Abstract

Quantum communication networks require single photon frequency converters, whether to shift photons between wavelength channels, to shift photons to the operating wavelength of a quantum memory, or to shift photons of different wavelengths to be of the same wavelength, to enable a quantum interference. Here, we demonstrate frequency conversion of laser pulses attenuated to the single photon regime in an integrated silicon-on-insulator device using four-wave mixing Bragg scattering, with conversion efficiencies of up to 12%, or 32% after correcting for nonlinear loss created by the pump lasers. The frequency shift can be conveniently chosen by tuning of the pump frequencies. We demonstrate that such frequency conversion enables interference between photons at different frequencies.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High-efficiency frequency conversion in the single-photon regime

Alex S. Clark, Shayan Shahnia, Matthew J. Collins, Chunle Xiong, and Benjamin J. Eggleton
Opt. Lett. 38(6) 947-949 (2013)

Quantum frequency conversion for multiplexed entangled states generated from micro-ring silicon chip

Yin-Hai Li, Wen-Tan Fang, Zhi-Yuan Zhou, Shi-Long Liu, Shi-Kai Liu, Zhao-Huai Xu, Chen Yang, Yan Li, Li-Xin Xu, Guang-Can Guo, and Bao-Sen Shi
Opt. Express 26(22) 28429-28440 (2018)

Quantum frequency conversion of a quantum dot single-photon source on a nanophotonic chip

Anshuman Singh, Qing Li, Shunfa Liu, Ying Yu, Xiyuan Lu, Christian Schneider, Sven Höfling, John Lawall, Varun Verma, Richard Mirin, Sae Woo Nam, Jin Liu, and Kartik Srinivasan
Optica 6(5) 563-569 (2019)

References

  • View by:
  • |
  • |
  • |

  1. C. Langrock, E. Diamanti, R. V. Roussev, Y. Yamamoto, M. M. Fejer, and H. Takesue, “Highly efficient single-photon detection at communication wavelengths by use of upconversion in reverse-proton-exchanged periodically poled LiNbO3 waveguides,” Opt. Lett. 30(13), 1725–1727 (2005).
    [Crossref] [PubMed]
  2. H. Takesue, “Erasing distinguishability using quantum frequency up-conversion,” Phys. Rev. Lett. 101(17), 173901 (2008).
    [Crossref] [PubMed]
  3. H. J. Kimble, “The quantum internet,” Nature 453(7198), 1023–1030 (2008).
    [Crossref] [PubMed]
  4. C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59(18), 2044–2046 (1987).
    [Crossref] [PubMed]
  5. D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390(6660), 575–579 (1997).
    [Crossref]
  6. N. Sangouard, C. Simon, H. de Riedmatten, and N. Gisin, “Quantum repeaters based on atomic ensembles and linear optics,” Rev. Mod. Phys. 83(1), 33–80 (2011).
    [Crossref]
  7. J. L. O’Brien, G. J. Pryde, A. G. White, T. C. Ralph, and D. Branning, “Demonstration of an all-optical quantum controlled-NOT gate,” Nature 426(6964), 264–267 (2003).
    [Crossref] [PubMed]
  8. M. G. Raymer, S. J. van Enk, C. J. McKinstrie, and H. J. McGuinness, “Interference of two photons of different color,” Opt. Commun. 283(5), 747–752 (2010).
    [Crossref]
  9. J. Huang and P. Kumar, “Observation of quantum frequency conversion,” Phys. Rev. Lett. 68(14), 2153–2156 (1992).
    [Crossref] [PubMed]
  10. H. J. McGuinness, M. G. Raymer, C. J. McKinstrie, and S. Radic, “Quantum frequency translation of single-photon states in a photonic crystal fiber,” Phys. Rev. Lett. 105(9), 093604 (2010).
    [Crossref] [PubMed]
  11. A. S. Clark, S. Shahnia, M. J. Collins, C. Xiong, and B. J. Eggleton, “High-efficiency frequency conversion in the single-photon regime,” Opt. Lett. 38(6), 947–949 (2013).
    [Crossref] [PubMed]
  12. P. S. Donvalkar, V. Venkataraman, S. Clemmen, K. Saha, and A. L. Gaeta, “Frequency translation via four-wave mixing Bragg scattering in Rb filled photonic bandgap fibers,” Opt. Lett. 39(6), 1557–1560 (2014).
    [Crossref] [PubMed]
  13. A. Farsi, S. Clemmen, S. Ramelow, and A. L. Gaeta, “Low-noise quantum frequency translation of single photons,” in CLEO:2015, OSA Technical Digest (online) (Optical Society of America, 2015), paper FM3A.4.
  14. I. Agha, M. Davanço, B. Thurston, and K. Srinivasan, “Low-noise chip-based frequency conversion by four-wave-mixing Bragg scattering in SiNx waveguides,” Opt. Lett. 37(14), 2997–2999 (2012).
    [Crossref] [PubMed]
  15. I. Agha, S. Ates, M. Davanço, and K. Srinivasan, “A chip-scale, telecommunications-band frequency conversion interface for quantum emitters,” Opt. Express 21(18), 21628–21638 (2013).
    [Crossref] [PubMed]
  16. Q. Li, M. Davanco, and K. Srinivasan, “Efficient and low-noise single-photon-level frequency conversion interfaces using silicon nanophotonics” https://arXiv:1510.02527v1 (2015).
  17. A. H. Gnauck, R. M. Jopson, C. J. McKinstrie, J. C. Centanni, and S. Radic, “Demonstration of low-noise frequency conversion by Bragg scattering in a Fiber,” Opt. Express 14(20), 8989–8994 (2006).
    [Crossref] [PubMed]
  18. H. J. McGuinness, M. G. Raymer, and C. J. McKinstrie, “Theory of quantum frequency translation of light in optical fiber: application to interference of two photons of different color,” Opt. Express 19(19), 17876–17907 (2011).
    [Crossref] [PubMed]
  19. S. Lefrancois, A. S. Clark, and B. J. Eggleton, “Optimizing optical Bragg scattering single-photon frequency conversion,” Phys. Rev. A 91(1), 013837 (2015).
    [Crossref]
  20. K. Harada, H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, and S. Itabashi, “Generation of high-purity entangled photon pairs using silicon wire waveguide,” Opt. Express 16(25), 20368–20373 (2008).
    [Crossref] [PubMed]
  21. C. A. Husko, A. S. Clark, M. J. Collins, A. De Rossi, S. Combrié, G. Lehoucq, I. H. Rey, T. F. Krauss, C. Xiong, and B. J. Eggleton, “Multi-photon absorption limits to heralded single photon sources,” Sci. Rep. 3, 3087 (2013).
    [Crossref] [PubMed]
  22. C. Xiong, C. Monat, A. S. Clark, C. Grillet, G. D. Marshall, M. J. Steel, J. Li, L. O’Faolain, T. F. Krauss, J. G. Rarity, and B. J. Eggleton, “Slow-light enhanced correlated photon pair generation in a silicon photonic crystal waveguide,” Opt. Lett. 36(17), 3413–3415 (2011).
    [Crossref] [PubMed]
  23. G. Agrawal, Nonlinear Fiber Optics, 5th ed. (Academic, 2012).
  24. M. Liscidini and J. E. Sipe, “Stimulated Emission Tomography,” Phys. Rev. Lett. 111(19), 193602 (2013).
    [Crossref] [PubMed]
  25. J. Cardenas, C. B. Poitras, J. T. Robinson, K. Preston, L. Chen, and M. Lipson, “Low loss etchless silicon photonic waveguides,” Opt. Express 17(6), 4752–4757 (2009).
    [Crossref] [PubMed]
  26. A. Farsi, S. Clemmen, S. Ramelow, and A. L. Gaeta, “Ramsey interference with single photons,” https://arXiv:1601.01105 (2016).
  27. J. Nunn, L. J. Wright, C. Söller, L. Zhang, I. A. Walmsley, and B. J. Smith, “Large-alphabet time-frequency entangled quantum key distribution by means of time-to-frequency conversion,” Opt. Express 21(13), 15959–15973 (2013).
    [Crossref] [PubMed]
  28. Z. Zhang, J. Mower, D. Englund, F. N. Wong, and J. H. Shapiro, “Unconditional security of time-energy entanglement quantum key distribution using dual-basis interferometry,” Phys. Rev. Lett. 112(12), 120506 (2014).
    [Crossref] [PubMed]

2015 (1)

S. Lefrancois, A. S. Clark, and B. J. Eggleton, “Optimizing optical Bragg scattering single-photon frequency conversion,” Phys. Rev. A 91(1), 013837 (2015).
[Crossref]

2014 (2)

P. S. Donvalkar, V. Venkataraman, S. Clemmen, K. Saha, and A. L. Gaeta, “Frequency translation via four-wave mixing Bragg scattering in Rb filled photonic bandgap fibers,” Opt. Lett. 39(6), 1557–1560 (2014).
[Crossref] [PubMed]

Z. Zhang, J. Mower, D. Englund, F. N. Wong, and J. H. Shapiro, “Unconditional security of time-energy entanglement quantum key distribution using dual-basis interferometry,” Phys. Rev. Lett. 112(12), 120506 (2014).
[Crossref] [PubMed]

2013 (5)

2012 (1)

2011 (3)

2010 (2)

M. G. Raymer, S. J. van Enk, C. J. McKinstrie, and H. J. McGuinness, “Interference of two photons of different color,” Opt. Commun. 283(5), 747–752 (2010).
[Crossref]

H. J. McGuinness, M. G. Raymer, C. J. McKinstrie, and S. Radic, “Quantum frequency translation of single-photon states in a photonic crystal fiber,” Phys. Rev. Lett. 105(9), 093604 (2010).
[Crossref] [PubMed]

2009 (1)

2008 (3)

K. Harada, H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, and S. Itabashi, “Generation of high-purity entangled photon pairs using silicon wire waveguide,” Opt. Express 16(25), 20368–20373 (2008).
[Crossref] [PubMed]

H. Takesue, “Erasing distinguishability using quantum frequency up-conversion,” Phys. Rev. Lett. 101(17), 173901 (2008).
[Crossref] [PubMed]

H. J. Kimble, “The quantum internet,” Nature 453(7198), 1023–1030 (2008).
[Crossref] [PubMed]

2006 (1)

2005 (1)

2003 (1)

J. L. O’Brien, G. J. Pryde, A. G. White, T. C. Ralph, and D. Branning, “Demonstration of an all-optical quantum controlled-NOT gate,” Nature 426(6964), 264–267 (2003).
[Crossref] [PubMed]

1997 (1)

D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390(6660), 575–579 (1997).
[Crossref]

1992 (1)

J. Huang and P. Kumar, “Observation of quantum frequency conversion,” Phys. Rev. Lett. 68(14), 2153–2156 (1992).
[Crossref] [PubMed]

1987 (1)

C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59(18), 2044–2046 (1987).
[Crossref] [PubMed]

Agha, I.

Ates, S.

Bouwmeester, D.

D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390(6660), 575–579 (1997).
[Crossref]

Branning, D.

J. L. O’Brien, G. J. Pryde, A. G. White, T. C. Ralph, and D. Branning, “Demonstration of an all-optical quantum controlled-NOT gate,” Nature 426(6964), 264–267 (2003).
[Crossref] [PubMed]

Cardenas, J.

Centanni, J. C.

Chen, L.

Clark, A. S.

S. Lefrancois, A. S. Clark, and B. J. Eggleton, “Optimizing optical Bragg scattering single-photon frequency conversion,” Phys. Rev. A 91(1), 013837 (2015).
[Crossref]

C. A. Husko, A. S. Clark, M. J. Collins, A. De Rossi, S. Combrié, G. Lehoucq, I. H. Rey, T. F. Krauss, C. Xiong, and B. J. Eggleton, “Multi-photon absorption limits to heralded single photon sources,” Sci. Rep. 3, 3087 (2013).
[Crossref] [PubMed]

A. S. Clark, S. Shahnia, M. J. Collins, C. Xiong, and B. J. Eggleton, “High-efficiency frequency conversion in the single-photon regime,” Opt. Lett. 38(6), 947–949 (2013).
[Crossref] [PubMed]

C. Xiong, C. Monat, A. S. Clark, C. Grillet, G. D. Marshall, M. J. Steel, J. Li, L. O’Faolain, T. F. Krauss, J. G. Rarity, and B. J. Eggleton, “Slow-light enhanced correlated photon pair generation in a silicon photonic crystal waveguide,” Opt. Lett. 36(17), 3413–3415 (2011).
[Crossref] [PubMed]

Clemmen, S.

Collins, M. J.

A. S. Clark, S. Shahnia, M. J. Collins, C. Xiong, and B. J. Eggleton, “High-efficiency frequency conversion in the single-photon regime,” Opt. Lett. 38(6), 947–949 (2013).
[Crossref] [PubMed]

C. A. Husko, A. S. Clark, M. J. Collins, A. De Rossi, S. Combrié, G. Lehoucq, I. H. Rey, T. F. Krauss, C. Xiong, and B. J. Eggleton, “Multi-photon absorption limits to heralded single photon sources,” Sci. Rep. 3, 3087 (2013).
[Crossref] [PubMed]

Combrié, S.

C. A. Husko, A. S. Clark, M. J. Collins, A. De Rossi, S. Combrié, G. Lehoucq, I. H. Rey, T. F. Krauss, C. Xiong, and B. J. Eggleton, “Multi-photon absorption limits to heralded single photon sources,” Sci. Rep. 3, 3087 (2013).
[Crossref] [PubMed]

Davanço, M.

de Riedmatten, H.

N. Sangouard, C. Simon, H. de Riedmatten, and N. Gisin, “Quantum repeaters based on atomic ensembles and linear optics,” Rev. Mod. Phys. 83(1), 33–80 (2011).
[Crossref]

De Rossi, A.

C. A. Husko, A. S. Clark, M. J. Collins, A. De Rossi, S. Combrié, G. Lehoucq, I. H. Rey, T. F. Krauss, C. Xiong, and B. J. Eggleton, “Multi-photon absorption limits to heralded single photon sources,” Sci. Rep. 3, 3087 (2013).
[Crossref] [PubMed]

Diamanti, E.

Donvalkar, P. S.

Eggleton, B. J.

S. Lefrancois, A. S. Clark, and B. J. Eggleton, “Optimizing optical Bragg scattering single-photon frequency conversion,” Phys. Rev. A 91(1), 013837 (2015).
[Crossref]

A. S. Clark, S. Shahnia, M. J. Collins, C. Xiong, and B. J. Eggleton, “High-efficiency frequency conversion in the single-photon regime,” Opt. Lett. 38(6), 947–949 (2013).
[Crossref] [PubMed]

C. A. Husko, A. S. Clark, M. J. Collins, A. De Rossi, S. Combrié, G. Lehoucq, I. H. Rey, T. F. Krauss, C. Xiong, and B. J. Eggleton, “Multi-photon absorption limits to heralded single photon sources,” Sci. Rep. 3, 3087 (2013).
[Crossref] [PubMed]

C. Xiong, C. Monat, A. S. Clark, C. Grillet, G. D. Marshall, M. J. Steel, J. Li, L. O’Faolain, T. F. Krauss, J. G. Rarity, and B. J. Eggleton, “Slow-light enhanced correlated photon pair generation in a silicon photonic crystal waveguide,” Opt. Lett. 36(17), 3413–3415 (2011).
[Crossref] [PubMed]

Eibl, M.

D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390(6660), 575–579 (1997).
[Crossref]

Englund, D.

Z. Zhang, J. Mower, D. Englund, F. N. Wong, and J. H. Shapiro, “Unconditional security of time-energy entanglement quantum key distribution using dual-basis interferometry,” Phys. Rev. Lett. 112(12), 120506 (2014).
[Crossref] [PubMed]

Fejer, M. M.

Fukuda, H.

Gaeta, A. L.

Gisin, N.

N. Sangouard, C. Simon, H. de Riedmatten, and N. Gisin, “Quantum repeaters based on atomic ensembles and linear optics,” Rev. Mod. Phys. 83(1), 33–80 (2011).
[Crossref]

Gnauck, A. H.

Grillet, C.

Harada, K.

Hong, C. K.

C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59(18), 2044–2046 (1987).
[Crossref] [PubMed]

Huang, J.

J. Huang and P. Kumar, “Observation of quantum frequency conversion,” Phys. Rev. Lett. 68(14), 2153–2156 (1992).
[Crossref] [PubMed]

Husko, C. A.

C. A. Husko, A. S. Clark, M. J. Collins, A. De Rossi, S. Combrié, G. Lehoucq, I. H. Rey, T. F. Krauss, C. Xiong, and B. J. Eggleton, “Multi-photon absorption limits to heralded single photon sources,” Sci. Rep. 3, 3087 (2013).
[Crossref] [PubMed]

Itabashi, S.

Jopson, R. M.

Kimble, H. J.

H. J. Kimble, “The quantum internet,” Nature 453(7198), 1023–1030 (2008).
[Crossref] [PubMed]

Krauss, T. F.

C. A. Husko, A. S. Clark, M. J. Collins, A. De Rossi, S. Combrié, G. Lehoucq, I. H. Rey, T. F. Krauss, C. Xiong, and B. J. Eggleton, “Multi-photon absorption limits to heralded single photon sources,” Sci. Rep. 3, 3087 (2013).
[Crossref] [PubMed]

C. Xiong, C. Monat, A. S. Clark, C. Grillet, G. D. Marshall, M. J. Steel, J. Li, L. O’Faolain, T. F. Krauss, J. G. Rarity, and B. J. Eggleton, “Slow-light enhanced correlated photon pair generation in a silicon photonic crystal waveguide,” Opt. Lett. 36(17), 3413–3415 (2011).
[Crossref] [PubMed]

Kumar, P.

J. Huang and P. Kumar, “Observation of quantum frequency conversion,” Phys. Rev. Lett. 68(14), 2153–2156 (1992).
[Crossref] [PubMed]

Langrock, C.

Lefrancois, S.

S. Lefrancois, A. S. Clark, and B. J. Eggleton, “Optimizing optical Bragg scattering single-photon frequency conversion,” Phys. Rev. A 91(1), 013837 (2015).
[Crossref]

Lehoucq, G.

C. A. Husko, A. S. Clark, M. J. Collins, A. De Rossi, S. Combrié, G. Lehoucq, I. H. Rey, T. F. Krauss, C. Xiong, and B. J. Eggleton, “Multi-photon absorption limits to heralded single photon sources,” Sci. Rep. 3, 3087 (2013).
[Crossref] [PubMed]

Li, J.

Lipson, M.

Liscidini, M.

M. Liscidini and J. E. Sipe, “Stimulated Emission Tomography,” Phys. Rev. Lett. 111(19), 193602 (2013).
[Crossref] [PubMed]

Mandel, L.

C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59(18), 2044–2046 (1987).
[Crossref] [PubMed]

Marshall, G. D.

Mattle, K.

D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390(6660), 575–579 (1997).
[Crossref]

McGuinness, H. J.

H. J. McGuinness, M. G. Raymer, and C. J. McKinstrie, “Theory of quantum frequency translation of light in optical fiber: application to interference of two photons of different color,” Opt. Express 19(19), 17876–17907 (2011).
[Crossref] [PubMed]

M. G. Raymer, S. J. van Enk, C. J. McKinstrie, and H. J. McGuinness, “Interference of two photons of different color,” Opt. Commun. 283(5), 747–752 (2010).
[Crossref]

H. J. McGuinness, M. G. Raymer, C. J. McKinstrie, and S. Radic, “Quantum frequency translation of single-photon states in a photonic crystal fiber,” Phys. Rev. Lett. 105(9), 093604 (2010).
[Crossref] [PubMed]

McKinstrie, C. J.

H. J. McGuinness, M. G. Raymer, and C. J. McKinstrie, “Theory of quantum frequency translation of light in optical fiber: application to interference of two photons of different color,” Opt. Express 19(19), 17876–17907 (2011).
[Crossref] [PubMed]

M. G. Raymer, S. J. van Enk, C. J. McKinstrie, and H. J. McGuinness, “Interference of two photons of different color,” Opt. Commun. 283(5), 747–752 (2010).
[Crossref]

H. J. McGuinness, M. G. Raymer, C. J. McKinstrie, and S. Radic, “Quantum frequency translation of single-photon states in a photonic crystal fiber,” Phys. Rev. Lett. 105(9), 093604 (2010).
[Crossref] [PubMed]

A. H. Gnauck, R. M. Jopson, C. J. McKinstrie, J. C. Centanni, and S. Radic, “Demonstration of low-noise frequency conversion by Bragg scattering in a Fiber,” Opt. Express 14(20), 8989–8994 (2006).
[Crossref] [PubMed]

Monat, C.

Mower, J.

Z. Zhang, J. Mower, D. Englund, F. N. Wong, and J. H. Shapiro, “Unconditional security of time-energy entanglement quantum key distribution using dual-basis interferometry,” Phys. Rev. Lett. 112(12), 120506 (2014).
[Crossref] [PubMed]

Nunn, J.

O’Brien, J. L.

J. L. O’Brien, G. J. Pryde, A. G. White, T. C. Ralph, and D. Branning, “Demonstration of an all-optical quantum controlled-NOT gate,” Nature 426(6964), 264–267 (2003).
[Crossref] [PubMed]

O’Faolain, L.

Ou, Z. Y.

C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59(18), 2044–2046 (1987).
[Crossref] [PubMed]

Pan, J.-W.

D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390(6660), 575–579 (1997).
[Crossref]

Poitras, C. B.

Preston, K.

Pryde, G. J.

J. L. O’Brien, G. J. Pryde, A. G. White, T. C. Ralph, and D. Branning, “Demonstration of an all-optical quantum controlled-NOT gate,” Nature 426(6964), 264–267 (2003).
[Crossref] [PubMed]

Radic, S.

H. J. McGuinness, M. G. Raymer, C. J. McKinstrie, and S. Radic, “Quantum frequency translation of single-photon states in a photonic crystal fiber,” Phys. Rev. Lett. 105(9), 093604 (2010).
[Crossref] [PubMed]

A. H. Gnauck, R. M. Jopson, C. J. McKinstrie, J. C. Centanni, and S. Radic, “Demonstration of low-noise frequency conversion by Bragg scattering in a Fiber,” Opt. Express 14(20), 8989–8994 (2006).
[Crossref] [PubMed]

Ralph, T. C.

J. L. O’Brien, G. J. Pryde, A. G. White, T. C. Ralph, and D. Branning, “Demonstration of an all-optical quantum controlled-NOT gate,” Nature 426(6964), 264–267 (2003).
[Crossref] [PubMed]

Rarity, J. G.

Raymer, M. G.

H. J. McGuinness, M. G. Raymer, and C. J. McKinstrie, “Theory of quantum frequency translation of light in optical fiber: application to interference of two photons of different color,” Opt. Express 19(19), 17876–17907 (2011).
[Crossref] [PubMed]

M. G. Raymer, S. J. van Enk, C. J. McKinstrie, and H. J. McGuinness, “Interference of two photons of different color,” Opt. Commun. 283(5), 747–752 (2010).
[Crossref]

H. J. McGuinness, M. G. Raymer, C. J. McKinstrie, and S. Radic, “Quantum frequency translation of single-photon states in a photonic crystal fiber,” Phys. Rev. Lett. 105(9), 093604 (2010).
[Crossref] [PubMed]

Rey, I. H.

C. A. Husko, A. S. Clark, M. J. Collins, A. De Rossi, S. Combrié, G. Lehoucq, I. H. Rey, T. F. Krauss, C. Xiong, and B. J. Eggleton, “Multi-photon absorption limits to heralded single photon sources,” Sci. Rep. 3, 3087 (2013).
[Crossref] [PubMed]

Robinson, J. T.

Roussev, R. V.

Saha, K.

Sangouard, N.

N. Sangouard, C. Simon, H. de Riedmatten, and N. Gisin, “Quantum repeaters based on atomic ensembles and linear optics,” Rev. Mod. Phys. 83(1), 33–80 (2011).
[Crossref]

Shahnia, S.

Shapiro, J. H.

Z. Zhang, J. Mower, D. Englund, F. N. Wong, and J. H. Shapiro, “Unconditional security of time-energy entanglement quantum key distribution using dual-basis interferometry,” Phys. Rev. Lett. 112(12), 120506 (2014).
[Crossref] [PubMed]

Simon, C.

N. Sangouard, C. Simon, H. de Riedmatten, and N. Gisin, “Quantum repeaters based on atomic ensembles and linear optics,” Rev. Mod. Phys. 83(1), 33–80 (2011).
[Crossref]

Sipe, J. E.

M. Liscidini and J. E. Sipe, “Stimulated Emission Tomography,” Phys. Rev. Lett. 111(19), 193602 (2013).
[Crossref] [PubMed]

Smith, B. J.

Söller, C.

Srinivasan, K.

Steel, M. J.

Takesue, H.

Thurston, B.

Tokura, Y.

Tsuchizawa, T.

van Enk, S. J.

M. G. Raymer, S. J. van Enk, C. J. McKinstrie, and H. J. McGuinness, “Interference of two photons of different color,” Opt. Commun. 283(5), 747–752 (2010).
[Crossref]

Venkataraman, V.

Walmsley, I. A.

Watanabe, T.

Weinfurter, H.

D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390(6660), 575–579 (1997).
[Crossref]

White, A. G.

J. L. O’Brien, G. J. Pryde, A. G. White, T. C. Ralph, and D. Branning, “Demonstration of an all-optical quantum controlled-NOT gate,” Nature 426(6964), 264–267 (2003).
[Crossref] [PubMed]

Wong, F. N.

Z. Zhang, J. Mower, D. Englund, F. N. Wong, and J. H. Shapiro, “Unconditional security of time-energy entanglement quantum key distribution using dual-basis interferometry,” Phys. Rev. Lett. 112(12), 120506 (2014).
[Crossref] [PubMed]

Wright, L. J.

Xiong, C.

Yamada, K.

Yamamoto, Y.

Zeilinger, A.

D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390(6660), 575–579 (1997).
[Crossref]

Zhang, L.

Zhang, Z.

Z. Zhang, J. Mower, D. Englund, F. N. Wong, and J. H. Shapiro, “Unconditional security of time-energy entanglement quantum key distribution using dual-basis interferometry,” Phys. Rev. Lett. 112(12), 120506 (2014).
[Crossref] [PubMed]

Nature (3)

H. J. Kimble, “The quantum internet,” Nature 453(7198), 1023–1030 (2008).
[Crossref] [PubMed]

D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390(6660), 575–579 (1997).
[Crossref]

J. L. O’Brien, G. J. Pryde, A. G. White, T. C. Ralph, and D. Branning, “Demonstration of an all-optical quantum controlled-NOT gate,” Nature 426(6964), 264–267 (2003).
[Crossref] [PubMed]

Opt. Commun. (1)

M. G. Raymer, S. J. van Enk, C. J. McKinstrie, and H. J. McGuinness, “Interference of two photons of different color,” Opt. Commun. 283(5), 747–752 (2010).
[Crossref]

Opt. Express (6)

Opt. Lett. (5)

Phys. Rev. A (1)

S. Lefrancois, A. S. Clark, and B. J. Eggleton, “Optimizing optical Bragg scattering single-photon frequency conversion,” Phys. Rev. A 91(1), 013837 (2015).
[Crossref]

Phys. Rev. Lett. (6)

M. Liscidini and J. E. Sipe, “Stimulated Emission Tomography,” Phys. Rev. Lett. 111(19), 193602 (2013).
[Crossref] [PubMed]

H. Takesue, “Erasing distinguishability using quantum frequency up-conversion,” Phys. Rev. Lett. 101(17), 173901 (2008).
[Crossref] [PubMed]

Z. Zhang, J. Mower, D. Englund, F. N. Wong, and J. H. Shapiro, “Unconditional security of time-energy entanglement quantum key distribution using dual-basis interferometry,” Phys. Rev. Lett. 112(12), 120506 (2014).
[Crossref] [PubMed]

J. Huang and P. Kumar, “Observation of quantum frequency conversion,” Phys. Rev. Lett. 68(14), 2153–2156 (1992).
[Crossref] [PubMed]

H. J. McGuinness, M. G. Raymer, C. J. McKinstrie, and S. Radic, “Quantum frequency translation of single-photon states in a photonic crystal fiber,” Phys. Rev. Lett. 105(9), 093604 (2010).
[Crossref] [PubMed]

C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59(18), 2044–2046 (1987).
[Crossref] [PubMed]

Rev. Mod. Phys. (1)

N. Sangouard, C. Simon, H. de Riedmatten, and N. Gisin, “Quantum repeaters based on atomic ensembles and linear optics,” Rev. Mod. Phys. 83(1), 33–80 (2011).
[Crossref]

Sci. Rep. (1)

C. A. Husko, A. S. Clark, M. J. Collins, A. De Rossi, S. Combrié, G. Lehoucq, I. H. Rey, T. F. Krauss, C. Xiong, and B. J. Eggleton, “Multi-photon absorption limits to heralded single photon sources,” Sci. Rep. 3, 3087 (2013).
[Crossref] [PubMed]

Other (4)

G. Agrawal, Nonlinear Fiber Optics, 5th ed. (Academic, 2012).

A. Farsi, S. Clemmen, S. Ramelow, and A. L. Gaeta, “Ramsey interference with single photons,” https://arXiv:1601.01105 (2016).

A. Farsi, S. Clemmen, S. Ramelow, and A. L. Gaeta, “Low-noise quantum frequency translation of single photons,” in CLEO:2015, OSA Technical Digest (online) (Optical Society of America, 2015), paper FM3A.4.

Q. Li, M. Davanco, and K. Srinivasan, “Efficient and low-noise single-photon-level frequency conversion interfaces using silicon nanophotonics” https://arXiv:1510.02527v1 (2015).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) Four-wave mixing Bragg scattering. Two pump frequencies ωp1 and ωp2 in a nonlinear medium coherently convert the signal at ωin to ωout (b) Experimental setup. A spectral pulse shaper (SPS) selects out two pump frequencies and an input signal from a broadband laser pulse. The pump pulses are amplified in an erbium doped fiber amplifier (EDFA) and then a bandpass filter (BPF) removes spontaneous emission. Pump and signal are recombined in a silicon nanowire where FWMBS takes place. The output is measured on an optical spectrum analyzer (OSA) or with an arrayed waveguide grating (AWG) and single photon detectors (SPDs).
Fig. 2
Fig. 2 (a) Measured spectra for pump separations of 400 GHz to 100 GHz, with the total pump power fixed at 2.8 mW. (b) Total loss of the chip, including grating couplers and linear propagation loss, varying with total average pump power due to nonlinear loss. The peak power before the chip in each pump frequency is approximately 500 times the total average power, and the peak power after coupling to the chip is reduced a further 5dB. (c) SPD count rates, with background subtracted, in blue- and red-shifted channels (blue squares and red triangles respectively). Blue and red lines show background level in blue- and red-shifted channels (d) Normalized count rates as a fraction of input counts, with nonlinear loss factored out. Black circles: input wavelength; blue squares: blue-shifted peak; red triangles: red-shifted peak At higher powers the three channels do not sum to 1, due to spurious processes converting photons to other channels.
Fig. 3
Fig. 3 (a) Simulated count rates as pump power is varied. Black line: depleted input signal; Blue: blue-shifted signal; Red: red-shifted signal; Purple: double blue-shifted; Brown: double red-shifted. (b) Simulated results for a hypothetical improved 10cm waveguide.
Fig. 4
Fig. 4 (a) Measured spectra for input frequencies ω1 and ω2 interfering at ωout constructively (top) and destructively (bottom). (b) Single photon regime interference as the relative phase is varied. The red line shows the background of noise created by the pump.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

A p z = α 2 A p +(iγ α TPA 2 )| A p | 2 A p i β 2 2 2 A p t 2 + β 3 6 3 A p t 3
A s z = α 2 A s +2(iγ α TPA 2 )| A p | 2 A s i β 2 2 2 A s t 2 + β 3 6 3 A s t 3
|α ω1 |α ω2 = |0 ω1 |0 ω2 +α |1 ω1 |0 ω2 +α |0 ω1 |1 ω2 +O( α 2 )
1 2 |1 ω1 |0 ω2 + 1 2 |0 ω1 |1 ω2 = 1 2 ( | ω 1 +| ω 2 ).
2ε cos 2 ( θ 2 + θ p1 θ p2 )

Metrics