104(35), 8563–8584 (2000).
[Crossref]

R. W. Gent, N. P. Dart, and J. T. Cansdale, “Aircraft icing,” Phil. Trans.: Mathematical, Phys. and Eng. Sci. 358, 2873–2911 (2000).

1999 (2)

P. W. Wilson, J. W. Arthur, and A. D. J. Haymet, “Ice premelting during differential scanning calorimetry,” Biophys. J. 77(5), 2850–2855 (1999).
[Crossref] [PubMed]

E. J. Fordham, A. Holmes, R. T. Ramos, S. Simonian, S. M. Huang, and C. P. Lenn, “Multi-phase-fluid discrimination with local fibre-optical probes: I. Liquid/liquid flows,” Meas. Sci. Technol. 10(12), 1329–1337 (1999).
[Crossref]

1996 (1)

P. A. Crosby, G. R. Powell, G. F. Fernando, C. M. France, R. C. Spooncer, and D. N. Waters, “In situ cure monitoring of epoxy resins using optical fibre sensors,” Smart Mater. Struct. 5(4), 415–428 (1996).
[Crossref]

1994 (1)

W. Wagner, A. Saul, and A. Prub, “International equations for the pressure along the melting and along the Sublimation curve of ordinary water substance,” J. Phys. Chem. 23, 524–527 (1994).

1993 (1)

G. K. White, “Reference materials for thermal expansion: certified or not?” Thermochim. Acta 218, 83–99 (1993).
[Crossref]

1992 (1)

J. Badoz, M. L. Liboux, R. Nahoum, G. Israel, F. Raulin, and J. P. Torre, “A sensitive cryogenic refractometer. Application to the refractive index determination of pure or mixed liquid methane, ethane, and nitrogen,” Rev. Sci. Instrum. 63(5), 2967–2973 (1992).
[Crossref]

1990 (1)

M. A. Afromowitz and K. Y. Lam, “The optical properties of curing epoxies and applications to the fiber-optic epoxy cure sensor,” Sens. Actuat. A21(1-3), 1107–1110 (1990).
[Crossref]

1986 (1)

W. B. Bald, “On crystal size and cooling rate,” J. Microsc. 143(1), 89–102 (1986).
[Crossref] [PubMed]

1985 (1)

I. Thormahlen, J. Straub, and U. Grigull, “Refractive index of water and its dependence on wavelength, temperature and density,” J. Phys. Chem. 14, 933 (1985).

1978 (1)

G. Abbate, U. Bernini, E. Ragozzino, and F. Somma, “The temperature dependence of the refractive index of water,” Appl. Phys. (Berl.) 11, 1167–1172 (1978).

1976 (1)

G. P. Johari and S. J. Jones, “Infrared polarisability of hexagonal ice,” Nature 263(5579), 672–673 (1976).
[Crossref]

1973 (1)

D. H. Rasmussen and A. P. MacKenzie, “Clustering in supercooled water,” J. Chem. Phys. 59(9), 5003–5013 (1973).
[Crossref]

1952 (1)

G. N. Ramachandran and T. Radhakrishnan, “The relation between thermo-optic and piezo-optic phenomena in crystals,” Philos. Mag. 43(338), 317–326 (1952).
[Crossref]

1937 (1)

H. E. Johns and J. O. Wilhelm, “The refractive indices of liquid oxygen, nitrogen and hydrogen,” Can. J. Res. 15a(7), 101–108 (1937).
[Crossref]

1928 (1)

M. Jakob and S. Erk, “Warmedehnung des eises zwischen 0 und −253°,” Z. Ges. Kalte-Ind. 35, 125–130 (1928).

Abbate, G.

G. Abbate, U. Bernini, E. Ragozzino, and F. Somma, “The temperature dependence of the refractive index of water,” Appl. Phys. (Berl.) 11, 1167–1172 (1978).

Afromowitz, M. A.

M. A. Afromowitz and K. Y. Lam, “The optical properties of curing epoxies and applications to the fiber-optic epoxy cure sensor,” Sens. Actuat. A21(1-3), 1107–1110 (1990).
[Crossref]

Akin, M.

X. Shi, M. Akin, T. Pan, L. Fray, Y. Liu, and Z. Yang, “Deicer impacts on pavement materials: Introduction and recent developments,” The Open Civil Eng. J. 3, 16–27 (2009).

Angell, C. A.

C. A. Angell, “Liquid fragility and the glass transition in water and aqueous solutions,” Chem. Rev. 102(8), 2627–2650 (2002).
[Crossref] [PubMed]

Archer, D. G.

D. G. Archer and R. W. Carter, “Thermodynamic properties of the NaCl + H2O system. 4. Heat capacities of H2O and NaCl(aq) in cold-stable and supercooled states,” J. Phys. Chem. B 104(35), 8563–8584 (2000).
[Crossref]

Arthur, J. W.

P. W. Wilson, J. W. Arthur, and A. D. J. Haymet, “Ice premelting during differential scanning calorimetry,” Biophys. J. 77(5), 2850–2855 (1999).
[Crossref] [PubMed]

Badoz, J.

J. Badoz, M. L. Liboux, R. Nahoum, G. Israel, F. Raulin, and J. P. Torre, “A sensitive cryogenic refractometer. Application to the refractive index determination of pure or mixed liquid methane, ethane, and nitrogen,” Rev. Sci. Instrum. 63(5), 2967–2973 (1992).
[Crossref]

Bajas, H.

A. Chiuchiolo, M. Bajko, J. C. Perez, H. Bajas, M. Consales, M. Giordano, G. Breglio, and A. Cusano, “Fiber Bragg grating cryosensors for superconducting accelerator magnets,” IEEE Photonics J. 6(6), 1–10 (2014).
[Crossref]

Bajko, M.

A. Chiuchiolo, M. Bajko, J. C. Perez, H. Bajas, M. Consales, M. Giordano, G. Breglio, and A. Cusano, “Fiber Bragg grating cryosensors for superconducting accelerator magnets,” IEEE Photonics J. 6(6), 1–10 (2014).
[Crossref]

Bald, W. B.

W. B. Bald, “On crystal size and cooling rate,” J. Microsc. 143(1), 89–102 (1986).
[Crossref] [PubMed]

Bao, B.

G. Burton, L. Melo, S. Warwick, M. Jun, B. Bao, D. Sinton, and P. Wild, “Fiber refractometer to detect and distinguish carbon dioxide and methane leakage in the deep ocean,” Int. J. Greenh. Gas Control 31, 41–47 (2014).
[Crossref]

Barrow, C.

A. K. Nair, V. R. Machavaram, R. S. Mahendran, S. D. Pandita, C. Paget, C. Barrow, and G. F. Fernando, “Process monitoring of fibre reinforced composites using a multi-measurand fibre-optic sensor,” Sens. Actuat. B 212, 93–106 (2015).
[Crossref]

Bernini, U.

G. Abbate, U. Bernini, E. Ragozzino, and F. Somma, “The temperature dependence of the refractive index of water,” Appl. Phys. (Berl.) 11, 1167–1172 (1978).

Boerkamp, M.

A. D. Wallace, M. Boerkamp, P. Lye, D. W. Lamb, W. Doherty, and C. Fellows, “Assessment of an intrinsic optical fiber sensor for in situ monitoring of scale-forming salts,” Ind. Eng. Chem. Res. 47(4), 1066–1070 (2008).
[Crossref]

Bogonez, F. N.

V. R. Machavaram, L. Wang, S. D. Pandita, S. Hellmann, F. N. Bogonez, and G. F. Fernando, “Multi-point monitoring of cross-linking reactions,” J. Appl. Polym. 131(22), 1–11 (2014).
[Crossref]

Boitnott, G. E.

M. V. Mironenko, G. E. Boitnott, S. A. Grant, and R. S. Sletten, “Experimental determination of the volumetric properties of NaCl solutions to 253K,” J. Phys. Chem. B 105(41), 9909–9912 (2001).
[Crossref]

Braga, A. M. B.

D. Prada, C. Martelli, C. C. Kato, A. M. B. Braga, and M. S. P. Gomes, “CO2 phase study using an optical fiber refractometer,” Proc. SPIE 7753, 775366 (2011).
[Crossref]

Breglio, G.

A. Chiuchiolo, M. Bajko, J. C. Perez, H. Bajas, M. Consales, M. Giordano, G. Breglio, and A. Cusano, “Fiber Bragg grating cryosensors for superconducting accelerator magnets,” IEEE Photonics J. 6(6), 1–10 (2014).
[Crossref]

Burton, G.

G. Burton, L. Melo, S. Warwick, M. Jun, B. Bao, D. Sinton, and P. Wild, “Fiber refractometer to detect and distinguish carbon dioxide and methane leakage in the deep ocean,” Int. J. Greenh. Gas Control 31, 41–47 (2014).
[Crossref]

Cansdale, J. T.

R. W. Gent, N. P. Dart, and J. T. Cansdale, “Aircraft icing,” Phil. Trans.: Mathematical, Phys. and Eng. Sci. 358, 2873–2911 (2000).

Carter, R. W.

D. G. Archer and R. W. Carter, “Thermodynamic properties of the NaCl + H2O system. 4. Heat capacities of H2O and NaCl(aq) in cold-stable and supercooled states,” J. Phys. Chem. B 104(35), 8563–8584 (2000).
[Crossref]

Catling, D. C.

J. D. Toner, D. C. Catling, and B. Light, “The formation of supercooled brines, viscous liquids, and low-temperature perchlorate glasses in aqueous solutions relevant to Mars,” Icarus 233, 36–47 (2014).
[Crossref]

Chen, J. Y.

J. Y. Chen and C. S. Yoo, “High density amorphous ice at room temperature,” Proc. Natl. Acad. Sci. U.S.A. 108(19), 7685–7688 (2011).
[Crossref] [PubMed]

Chen, L.

S. Pu, X. Chen, Y. Chen, W. Liao, L. Chen, and Y. Xia, “Measurement of the refractive index of a magnetic fluid by the retroreflection on the fiber-optic end face,” Appl. Phys. Lett. 86(17), 171904 (2005).
[Crossref]

Chen, X.

S. Pu, X. Chen, Y. Chen, W. Liao, L. Chen, and Y. Xia, “Measurement of the refractive index of a magnetic fluid by the retroreflection on the fiber-optic end face,” Appl. Phys. Lett. 86(17), 171904 (2005).
[Crossref]

Chen, Y.

S. Pu, X. Chen, Y. Chen, W. Liao, L. Chen, and Y. Xia, “Measurement of the refractive index of a magnetic fluid by the retroreflection on the fiber-optic end face,” Appl. Phys. Lett. 86(17), 171904 (2005).
[Crossref]

Chiuchiolo, A.

A. Chiuchiolo, M. Bajko, J. C. Perez, H. Bajas, M. Consales, M. Giordano, G. Breglio, and A. Cusano, “Fiber Bragg grating cryosensors for superconducting accelerator magnets,” IEEE Photonics J. 6(6), 1–10 (2014).
[Crossref]

Consales, M.

A. Chiuchiolo, M. Bajko, J. C. Perez, H. Bajas, M. Consales, M. Giordano, G. Breglio, and A. Cusano, “Fiber Bragg grating cryosensors for superconducting accelerator magnets,” IEEE Photonics J. 6(6), 1–10 (2014).
[Crossref]

Crosby, P. A.

P. A. Crosby, G. R. Powell, G. F. Fernando, C. M. France, R. C. Spooncer, and D. N. Waters, “In situ cure monitoring of epoxy resins using optical fibre sensors,” Smart Mater. Struct. 5(4), 415–428 (1996).
[Crossref]

Cusano, A.

A. Chiuchiolo, M. Bajko, J. C. Perez, H. Bajas, M. Consales, M. Giordano, G. Breglio, and A. Cusano, “Fiber Bragg grating cryosensors for superconducting accelerator magnets,” IEEE Photonics J. 6(6), 1–10 (2014).
[Crossref]

M. Giordano, A. Laudati, M. Russo, J. Nasser, G. V. Persiano, and A. Cusano, “Advanced cure monitoring by optoelectronic multifunction sensing system,” Thin Solid Films 450(1), 191–194 (2004).
[Crossref]

D’Costa, R.

L. X. Yu, R. A. Lionberger, A. S. Raw, R. D’Costa, H. Wu, and A. S. Hussain, “Applications of process analytical technology to crystallization processes,” Adv. Drug Deliv. Rev. 56(3), 349–369 (2004).
[Crossref] [PubMed]

Dart, N. P.

R. W. Gent, N. P. Dart, and J. T. Cansdale, “Aircraft icing,” Phil. Trans.: Mathematical, Phys. and Eng. Sci. 358, 2873–2911 (2000).

Debenedetti, P. G.

P. G. Debenedetti, “Supercooled and glassy water,” J. Phys. Condens. Matter 15(45), R1669–R1726 (2003).
[Crossref]

Doherty, W.

A. D. Wallace, M. Boerkamp, P. Lye, D. W. Lamb, W. Doherty, and C. Fellows, “Assessment of an intrinsic optical fiber sensor for in situ monitoring of scale-forming salts,” Ind. Eng. Chem. Res. 47(4), 1066–1070 (2008).
[Crossref]

Erk, S.

M. Jakob and S. Erk, “Warmedehnung des eises zwischen 0 und −253°,” Z. Ges. Kalte-Ind. 35, 125–130 (1928).

Fellows, C.

A. D. Wallace, M. Boerkamp, P. Lye, D. W. Lamb, W. Doherty, and C. Fellows, “Assessment of an intrinsic optical fiber sensor for in situ monitoring of scale-forming salts,” Ind. Eng. Chem. Res. 47(4), 1066–1070 (2008).
[Crossref]

Fernando, G. F.

A. K. Nair, V. R. Machavaram, R. S. Mahendran, S. D. Pandita, C. Paget, C. Barrow, and G. F. Fernando, “Process monitoring of fibre reinforced composites using a multi-measurand fibre-optic sensor,” Sens. Actuat. B 212, 93–106 (2015).
[Crossref]

V. R. Machavaram, L. Wang, S. D. Pandita, S. Hellmann, F. N. Bogonez, and G. F. Fernando, “Multi-point monitoring of cross-linking reactions,” J. Appl. Polym. 131(22), 1–11 (2014).
[Crossref]

P. A. Crosby, G. R. Powell, G. F. Fernando, C. M. France, R. C. Spooncer, and D. N. Waters, “In situ cure monitoring of epoxy resins using optical fibre sensors,” Smart Mater. Struct. 5(4), 415–428 (1996).
[Crossref]

Fordham, E. J.

E. J. Fordham, A. Holmes, R. T. Ramos, S. Simonian, S. M. Huang, and C. P. Lenn, “Multi-phase-fluid discrimination with local fibre-optical probes: I. Liquid/liquid flows,” Meas. Sci. Technol. 10(12), 1329–1337 (1999).
[Crossref]

France, C. M.

P. A. Crosby, G. R. Powell, G. F. Fernando, C. M. France, R. C. Spooncer, and D. N. Waters, “In situ cure monitoring of epoxy resins using optical fibre sensors,” Smart Mater. Struct. 5(4), 415–428 (1996).
[Crossref]

Fray, L.

X. Shi, M. Akin, T. Pan, L. Fray, Y. Liu, and Z. Yang, “Deicer impacts on pavement materials: Introduction and recent developments,” The Open Civil Eng. J. 3, 16–27 (2009).

Ge, J.

J. Zou, L. Ye, J. Ge, and C. Zhao, “Novel fiber optic sensor for ice type detection,” Measurement 46(2), 881–886 (2013).
[Crossref]

Gent, R. W.

R. W. Gent, N. P. Dart, and J. T. Cansdale, “Aircraft icing,” Phil. Trans.: Mathematical, Phys. and Eng. Sci. 358, 2873–2911 (2000).

Giordano, M.

A. Chiuchiolo, M. Bajko, J. C. Perez, H. Bajas, M. Consales, M. Giordano, G. Breglio, and A. Cusano, “Fiber Bragg grating cryosensors for superconducting accelerator magnets,” IEEE Photonics J. 6(6), 1–10 (2014).
[Crossref]

M. Giordano, A. Laudati, M. Russo, J. Nasser, G. V. Persiano, and A. Cusano, “Advanced cure monitoring by optoelectronic multifunction sensing system,” Thin Solid Films 450(1), 191–194 (2004).
[Crossref]

Gomes, M. S. P.

D. Prada, C. Martelli, C. C. Kato, A. M. B. Braga, and M. S. P. Gomes, “CO2 phase study using an optical fiber refractometer,” Proc. SPIE 7753, 775366 (2011).
[Crossref]

Grant, S. A.

M. V. Mironenko, G. E. Boitnott, S. A. Grant, and R. S. Sletten, “Experimental determination of the volumetric properties of NaCl solutions to 253K,” J. Phys. Chem. B 105(41), 9909–9912 (2001).
[Crossref]

Grigull, U.

I. Thormahlen, J. Straub, and U. Grigull, “Refractive index of water and its dependence on wavelength, temperature and density,” J. Phys. Chem. 14, 933 (1985).

Haymet, A. D. J.

P. W. Wilson, J. W. Arthur, and A. D. J. Haymet, “Ice premelting during differential scanning calorimetry,” Biophys. J. 77(5), 2850–2855 (1999).
[Crossref] [PubMed]

Haynes, R.

D. Lee, R. Haynes, and D. J. Skeen, “Properties of optical fibres at cryogenic temperatures,” R. Astron. Soc. 326(2), 774–780 (2001).
[Crossref]

Hellmann, S.

V. R. Machavaram, L. Wang, S. D. Pandita, S. Hellmann, F. N. Bogonez, and G. F. Fernando, “Multi-point monitoring of cross-linking reactions,” J. Appl. Polym. 131(22), 1–11 (2014).
[Crossref]

Holmes, A.

E. J. Fordham, A. Holmes, R. T. Ramos, S. Simonian, S. M. Huang, and C. P. Lenn, “Multi-phase-fluid discrimination with local fibre-optical probes: I. Liquid/liquid flows,” Meas. Sci. Technol. 10(12), 1329–1337 (1999).
[Crossref]

Huang, S. M.

E. J. Fordham, A. Holmes, R. T. Ramos, S. Simonian, S. M. Huang, and C. P. Lenn, “Multi-phase-fluid discrimination with local fibre-optical probes: I. Liquid/liquid flows,” Meas. Sci. Technol. 10(12), 1329–1337 (1999).
[Crossref]

Hussain, A. S.

L. X. Yu, R. A. Lionberger, A. S. Raw, R. D’Costa, H. Wu, and A. S. Hussain, “Applications of process analytical technology to crystallization processes,” Adv. Drug Deliv. Rev. 56(3), 349–369 (2004).
[Crossref] [PubMed]

Israel, G.

J. Badoz, M. L. Liboux, R. Nahoum, G. Israel, F. Raulin, and J. P. Torre, “A sensitive cryogenic refractometer. Application to the refractive index determination of pure or mixed liquid methane, ethane, and nitrogen,” Rev. Sci. Instrum. 63(5), 2967–2973 (1992).
[Crossref]

Jakob, M.

M. Jakob and S. Erk, “Warmedehnung des eises zwischen 0 und −253°,” Z. Ges. Kalte-Ind. 35, 125–130 (1928).

Johari, G. P.

G. P. Johari and S. J. Jones, “Infrared polarisability of hexagonal ice,” Nature 263(5579), 672–673 (1976).
[Crossref]

Johns, H. E.

H. E. Johns and J. O. Wilhelm, “The refractive indices of liquid oxygen, nitrogen and hydrogen,” Can. J. Res. 15a(7), 101–108 (1937).
[Crossref]

Jones, S. J.

G. P. Johari and S. J. Jones, “Infrared polarisability of hexagonal ice,” Nature 263(5579), 672–673 (1976).
[Crossref]

Jun, M.

G. Burton, L. Melo, S. Warwick, M. Jun, B. Bao, D. Sinton, and P. Wild, “Fiber refractometer to detect and distinguish carbon dioxide and methane leakage in the deep ocean,” Int. J. Greenh. Gas Control 31, 41–47 (2014).
[Crossref]

Kato, C. C.

D. Prada, C. Martelli, C. C. Kato, A. M. B. Braga, and M. S. P. Gomes, “CO2 phase study using an optical fiber refractometer,” Proc. SPIE 7753, 775366 (2011).
[Crossref]

Kawashima, H.

T. Mizunami, H. Tatehata, and H. Kawashima, “High-sensitivity cryogenic fiber-Bragg grating temperature sensors using teflon substrates,” Meas. Sci. Technol. 12, 914–917 (2001).

Kiani, H.

H. Kiani and D. W. Sun, “Water crystallization and its importance to freezing of foods: A review,” Trends Food Sci. Technol. 22(8), 407–426 (2011).
[Crossref]

Kim, C. B.

C. B. Kim and C. B. Su, “Measurements of the refractive index of liquids at 1.3 and 1.5 micron using a fiber-optic Fresnel ratio meter,” Meas. Sci. Technol. 15(9), 1683–1686 (2004).
[Crossref]

Lam, K. Y.

M. A. Afromowitz and K. Y. Lam, “The optical properties of curing epoxies and applications to the fiber-optic epoxy cure sensor,” Sens. Actuat. A21(1-3), 1107–1110 (1990).
[Crossref]

Lamb, D. W.

A. D. Wallace, M. Boerkamp, P. Lye, D. W. Lamb, W. Doherty, and C. Fellows, “Assessment of an intrinsic optical fiber sensor for in situ monitoring of scale-forming salts,” Ind. Eng. Chem. Res. 47(4), 1066–1070 (2008).
[Crossref]

Laudati, A.

M. Giordano, A. Laudati, M. Russo, J. Nasser, G. V. Persiano, and A. Cusano, “Advanced cure monitoring by optoelectronic multifunction sensing system,” Thin Solid Films 450(1), 191–194 (2004).
[Crossref]

Lee, D.

D. Lee, R. Haynes, and D. J. Skeen, “Properties of optical fibres at cryogenic temperatures,” R. Astron. Soc. 326(2), 774–780 (2001).
[Crossref]

Lenn, C. P.

E. J. Fordham, A. Holmes, R. T. Ramos, S. Simonian, S. M. Huang, and C. P. Lenn, “Multi-phase-fluid discrimination with local fibre-optical probes: I. Liquid/liquid flows,” Meas. Sci. Technol. 10(12), 1329–1337 (1999).
[Crossref]

Liao, W.

S. Pu, X. Chen, Y. Chen, W. Liao, L. Chen, and Y. Xia, “Measurement of the refractive index of a magnetic fluid by the retroreflection on the fiber-optic end face,” Appl. Phys. Lett. 86(17), 171904 (2005).
[Crossref]

Liboux, M. L.

J. Badoz, M. L. Liboux, R. Nahoum, G. Israel, F. Raulin, and J. P. Torre, “A sensitive cryogenic refractometer. Application to the refractive index determination of pure or mixed liquid methane, ethane, and nitrogen,” Rev. Sci. Instrum. 63(5), 2967–2973 (1992).
[Crossref]

Light, B.

J. D. Toner, D. C. Catling, and B. Light, “The formation of supercooled brines, viscous liquids, and low-temperature perchlorate glasses in aqueous solutions relevant to Mars,” Icarus 233, 36–47 (2014).
[Crossref]

Lionberger, R. A.

L. X. Yu, R. A. Lionberger, A. S. Raw, R. D’Costa, H. Wu, and A. S. Hussain, “Applications of process analytical technology to crystallization processes,” Adv. Drug Deliv. Rev. 56(3), 349–369 (2004).
[Crossref] [PubMed]

Liu, Y.

X. Shi, M. Akin, T. Pan, L. Fray, Y. Liu, and Z. Yang, “Deicer impacts on pavement materials: Introduction and recent developments,” The Open Civil Eng. J. 3, 16–27 (2009).

Lye, P.

A. D. Wallace, M. Boerkamp, P. Lye, D. W. Lamb, W. Doherty, and C. Fellows, “Assessment of an intrinsic optical fiber sensor for in situ monitoring of scale-forming salts,” Ind. Eng. Chem. Res. 47(4), 1066–1070 (2008).
[Crossref]

Machavaram, V. R.

A. K. Nair, V. R. Machavaram, R. S. Mahendran, S. D. Pandita, C. Paget, C. Barrow, and G. F. Fernando, “Process monitoring of fibre reinforced composites using a multi-measurand fibre-optic sensor,” Sens. Actuat. B 212, 93–106 (2015).
[Crossref]

V. R. Machavaram, L. Wang, S. D. Pandita, S. Hellmann, F. N. Bogonez, and G. F. Fernando, “Multi-point monitoring of cross-linking reactions,” J. Appl. Polym. 131(22), 1–11 (2014).
[Crossref]

MacKenzie, A. P.

D. H. Rasmussen and A. P. MacKenzie, “Clustering in supercooled water,” J. Chem. Phys. 59(9), 5003–5013 (1973).
[Crossref]

Mahendran, R. S.

A. K. Nair, V. R. Machavaram, R. S. Mahendran, S. D. Pandita, C. Paget, C. Barrow, and G. F. Fernando, “Process monitoring of fibre reinforced composites using a multi-measurand fibre-optic sensor,” Sens. Actuat. B 212, 93–106 (2015).
[Crossref]

Martelli, C.

D. Prada, C. Martelli, C. C. Kato, A. M. B. Braga, and M. S. P. Gomes, “CO2 phase study using an optical fiber refractometer,” Proc. SPIE 7753, 775366 (2011).
[Crossref]

Melo, L.

G. Burton, L. Melo, S. Warwick, M. Jun, B. Bao, D. Sinton, and P. Wild, “Fiber refractometer to detect and distinguish carbon dioxide and methane leakage in the deep ocean,” Int. J. Greenh. Gas Control 31, 41–47 (2014).
[Crossref]

Mironenko, M. V.

M. V. Mironenko, G. E. Boitnott, S. A. Grant, and R. S. Sletten, “Experimental determination of the volumetric properties of NaCl solutions to 253K,” J. Phys. Chem. B 105(41), 9909–9912 (2001).
[Crossref]

Mizunami, T.

T. Mizunami, H. Tatehata, and H. Kawashima, “High-sensitivity cryogenic fiber-Bragg grating temperature sensors using teflon substrates,” Meas. Sci. Technol. 12, 914–917 (2001).

Nahoum, R.

J. Badoz, M. L. Liboux, R. Nahoum, G. Israel, F. Raulin, and J. P. Torre, “A sensitive cryogenic refractometer. Application to the refractive index determination of pure or mixed liquid methane, ethane, and nitrogen,” Rev. Sci. Instrum. 63(5), 2967–2973 (1992).
[Crossref]

Nair, A. K.

A. K. Nair, V. R. Machavaram, R. S. Mahendran, S. D. Pandita, C. Paget, C. Barrow, and G. F. Fernando, “Process monitoring of fibre reinforced composites using a multi-measurand fibre-optic sensor,” Sens. Actuat. B 212, 93–106 (2015).
[Crossref]

Nasser, J.

M. Giordano, A. Laudati, M. Russo, J. Nasser, G. V. Persiano, and A. Cusano, “Advanced cure monitoring by optoelectronic multifunction sensing system,” Thin Solid Films 450(1), 191–194 (2004).
[Crossref]

Paget, C.

A. K. Nair, V. R. Machavaram, R. S. Mahendran, S. D. Pandita, C. Paget, C. Barrow, and G. F. Fernando, “Process monitoring of fibre reinforced composites using a multi-measurand fibre-optic sensor,” Sens. Actuat. B 212, 93–106 (2015).
[Crossref]

Pan, T.

X. Shi, M. Akin, T. Pan, L. Fray, Y. Liu, and Z. Yang, “Deicer impacts on pavement materials: Introduction and recent developments,” The Open Civil Eng. J. 3, 16–27 (2009).

Pandita, S. D.

A. K. Nair, V. R. Machavaram, R. S. Mahendran, S. D. Pandita, C. Paget, C. Barrow, and G. F. Fernando, “Process monitoring of fibre reinforced composites using a multi-measurand fibre-optic sensor,” Sens. Actuat. B 212, 93–106 (2015).
[Crossref]

V. R. Machavaram, L. Wang, S. D. Pandita, S. Hellmann, F. N. Bogonez, and G. F. Fernando, “Multi-point monitoring of cross-linking reactions,” J. Appl. Polym. 131(22), 1–11 (2014).
[Crossref]

Perez, J. C.

A. Chiuchiolo, M. Bajko, J. C. Perez, H. Bajas, M. Consales, M. Giordano, G. Breglio, and A. Cusano, “Fiber Bragg grating cryosensors for superconducting accelerator magnets,” IEEE Photonics J. 6(6), 1–10 (2014).
[Crossref]

Persiano, G. V.

M. Giordano, A. Laudati, M. Russo, J. Nasser, G. V. Persiano, and A. Cusano, “Advanced cure monitoring by optoelectronic multifunction sensing system,” Thin Solid Films 450(1), 191–194 (2004).
[Crossref]

Powell, G. R.

P. A. Crosby, G. R. Powell, G. F. Fernando, C. M. France, R. C. Spooncer, and D. N. Waters, “In situ cure monitoring of epoxy resins using optical fibre sensors,” Smart Mater. Struct. 5(4), 415–428 (1996).
[Crossref]

Prada, D.

D. Prada, C. Martelli, C. C. Kato, A. M. B. Braga, and M. S. P. Gomes, “CO2 phase study using an optical fiber refractometer,” Proc. SPIE 7753, 775366 (2011).
[Crossref]

Prub, A.

W. Wagner, A. Saul, and A. Prub, “International equations for the pressure along the melting and along the Sublimation curve of ordinary water substance,” J. Phys. Chem. 23, 524–527 (1994).

Pu, S.

S. Pu, X. Chen, Y. Chen, W. Liao, L. Chen, and Y. Xia, “Measurement of the refractive index of a magnetic fluid by the retroreflection on the fiber-optic end face,” Appl. Phys. Lett. 86(17), 171904 (2005).
[Crossref]

Radhakrishnan, T.

G. N. Ramachandran and T. Radhakrishnan, “The relation between thermo-optic and piezo-optic phenomena in crystals,” Philos. Mag. 43(338), 317–326 (1952).
[Crossref]

Ragozzino, E.

G. Abbate, U. Bernini, E. Ragozzino, and F. Somma, “The temperature dependence of the refractive index of water,” Appl. Phys. (Berl.) 11, 1167–1172 (1978).

Ramachandran, G. N.

G. N. Ramachandran and T. Radhakrishnan, “The relation between thermo-optic and piezo-optic phenomena in crystals,” Philos. Mag. 43(338), 317–326 (1952).
[Crossref]

Ramos, R. T.

E. J. Fordham, A. Holmes, R. T. Ramos, S. Simonian, S. M. Huang, and C. P. Lenn, “Multi-phase-fluid discrimination with local fibre-optical probes: I. Liquid/liquid flows,” Meas. Sci. Technol. 10(12), 1329–1337 (1999).
[Crossref]

Rasmussen, D. H.

D. H. Rasmussen and A. P. MacKenzie, “Clustering in supercooled water,” J. Chem. Phys. 59(9), 5003–5013 (1973).
[Crossref]

Raulin, F.

J. Badoz, M. L. Liboux, R. Nahoum, G. Israel, F. Raulin, and J. P. Torre, “A sensitive cryogenic refractometer. Application to the refractive index determination of pure or mixed liquid methane, ethane, and nitrogen,” Rev. Sci. Instrum. 63(5), 2967–2973 (1992).
[Crossref]

Raw, A. S.

L. X. Yu, R. A. Lionberger, A. S. Raw, R. D’Costa, H. Wu, and A. S. Hussain, “Applications of process analytical technology to crystallization processes,” Adv. Drug Deliv. Rev. 56(3), 349–369 (2004).
[Crossref] [PubMed]

Russo, M.

M. Giordano, A. Laudati, M. Russo, J. Nasser, G. V. Persiano, and A. Cusano, “Advanced cure monitoring by optoelectronic multifunction sensing system,” Thin Solid Films 450(1), 191–194 (2004).
[Crossref]

Saul, A.

W. Wagner, A. Saul, and A. Prub, “International equations for the pressure along the melting and along the Sublimation curve of ordinary water substance,” J. Phys. Chem. 23, 524–527 (1994).

Shi, X.

X. Shi, M. Akin, T. Pan, L. Fray, Y. Liu, and Z. Yang, “Deicer impacts on pavement materials: Introduction and recent developments,” The Open Civil Eng. J. 3, 16–27 (2009).

Simonian, S.

E. J. Fordham, A. Holmes, R. T. Ramos, S. Simonian, S. M. Huang, and C. P. Lenn, “Multi-phase-fluid discrimination with local fibre-optical probes: I. Liquid/liquid flows,” Meas. Sci. Technol. 10(12), 1329–1337 (1999).
[Crossref]

Sinton, D.

G. Burton, L. Melo, S. Warwick, M. Jun, B. Bao, D. Sinton, and P. Wild, “Fiber refractometer to detect and distinguish carbon dioxide and methane leakage in the deep ocean,” Int. J. Greenh. Gas Control 31, 41–47 (2014).
[Crossref]

Skeen, D. J.

D. Lee, R. Haynes, and D. J. Skeen, “Properties of optical fibres at cryogenic temperatures,” R. Astron. Soc. 326(2), 774–780 (2001).
[Crossref]

Sletten, R. S.

M. V. Mironenko, G. E. Boitnott, S. A. Grant, and R. S. Sletten, “Experimental determination of the volumetric properties of NaCl solutions to 253K,” J. Phys. Chem. B 105(41), 9909–9912 (2001).
[Crossref]

Somma, F.

G. Abbate, U. Bernini, E. Ragozzino, and F. Somma, “The temperature dependence of the refractive index of water,” Appl. Phys. (Berl.) 11, 1167–1172 (1978).

Spooncer, R. C.

P. A. Crosby, G. R. Powell, G. F. Fernando, C. M. France, R. C. Spooncer, and D. N. Waters, “In situ cure monitoring of epoxy resins using optical fibre sensors,” Smart Mater. Struct. 5(4), 415–428 (1996).
[Crossref]

Straub, J.

I. Thormahlen, J. Straub, and U. Grigull, “Refractive index of water and its dependence on wavelength, temperature and density,” J. Phys. Chem. 14, 933 (1985).

Su, C. B.

C. B. Kim and C. B. Su, “Measurements of the refractive index of liquids at 1.3 and 1.5 micron using a fiber-optic Fresnel ratio meter,” Meas. Sci. Technol. 15(9), 1683–1686 (2004).
[Crossref]

Sun, D. W.

H. Kiani and D. W. Sun, “Water crystallization and its importance to freezing of foods: A review,” Trends Food Sci. Technol. 22(8), 407–426 (2011).
[Crossref]

Tatehata, H.

T. Mizunami, H. Tatehata, and H. Kawashima, “High-sensitivity cryogenic fiber-Bragg grating temperature sensors using teflon substrates,” Meas. Sci. Technol. 12, 914–917 (2001).

Thormahlen, I.

I. Thormahlen, J. Straub, and U. Grigull, “Refractive index of water and its dependence on wavelength, temperature and density,” J. Phys. Chem. 14, 933 (1985).

Toner, J. D.

J. D. Toner, D. C. Catling, and B. Light, “The formation of supercooled brines, viscous liquids, and low-temperature perchlorate glasses in aqueous solutions relevant to Mars,” Icarus 233, 36–47 (2014).
[Crossref]

Torre, J. P.

J. Badoz, M. L. Liboux, R. Nahoum, G. Israel, F. Raulin, and J. P. Torre, “A sensitive cryogenic refractometer. Application to the refractive index determination of pure or mixed liquid methane, ethane, and nitrogen,” Rev. Sci. Instrum. 63(5), 2967–2973 (1992).
[Crossref]

Wagner, W.

W. Wagner, A. Saul, and A. Prub, “International equations for the pressure along the melting and along the Sublimation curve of ordinary water substance,” J. Phys. Chem. 23, 524–527 (1994).

Wallace, A. D.

A. D. Wallace, M. Boerkamp, P. Lye, D. W. Lamb, W. Doherty, and C. Fellows, “Assessment of an intrinsic optical fiber sensor for in situ monitoring of scale-forming salts,” Ind. Eng. Chem. Res. 47(4), 1066–1070 (2008).
[Crossref]

Wang, L.

V. R. Machavaram, L. Wang, S. D. Pandita, S. Hellmann, F. N. Bogonez, and G. F. Fernando, “Multi-point monitoring of cross-linking reactions,” J. Appl. Polym. 131(22), 1–11 (2014).
[Crossref]

Warwick, S.

G. Burton, L. Melo, S. Warwick, M. Jun, B. Bao, D. Sinton, and P. Wild, “Fiber refractometer to detect and distinguish carbon dioxide and methane leakage in the deep ocean,” Int. J. Greenh. Gas Control 31, 41–47 (2014).
[Crossref]

Waters, D. N.

P. A. Crosby, G. R. Powell, G. F. Fernando, C. M. France, R. C. Spooncer, and D. N. Waters, “In situ cure monitoring of epoxy resins using optical fibre sensors,” Smart Mater. Struct. 5(4), 415–428 (1996).
[Crossref]

White, G. K.

G. K. White, “Reference materials for thermal expansion: certified or not?” Thermochim. Acta 218, 83–99 (1993).
[Crossref]

Wild, P.

G. Burton, L. Melo, S. Warwick, M. Jun, B. Bao, D. Sinton, and P. Wild, “Fiber refractometer to detect and distinguish carbon dioxide and methane leakage in the deep ocean,” Int. J. Greenh. Gas Control 31, 41–47 (2014).
[Crossref]

Wilhelm, J. O.

H. E. Johns and J. O. Wilhelm, “The refractive indices of liquid oxygen, nitrogen and hydrogen,” Can. J. Res. 15a(7), 101–108 (1937).
[Crossref]

Wilson, P. W.

P. W. Wilson, J. W. Arthur, and A. D. J. Haymet, “Ice premelting during differential scanning calorimetry,” Biophys. J. 77(5), 2850–2855 (1999).
[Crossref] [PubMed]

Wu, H.

L. X. Yu, R. A. Lionberger, A. S. Raw, R. D’Costa, H. Wu, and A. S. Hussain, “Applications of process analytical technology to crystallization processes,” Adv. Drug Deliv. Rev. 56(3), 349–369 (2004).
[Crossref] [PubMed]

Xia, Y.

S. Pu, X. Chen, Y. Chen, W. Liao, L. Chen, and Y. Xia, “Measurement of the refractive index of a magnetic fluid by the retroreflection on the fiber-optic end face,” Appl. Phys. Lett. 86(17), 171904 (2005).
[Crossref]

Yang, Z.

X. Shi, M. Akin, T. Pan, L. Fray, Y. Liu, and Z. Yang, “Deicer impacts on pavement materials: Introduction and recent developments,” The Open Civil Eng. J. 3, 16–27 (2009).

Ye, L.

J. Zou, L. Ye, J. Ge, and C. Zhao, “Novel fiber optic sensor for ice type detection,” Measurement 46(2), 881–886 (2013).
[Crossref]

Yoo, C. S.

J. Y. Chen and C. S. Yoo, “High density amorphous ice at room temperature,” Proc. Natl. Acad. Sci. U.S.A. 108(19), 7685–7688 (2011).
[Crossref] [PubMed]

Yu, L. X.

L. X. Yu, R. A. Lionberger, A. S. Raw, R. D’Costa, H. Wu, and A. S. Hussain, “Applications of process analytical technology to crystallization processes,” Adv. Drug Deliv. Rev. 56(3), 349–369 (2004).
[Crossref] [PubMed]

Zhao, C.

J. Zou, L. Ye, J. Ge, and C. Zhao, “Novel fiber optic sensor for ice type detection,” Measurement 46(2), 881–886 (2013).
[Crossref]

Zou, J.

J. Zou, L. Ye, J. Ge, and C. Zhao, “Novel fiber optic sensor for ice type detection,” Measurement 46(2), 881–886 (2013).
[Crossref]

Adv. Drug Deliv. Rev. (1)

L. X. Yu, R. A. Lionberger, A. S. Raw, R. D’Costa, H. Wu, and A. S. Hussain, “Applications of process analytical technology to crystallization processes,” Adv. Drug Deliv. Rev. 56(3), 349–369 (2004).
[Crossref] [PubMed]

Appl. Phys. (Berl.) (1)

G. Abbate, U. Bernini, E. Ragozzino, and F. Somma, “The temperature dependence of the refractive index of water,” Appl. Phys. (Berl.) 11, 1167–1172 (1978).

Appl. Phys. Lett. (1)

S. Pu, X. Chen, Y. Chen, W. Liao, L. Chen, and Y. Xia, “Measurement of the refractive index of a magnetic fluid by the retroreflection on the fiber-optic end face,” Appl. Phys. Lett. 86(17), 171904 (2005).
[Crossref]

Biophys. J. (1)

P. W. Wilson, J. W. Arthur, and A. D. J. Haymet, “Ice premelting during differential scanning calorimetry,” Biophys. J. 77(5), 2850–2855 (1999).
[Crossref] [PubMed]

Can. J. Res. (1)

H. E. Johns and J. O. Wilhelm, “The refractive indices of liquid oxygen, nitrogen and hydrogen,” Can. J. Res. 15a(7), 101–108 (1937).
[Crossref]

Chem. Rev. (1)

C. A. Angell, “Liquid fragility and the glass transition in water and aqueous solutions,” Chem. Rev. 102(8), 2627–2650 (2002).
[Crossref] [PubMed]

Icarus (1)

J. D. Toner, D. C. Catling, and B. Light, “The formation of supercooled brines, viscous liquids, and low-temperature perchlorate glasses in aqueous solutions relevant to Mars,” Icarus 233, 36–47 (2014).
[Crossref]

IEEE Photonics J. (1)

A. Chiuchiolo, M. Bajko, J. C. Perez, H. Bajas, M. Consales, M. Giordano, G. Breglio, and A. Cusano, “Fiber Bragg grating cryosensors for superconducting accelerator magnets,” IEEE Photonics J. 6(6), 1–10 (2014).
[Crossref]

Ind. Eng. Chem. Res. (1)

A. D. Wallace, M. Boerkamp, P. Lye, D. W. Lamb, W. Doherty, and C. Fellows, “Assessment of an intrinsic optical fiber sensor for in situ monitoring of scale-forming salts,” Ind. Eng. Chem. Res. 47(4), 1066–1070 (2008).
[Crossref]

Int. J. Greenh. Gas Control (1)

G. Burton, L. Melo, S. Warwick, M. Jun, B. Bao, D. Sinton, and P. Wild, “Fiber refractometer to detect and distinguish carbon dioxide and methane leakage in the deep ocean,” Int. J. Greenh. Gas Control 31, 41–47 (2014).
[Crossref]

J. Appl. Polym. (1)

V. R. Machavaram, L. Wang, S. D. Pandita, S. Hellmann, F. N. Bogonez, and G. F. Fernando, “Multi-point monitoring of cross-linking reactions,” J. Appl. Polym. 131(22), 1–11 (2014).
[Crossref]

J. Chem. Phys. (1)

D. H. Rasmussen and A. P. MacKenzie, “Clustering in supercooled water,” J. Chem. Phys. 59(9), 5003–5013 (1973).
[Crossref]

J. Microsc. (1)

W. B. Bald, “On crystal size and cooling rate,” J. Microsc. 143(1), 89–102 (1986).
[Crossref] [PubMed]

J. Phys. Chem. (2)

W. Wagner, A. Saul, and A. Prub, “International equations for the pressure along the melting and along the Sublimation curve of ordinary water substance,” J. Phys. Chem. 23, 524–527 (1994).

I. Thormahlen, J. Straub, and U. Grigull, “Refractive index of water and its dependence on wavelength, temperature and density,” J. Phys. Chem. 14, 933 (1985).

J. Phys. Chem. B (2)

D. G. Archer and R. W. Carter, “Thermodynamic properties of the NaCl + H2O system. 4. Heat capacities of H2O and NaCl(aq) in cold-stable and supercooled states,” J. Phys. Chem. B 104(35), 8563–8584 (2000).
[Crossref]

M. V. Mironenko, G. E. Boitnott, S. A. Grant, and R. S. Sletten, “Experimental determination of the volumetric properties of NaCl solutions to 253K,” J. Phys. Chem. B 105(41), 9909–9912 (2001).
[Crossref]

J. Phys. Condens. Matter (1)

P. G. Debenedetti, “Supercooled and glassy water,” J. Phys. Condens. Matter 15(45), R1669–R1726 (2003).
[Crossref]

Meas. Sci. Technol. (3)

C. B. Kim and C. B. Su, “Measurements of the refractive index of liquids at 1.3 and 1.5 micron using a fiber-optic Fresnel ratio meter,” Meas. Sci. Technol. 15(9), 1683–1686 (2004).
[Crossref]

E. J. Fordham, A. Holmes, R. T. Ramos, S. Simonian, S. M. Huang, and C. P. Lenn, “Multi-phase-fluid discrimination with local fibre-optical probes: I. Liquid/liquid flows,” Meas. Sci. Technol. 10(12), 1329–1337 (1999).
[Crossref]

T. Mizunami, H. Tatehata, and H. Kawashima, “High-sensitivity cryogenic fiber-Bragg grating temperature sensors using teflon substrates,” Meas. Sci. Technol. 12, 914–917 (2001).

Measurement (1)

J. Zou, L. Ye, J. Ge, and C. Zhao, “Novel fiber optic sensor for ice type detection,” Measurement 46(2), 881–886 (2013).
[Crossref]

Nature (1)

G. P. Johari and S. J. Jones, “Infrared polarisability of hexagonal ice,” Nature 263(5579), 672–673 (1976).
[Crossref]

Phil. Trans.: Mathematical, Phys. and Eng. Sci. (1)

R. W. Gent, N. P. Dart, and J. T. Cansdale, “Aircraft icing,” Phil. Trans.: Mathematical, Phys. and Eng. Sci. 358, 2873–2911 (2000).

Philos. Mag. (1)

G. N. Ramachandran and T. Radhakrishnan, “The relation between thermo-optic and piezo-optic phenomena in crystals,” Philos. Mag. 43(338), 317–326 (1952).
[Crossref]

Proc. Natl. Acad. Sci. U.S.A. (1)

J. Y. Chen and C. S. Yoo, “High density amorphous ice at room temperature,” Proc. Natl. Acad. Sci. U.S.A. 108(19), 7685–7688 (2011).
[Crossref] [PubMed]

Proc. SPIE (1)

D. Prada, C. Martelli, C. C. Kato, A. M. B. Braga, and M. S. P. Gomes, “CO2 phase study using an optical fiber refractometer,” Proc. SPIE 7753, 775366 (2011).
[Crossref]

R. Astron. Soc. (1)

D. Lee, R. Haynes, and D. J. Skeen, “Properties of optical fibres at cryogenic temperatures,” R. Astron. Soc. 326(2), 774–780 (2001).
[Crossref]

Rev. Sci. Instrum. (1)

J. Badoz, M. L. Liboux, R. Nahoum, G. Israel, F. Raulin, and J. P. Torre, “A sensitive cryogenic refractometer. Application to the refractive index determination of pure or mixed liquid methane, ethane, and nitrogen,” Rev. Sci. Instrum. 63(5), 2967–2973 (1992).
[Crossref]

Sens. Actuat. (1)

M. A. Afromowitz and K. Y. Lam, “The optical properties of curing epoxies and applications to the fiber-optic epoxy cure sensor,” Sens. Actuat. A21(1-3), 1107–1110 (1990).
[Crossref]

Sens. Actuat. B (1)

A. K. Nair, V. R. Machavaram, R. S. Mahendran, S. D. Pandita, C. Paget, C. Barrow, and G. F. Fernando, “Process monitoring of fibre reinforced composites using a multi-measurand fibre-optic sensor,” Sens. Actuat. B 212, 93–106 (2015).
[Crossref]

Smart Mater. Struct. (1)

P. A. Crosby, G. R. Powell, G. F. Fernando, C. M. France, R. C. Spooncer, and D. N. Waters, “In situ cure monitoring of epoxy resins using optical fibre sensors,” Smart Mater. Struct. 5(4), 415–428 (1996).
[Crossref]

The Open Civil Eng. J. (1)

X. Shi, M. Akin, T. Pan, L. Fray, Y. Liu, and Z. Yang, “Deicer impacts on pavement materials: Introduction and recent developments,” The Open Civil Eng. J. 3, 16–27 (2009).

Thermochim. Acta (1)

G. K. White, “Reference materials for thermal expansion: certified or not?” Thermochim. Acta 218, 83–99 (1993).
[Crossref]

Thin Solid Films (1)

M. Giordano, A. Laudati, M. Russo, J. Nasser, G. V. Persiano, and A. Cusano, “Advanced cure monitoring by optoelectronic multifunction sensing system,” Thin Solid Films 450(1), 191–194 (2004).
[Crossref]

Trends Food Sci. Technol. (1)

H. Kiani and D. W. Sun, “Water crystallization and its importance to freezing of foods: A review,” Trends Food Sci. Technol. 22(8), 407–426 (2011).
[Crossref]

Z. Ges. Kalte-Ind. (1)

M. Jakob and S. Erk, “Warmedehnung des eises zwischen 0 und −253°,” Z. Ges. Kalte-Ind. 35, 125–130 (1928).

Other (3)

J.G. Baust, and J.M. Baust, Advances in Biopreservation (CRC, 2007), Ch. 13.

P. V. Hobbs, Ice Physics (Oxford University 1974), Chap 5.

J. Workman, and L. Weyer, Practical Guide to Interpretative Near-Infrared Spectroscopy (CRC, 2007), Ch.6.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 (a-b): (a) Schematic experimental setup. (1)Polystyrene insulating container; (2) inlet for LN2; (3) SS vessel for containing the test liquid; (4) outlet for N2; (5) LN2 pool; (6) test liquid. (b) Schematic of mounted thermocouple and fiber optic sensor; (1) Cleaved end of the fiber; (2) k-type thermocouple; (3) hypodermic tube; (4) U-shaped groove in SS bar; (5) adhesive bonding; (6) optical fiber with polymer jacket; (7) SS bar.
Fig. 2
Fig. 2 Refractive index of NaCl solution obtained from the fiber sensor at different concentrations. Temperature variation during the measurement duration of refractive index is shown on secondary Y-axis. Ambient temperature ~30 °C.
Fig. 3
Fig. 3 Variations in detector signal due to immersion in LN2 at −202 °C during 6 cycles. Ambient temperature was ~28 °C.
Fig. 4
Fig. 4 Variations in detector signal during cooling of distilled water. The temperature on X-axis was measured using a thermocouple with a lateral separation of 4-8 mm. Ambient temperature was ~31 °C.
Fig. 5
Fig. 5 Variations in the detector signal and temperature during heating of distilled water at laboratory ambient. The thermocouple and sensor have a lateral separation of 4-8 mm. Ambient temperature was ~31 °C.
Fig. 6
Fig. 6 Plot illustrating the temperature variation at different locations during cooling of distilled water. The near-axis and off-axis thermocouples have a lateral separation of 5 mm. Ambient temperature was ~31 °C.
Fig. 7
Fig. 7 A photograph of frozen distilled water showing the convex surface and a spiral-like structure on it.
Fig. 8
Fig. 8 Temperature variation from three thermocouples in distilled water during room temperature heating. The near-axis and off-axis thermocouples have a lateral separation of 5 mm. Ambient temperature was ~31 °C.
Fig. 9
Fig. 9 Sensor signal and temperature variation during cooling of distilled water. The thermocouple and sensor have a lateral separation of 2 mm. Ambient temperature was ~30 °C.
Fig. 10
Fig. 10 (a-b). Sensor signal Vs temperature during the cooling of 5.63 molal NaCl solution. The thermocouple and sensor have a lateral separation of 2 mm. (b) Temperature variation with time. Ambient temperature was ~32 °C.
Fig. 11
Fig. 11 Sensor signal and temperature variation during heating at laboratory ambient. The sensor and thermocouple have a lateral separation of 2 mm. Ambient temperature was ~32 °C.

Tables (4)

Tables Icon

Table 1 Refractive index and temperature of distilled water at points shown in Fig. 4.

Tables Icon

Table 2 Cooling rates and temperature at different points shown in Fig. 6.

Tables Icon

Table 3 Refractive index and temperature data at points shown in Fig. 9.

Tables Icon

Table 4 Refractive index and temperature of NaCl solution corresponding to the points shown in Fig. 10(a).

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

n m = n c [ 1 Δ' R ' 1+ Δ' R ' ]
Δ ' = n c n a n c + n a
n 2 1 n 2 +2 = 4π 3 Mα
dn dT =γρ dn dρ + ( n 2 +2 )( n 2 1 ) 6n Λ T
dn dρ = ( n 2 1 )( n 2 +2 ) 6nρ ( 1 Λ ε )
Λ T = 1 α ( α T ) ρ
Λ ε = ρ α ( α ρ ) T

Metrics