Abstract

Optical properties of 4H-SiC were measured using time-domain and Fourier transform spectroscopy in the range of 0.1–20 THz. A high-transparency region was found between <0.1–10 THz. Based on the obtained data and published results, the refractive indices for o-wave and e-wave were approximated in the form of Sellmeier equations for the entire transparency range. Phase matched frequency conversion was found to be possible at wavelengths from the visible through the mid-IR and further into the far-IR (THz) region beyond 17 μm. Extremely low absorption coefficient, high damage threshold, and the possibility of phase matching make this material highly suited for high power THz optics and generation.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Dispersion properties of sulfur doped gallium selenide crystals studied by THz TDS

Mira Naftaly, John F. Molloy, Yury M. Andreev, Konstantin A. Kokh, Grigory V. Lanskii, and Valery A. Svetlichnyi
Opt. Express 23(25) 32820-32834 (2015)

Accurate measurements of second-order nonlinear optical coefficients of 6H and 4H silicon carbide

Hiroaki Sato, Makoto Abe, Ichiro Shoji, Jun Suda, and Takashi Kondo
J. Opt. Soc. Am. B 26(10) 1892-1896 (2009)

High-power tunable, 0.5-3 THz radiation source based on nonlinear difference frequency mixing of CO2 laser lines

Sergei Ya. Tochitsky, Chieh Sung, Sarah E. Trubnick, Chan Joshi, and Konstantin L. Vodopyanov
J. Opt. Soc. Am. B 24(9) 2509-2516 (2007)

References

  • View by:
  • |
  • |
  • |

  1. S. Niedermeier, H. Schillinger, R. Sauerbrey, B. Adolph, and F. Bechstedt, “Second-harmonic generation in silicon carbide polytypes,” Appl. Phys. Lett. 75, 618–620 (1999).
    [Crossref]
  2. H. Morkoç, S. Strite, G. B. Gao, M. E. Lin, B. Sverdlov, and M. Burns, “Large-band-gap SiC, III-V nitride, and II-VI ZnSe-based semiconductor device technologies,” J. Appl. Phys. 76(3), 1363–1398 (1994).
    [Crossref]
  3. P. T. B. Shaffer, “Refractive index, dispersion, and birefringence of silicon carbide polytypes,” Appl. Opt. 10, 1034–1036 (1971).
    [Crossref] [PubMed]
  4. S. Wang, M. Zhan, G. Wang, H. Xuan, W. Zhang, C. Liu, C. Xu, Y. Liu, Z. Wei, and X. Chen, “4H-SiC: a new nonlinear material for midinfrared lasers,” Laser Photon. Rev. 7(5), 831–838 (2013).
    [Crossref]
  5. A. F. Ioffe institute database. NSM archive. Physical properties of semiconductors, “Silicon carbide (SiC),” http://www.ioffe.rssi.ru/SVA/NSM/Semicond/SiC/index.html .
  6. J. M. Dutta, Y. Guofen, and C. R. Jones, “Loss properties of SiC at millimeter wavelengths,” in Proceedings of IEEE Conference on Infrared and Millimeter Waves (IEEE, 2005), pp. 213–214.
  7. C. R. Jones, J. Dutta, G. Yu, and Y. Gao, “Measurement of dielectric properties for low-loss materials at millimeter wavelengths,” J. Infrared Millim. Terahertz Waves 32, 838–847 (2011).
    [Crossref]
  8. X. Lu, J. Y. Lee, S. Rogers, and Q. Lin, “Optical Kerr nonlinearity in a high-Q silicon carbide microresonator,” Opt. Express 22(25), 30826–30832 (2014).
    [Crossref]
  9. B. M. Garin, “Lower loss limits at millimeter and terahertz ranges,” in Proceedings of IEEE Conference on Infrared and Millimeter Waves and Terahertz Electronics (IEEE, 2004), pp. 393–394.
  10. J. H. Strait, P. A. George, J. Dawlaty, S. Shivaraman, M. Chandrashekhar, F. Rana, and M. G. Spencer, “Emission of terahertz radiation from SiC,” Appl. Phys. Lett. 95, 051912 (2009).
    [Crossref]
  11. K. Nakayama, A. Matsubara, S. Okajima, K. Kawahata, K. Tanaka, T. Akiyama, H. Kinoshita, M. Yoshimoto, and T. Takahashi, “Precise measurements of optical constants of SiC in 40 to 120 μm wavelength region,” in Proceedings of IEEE Conference on Infrared, Millimeter and Terahertz Waves (IEEE, 2010), pp. 1–2.
    [Crossref]
  12. G. B. Dubrovskii and E. I. Radovanova, “Infrared impurity absorption in n-type silicon carbide,” Phys. Stat. Solidi (B) 48(2), 875–879 (1971).
    [Crossref]
  13. Y. J. Ding, “High-power tunable terahertz sources based on parametric processes and applications,” IEEE J. Sel. Top. Quantum Electron. 13(3), 705–720 (2007).
    [Crossref]
  14. J. Guo, J. J. Xie, D. J. Li, G. L. Yang, F. Chen, C. R. Wang, L. M. Zhang, Yu. M. Andreev, K. A. Kokh, G. V. Lanskii, and V. A. Svetlichnyi, “Doped GaSe crystals for laser frequency conversion,” Light Sci. Appl. 4, e362 (2015) (in press).
    [Crossref]
  15. S. Singh, J. R. Potopowicz, L. G. van Uitert, and S. H. Wemple, “Nonlinear optical properties of hexagonal silicon carbide,” Appl. Phys. Lett. 19, 53–56 (1971).
    [Crossref]
  16. P. M. Lundquist, W. P. Lin, G. K. Wong, M. Razeghi, and J. B. Ketterson, “Second harmonic generation in hexagonal silicon carbide,” Appl. Phys. Lett. 66, 1883–1885 (1995).
    [Crossref]
  17. H. Sato, M. Abe, I. Shoji, J. Suda, and T. Kondo, “Accurate measurements of second-order nonlinear optical coefficients of 6H and 4H silicon carbide,” J. Opt. Soc. Am. B 26, 1892–1896 (2009).
    [Crossref]
  18. K. L. Vodopyanov and L. A. Kulevskii, “New dispersion relationships for GaSe in the 0.65–18 μm spectral region,” Opt. Commun. 118, 375–378 (1995).
    [Crossref]
  19. A. Ellison, B. Magnusson, N. T. Son, L. Storasta, and E. Janzén, “HTCVD grown semi-insulating SiC substrates,” Mat. Sci. Forum 433–436, 33–38 (2003).
    [Crossref]
  20. M. Naftaly and R. Dudley, “Linearity calibration of amplitude and power measurements in terahertz systems and detectors,” Opt. Lett. 34, 674–676 (2009).
    [Crossref] [PubMed]
  21. W. Withayachumnankul, B. M. Fischer, H. Lin, and D. Abbott, “Uncertainty in terahertz time-domain spectroscopy measurement,” J. Opt. Soc. Am. B 25, 1059–1072 (2008).
    [Crossref]
  22. M. N. Afsar, C. Liu, and K. A. Korolev, “Dielectric measurements and characterization of impurities of photovoltaic cell materials at millimeter and THz waves,” in Proceedings of IEEE Conference on Infrared, Millimeter and Terahertz Waves (IEEE, 2011), pp. 1–2.
  23. Shu Chen, M. N. Afsar, and D. Sakdatorn, “Dielectric-parameter measurements of SiC at millimeter and submillimeter wavelengths,” IEEE Trans. Instrument. Meas. 57(4), 706–715 (2008).
    [Crossref]
  24. A. Rubano, M. Wolf, and T. Kampfrath, “Terahertz conductivity and ultrafast dynamics of photoinduced charge carriers in intrinsic 3C and 6H silicon carbide,” Appl. Phys. Lett. 105, 032104 (2014).
    [Crossref]
  25. F. Zernike and J. E. Midwinter, Applied Nonlinear Optics (John Willey & Sons, 1973).
  26. S. G. Grechin, “Integral criterion for selecting nonlinear crystals for frequency conversion,” Quantum Electron. 39 (2), 171–173 (2009).
    [Crossref]

2015 (1)

J. Guo, J. J. Xie, D. J. Li, G. L. Yang, F. Chen, C. R. Wang, L. M. Zhang, Yu. M. Andreev, K. A. Kokh, G. V. Lanskii, and V. A. Svetlichnyi, “Doped GaSe crystals for laser frequency conversion,” Light Sci. Appl. 4, e362 (2015) (in press).
[Crossref]

2014 (2)

A. Rubano, M. Wolf, and T. Kampfrath, “Terahertz conductivity and ultrafast dynamics of photoinduced charge carriers in intrinsic 3C and 6H silicon carbide,” Appl. Phys. Lett. 105, 032104 (2014).
[Crossref]

X. Lu, J. Y. Lee, S. Rogers, and Q. Lin, “Optical Kerr nonlinearity in a high-Q silicon carbide microresonator,” Opt. Express 22(25), 30826–30832 (2014).
[Crossref]

2013 (1)

S. Wang, M. Zhan, G. Wang, H. Xuan, W. Zhang, C. Liu, C. Xu, Y. Liu, Z. Wei, and X. Chen, “4H-SiC: a new nonlinear material for midinfrared lasers,” Laser Photon. Rev. 7(5), 831–838 (2013).
[Crossref]

2011 (1)

C. R. Jones, J. Dutta, G. Yu, and Y. Gao, “Measurement of dielectric properties for low-loss materials at millimeter wavelengths,” J. Infrared Millim. Terahertz Waves 32, 838–847 (2011).
[Crossref]

2009 (4)

J. H. Strait, P. A. George, J. Dawlaty, S. Shivaraman, M. Chandrashekhar, F. Rana, and M. G. Spencer, “Emission of terahertz radiation from SiC,” Appl. Phys. Lett. 95, 051912 (2009).
[Crossref]

S. G. Grechin, “Integral criterion for selecting nonlinear crystals for frequency conversion,” Quantum Electron. 39 (2), 171–173 (2009).
[Crossref]

M. Naftaly and R. Dudley, “Linearity calibration of amplitude and power measurements in terahertz systems and detectors,” Opt. Lett. 34, 674–676 (2009).
[Crossref] [PubMed]

H. Sato, M. Abe, I. Shoji, J. Suda, and T. Kondo, “Accurate measurements of second-order nonlinear optical coefficients of 6H and 4H silicon carbide,” J. Opt. Soc. Am. B 26, 1892–1896 (2009).
[Crossref]

2008 (2)

Shu Chen, M. N. Afsar, and D. Sakdatorn, “Dielectric-parameter measurements of SiC at millimeter and submillimeter wavelengths,” IEEE Trans. Instrument. Meas. 57(4), 706–715 (2008).
[Crossref]

W. Withayachumnankul, B. M. Fischer, H. Lin, and D. Abbott, “Uncertainty in terahertz time-domain spectroscopy measurement,” J. Opt. Soc. Am. B 25, 1059–1072 (2008).
[Crossref]

2007 (1)

Y. J. Ding, “High-power tunable terahertz sources based on parametric processes and applications,” IEEE J. Sel. Top. Quantum Electron. 13(3), 705–720 (2007).
[Crossref]

2003 (1)

A. Ellison, B. Magnusson, N. T. Son, L. Storasta, and E. Janzén, “HTCVD grown semi-insulating SiC substrates,” Mat. Sci. Forum 433–436, 33–38 (2003).
[Crossref]

1999 (1)

S. Niedermeier, H. Schillinger, R. Sauerbrey, B. Adolph, and F. Bechstedt, “Second-harmonic generation in silicon carbide polytypes,” Appl. Phys. Lett. 75, 618–620 (1999).
[Crossref]

1995 (2)

P. M. Lundquist, W. P. Lin, G. K. Wong, M. Razeghi, and J. B. Ketterson, “Second harmonic generation in hexagonal silicon carbide,” Appl. Phys. Lett. 66, 1883–1885 (1995).
[Crossref]

K. L. Vodopyanov and L. A. Kulevskii, “New dispersion relationships for GaSe in the 0.65–18 μm spectral region,” Opt. Commun. 118, 375–378 (1995).
[Crossref]

1994 (1)

H. Morkoç, S. Strite, G. B. Gao, M. E. Lin, B. Sverdlov, and M. Burns, “Large-band-gap SiC, III-V nitride, and II-VI ZnSe-based semiconductor device technologies,” J. Appl. Phys. 76(3), 1363–1398 (1994).
[Crossref]

1971 (3)

S. Singh, J. R. Potopowicz, L. G. van Uitert, and S. H. Wemple, “Nonlinear optical properties of hexagonal silicon carbide,” Appl. Phys. Lett. 19, 53–56 (1971).
[Crossref]

G. B. Dubrovskii and E. I. Radovanova, “Infrared impurity absorption in n-type silicon carbide,” Phys. Stat. Solidi (B) 48(2), 875–879 (1971).
[Crossref]

P. T. B. Shaffer, “Refractive index, dispersion, and birefringence of silicon carbide polytypes,” Appl. Opt. 10, 1034–1036 (1971).
[Crossref] [PubMed]

Abbott, D.

Abe, M.

Adolph, B.

S. Niedermeier, H. Schillinger, R. Sauerbrey, B. Adolph, and F. Bechstedt, “Second-harmonic generation in silicon carbide polytypes,” Appl. Phys. Lett. 75, 618–620 (1999).
[Crossref]

Afsar, M. N.

Shu Chen, M. N. Afsar, and D. Sakdatorn, “Dielectric-parameter measurements of SiC at millimeter and submillimeter wavelengths,” IEEE Trans. Instrument. Meas. 57(4), 706–715 (2008).
[Crossref]

M. N. Afsar, C. Liu, and K. A. Korolev, “Dielectric measurements and characterization of impurities of photovoltaic cell materials at millimeter and THz waves,” in Proceedings of IEEE Conference on Infrared, Millimeter and Terahertz Waves (IEEE, 2011), pp. 1–2.

Akiyama, T.

K. Nakayama, A. Matsubara, S. Okajima, K. Kawahata, K. Tanaka, T. Akiyama, H. Kinoshita, M. Yoshimoto, and T. Takahashi, “Precise measurements of optical constants of SiC in 40 to 120 μm wavelength region,” in Proceedings of IEEE Conference on Infrared, Millimeter and Terahertz Waves (IEEE, 2010), pp. 1–2.
[Crossref]

Andreev, Yu. M.

J. Guo, J. J. Xie, D. J. Li, G. L. Yang, F. Chen, C. R. Wang, L. M. Zhang, Yu. M. Andreev, K. A. Kokh, G. V. Lanskii, and V. A. Svetlichnyi, “Doped GaSe crystals for laser frequency conversion,” Light Sci. Appl. 4, e362 (2015) (in press).
[Crossref]

Bechstedt, F.

S. Niedermeier, H. Schillinger, R. Sauerbrey, B. Adolph, and F. Bechstedt, “Second-harmonic generation in silicon carbide polytypes,” Appl. Phys. Lett. 75, 618–620 (1999).
[Crossref]

Burns, M.

H. Morkoç, S. Strite, G. B. Gao, M. E. Lin, B. Sverdlov, and M. Burns, “Large-band-gap SiC, III-V nitride, and II-VI ZnSe-based semiconductor device technologies,” J. Appl. Phys. 76(3), 1363–1398 (1994).
[Crossref]

Chandrashekhar, M.

J. H. Strait, P. A. George, J. Dawlaty, S. Shivaraman, M. Chandrashekhar, F. Rana, and M. G. Spencer, “Emission of terahertz radiation from SiC,” Appl. Phys. Lett. 95, 051912 (2009).
[Crossref]

Chen, F.

J. Guo, J. J. Xie, D. J. Li, G. L. Yang, F. Chen, C. R. Wang, L. M. Zhang, Yu. M. Andreev, K. A. Kokh, G. V. Lanskii, and V. A. Svetlichnyi, “Doped GaSe crystals for laser frequency conversion,” Light Sci. Appl. 4, e362 (2015) (in press).
[Crossref]

Chen, Shu

Shu Chen, M. N. Afsar, and D. Sakdatorn, “Dielectric-parameter measurements of SiC at millimeter and submillimeter wavelengths,” IEEE Trans. Instrument. Meas. 57(4), 706–715 (2008).
[Crossref]

Chen, X.

S. Wang, M. Zhan, G. Wang, H. Xuan, W. Zhang, C. Liu, C. Xu, Y. Liu, Z. Wei, and X. Chen, “4H-SiC: a new nonlinear material for midinfrared lasers,” Laser Photon. Rev. 7(5), 831–838 (2013).
[Crossref]

Dawlaty, J.

J. H. Strait, P. A. George, J. Dawlaty, S. Shivaraman, M. Chandrashekhar, F. Rana, and M. G. Spencer, “Emission of terahertz radiation from SiC,” Appl. Phys. Lett. 95, 051912 (2009).
[Crossref]

Ding, Y. J.

Y. J. Ding, “High-power tunable terahertz sources based on parametric processes and applications,” IEEE J. Sel. Top. Quantum Electron. 13(3), 705–720 (2007).
[Crossref]

Dubrovskii, G. B.

G. B. Dubrovskii and E. I. Radovanova, “Infrared impurity absorption in n-type silicon carbide,” Phys. Stat. Solidi (B) 48(2), 875–879 (1971).
[Crossref]

Dudley, R.

Dutta, J.

C. R. Jones, J. Dutta, G. Yu, and Y. Gao, “Measurement of dielectric properties for low-loss materials at millimeter wavelengths,” J. Infrared Millim. Terahertz Waves 32, 838–847 (2011).
[Crossref]

Dutta, J. M.

J. M. Dutta, Y. Guofen, and C. R. Jones, “Loss properties of SiC at millimeter wavelengths,” in Proceedings of IEEE Conference on Infrared and Millimeter Waves (IEEE, 2005), pp. 213–214.

Ellison, A.

A. Ellison, B. Magnusson, N. T. Son, L. Storasta, and E. Janzén, “HTCVD grown semi-insulating SiC substrates,” Mat. Sci. Forum 433–436, 33–38 (2003).
[Crossref]

Fischer, B. M.

Gao, G. B.

H. Morkoç, S. Strite, G. B. Gao, M. E. Lin, B. Sverdlov, and M. Burns, “Large-band-gap SiC, III-V nitride, and II-VI ZnSe-based semiconductor device technologies,” J. Appl. Phys. 76(3), 1363–1398 (1994).
[Crossref]

Gao, Y.

C. R. Jones, J. Dutta, G. Yu, and Y. Gao, “Measurement of dielectric properties for low-loss materials at millimeter wavelengths,” J. Infrared Millim. Terahertz Waves 32, 838–847 (2011).
[Crossref]

Garin, B. M.

B. M. Garin, “Lower loss limits at millimeter and terahertz ranges,” in Proceedings of IEEE Conference on Infrared and Millimeter Waves and Terahertz Electronics (IEEE, 2004), pp. 393–394.

George, P. A.

J. H. Strait, P. A. George, J. Dawlaty, S. Shivaraman, M. Chandrashekhar, F. Rana, and M. G. Spencer, “Emission of terahertz radiation from SiC,” Appl. Phys. Lett. 95, 051912 (2009).
[Crossref]

Grechin, S. G.

S. G. Grechin, “Integral criterion for selecting nonlinear crystals for frequency conversion,” Quantum Electron. 39 (2), 171–173 (2009).
[Crossref]

Guo, J.

J. Guo, J. J. Xie, D. J. Li, G. L. Yang, F. Chen, C. R. Wang, L. M. Zhang, Yu. M. Andreev, K. A. Kokh, G. V. Lanskii, and V. A. Svetlichnyi, “Doped GaSe crystals for laser frequency conversion,” Light Sci. Appl. 4, e362 (2015) (in press).
[Crossref]

Guofen, Y.

J. M. Dutta, Y. Guofen, and C. R. Jones, “Loss properties of SiC at millimeter wavelengths,” in Proceedings of IEEE Conference on Infrared and Millimeter Waves (IEEE, 2005), pp. 213–214.

Janzén, E.

A. Ellison, B. Magnusson, N. T. Son, L. Storasta, and E. Janzén, “HTCVD grown semi-insulating SiC substrates,” Mat. Sci. Forum 433–436, 33–38 (2003).
[Crossref]

Jones, C. R.

C. R. Jones, J. Dutta, G. Yu, and Y. Gao, “Measurement of dielectric properties for low-loss materials at millimeter wavelengths,” J. Infrared Millim. Terahertz Waves 32, 838–847 (2011).
[Crossref]

J. M. Dutta, Y. Guofen, and C. R. Jones, “Loss properties of SiC at millimeter wavelengths,” in Proceedings of IEEE Conference on Infrared and Millimeter Waves (IEEE, 2005), pp. 213–214.

Kampfrath, T.

A. Rubano, M. Wolf, and T. Kampfrath, “Terahertz conductivity and ultrafast dynamics of photoinduced charge carriers in intrinsic 3C and 6H silicon carbide,” Appl. Phys. Lett. 105, 032104 (2014).
[Crossref]

Kawahata, K.

K. Nakayama, A. Matsubara, S. Okajima, K. Kawahata, K. Tanaka, T. Akiyama, H. Kinoshita, M. Yoshimoto, and T. Takahashi, “Precise measurements of optical constants of SiC in 40 to 120 μm wavelength region,” in Proceedings of IEEE Conference on Infrared, Millimeter and Terahertz Waves (IEEE, 2010), pp. 1–2.
[Crossref]

Ketterson, J. B.

P. M. Lundquist, W. P. Lin, G. K. Wong, M. Razeghi, and J. B. Ketterson, “Second harmonic generation in hexagonal silicon carbide,” Appl. Phys. Lett. 66, 1883–1885 (1995).
[Crossref]

Kinoshita, H.

K. Nakayama, A. Matsubara, S. Okajima, K. Kawahata, K. Tanaka, T. Akiyama, H. Kinoshita, M. Yoshimoto, and T. Takahashi, “Precise measurements of optical constants of SiC in 40 to 120 μm wavelength region,” in Proceedings of IEEE Conference on Infrared, Millimeter and Terahertz Waves (IEEE, 2010), pp. 1–2.
[Crossref]

Kokh, K. A.

J. Guo, J. J. Xie, D. J. Li, G. L. Yang, F. Chen, C. R. Wang, L. M. Zhang, Yu. M. Andreev, K. A. Kokh, G. V. Lanskii, and V. A. Svetlichnyi, “Doped GaSe crystals for laser frequency conversion,” Light Sci. Appl. 4, e362 (2015) (in press).
[Crossref]

Kondo, T.

Korolev, K. A.

M. N. Afsar, C. Liu, and K. A. Korolev, “Dielectric measurements and characterization of impurities of photovoltaic cell materials at millimeter and THz waves,” in Proceedings of IEEE Conference on Infrared, Millimeter and Terahertz Waves (IEEE, 2011), pp. 1–2.

Kulevskii, L. A.

K. L. Vodopyanov and L. A. Kulevskii, “New dispersion relationships for GaSe in the 0.65–18 μm spectral region,” Opt. Commun. 118, 375–378 (1995).
[Crossref]

Lanskii, G. V.

J. Guo, J. J. Xie, D. J. Li, G. L. Yang, F. Chen, C. R. Wang, L. M. Zhang, Yu. M. Andreev, K. A. Kokh, G. V. Lanskii, and V. A. Svetlichnyi, “Doped GaSe crystals for laser frequency conversion,” Light Sci. Appl. 4, e362 (2015) (in press).
[Crossref]

Lee, J. Y.

Li, D. J.

J. Guo, J. J. Xie, D. J. Li, G. L. Yang, F. Chen, C. R. Wang, L. M. Zhang, Yu. M. Andreev, K. A. Kokh, G. V. Lanskii, and V. A. Svetlichnyi, “Doped GaSe crystals for laser frequency conversion,” Light Sci. Appl. 4, e362 (2015) (in press).
[Crossref]

Lin, H.

Lin, M. E.

H. Morkoç, S. Strite, G. B. Gao, M. E. Lin, B. Sverdlov, and M. Burns, “Large-band-gap SiC, III-V nitride, and II-VI ZnSe-based semiconductor device technologies,” J. Appl. Phys. 76(3), 1363–1398 (1994).
[Crossref]

Lin, Q.

Lin, W. P.

P. M. Lundquist, W. P. Lin, G. K. Wong, M. Razeghi, and J. B. Ketterson, “Second harmonic generation in hexagonal silicon carbide,” Appl. Phys. Lett. 66, 1883–1885 (1995).
[Crossref]

Liu, C.

S. Wang, M. Zhan, G. Wang, H. Xuan, W. Zhang, C. Liu, C. Xu, Y. Liu, Z. Wei, and X. Chen, “4H-SiC: a new nonlinear material for midinfrared lasers,” Laser Photon. Rev. 7(5), 831–838 (2013).
[Crossref]

M. N. Afsar, C. Liu, and K. A. Korolev, “Dielectric measurements and characterization of impurities of photovoltaic cell materials at millimeter and THz waves,” in Proceedings of IEEE Conference on Infrared, Millimeter and Terahertz Waves (IEEE, 2011), pp. 1–2.

Liu, Y.

S. Wang, M. Zhan, G. Wang, H. Xuan, W. Zhang, C. Liu, C. Xu, Y. Liu, Z. Wei, and X. Chen, “4H-SiC: a new nonlinear material for midinfrared lasers,” Laser Photon. Rev. 7(5), 831–838 (2013).
[Crossref]

Lu, X.

Lundquist, P. M.

P. M. Lundquist, W. P. Lin, G. K. Wong, M. Razeghi, and J. B. Ketterson, “Second harmonic generation in hexagonal silicon carbide,” Appl. Phys. Lett. 66, 1883–1885 (1995).
[Crossref]

Magnusson, B.

A. Ellison, B. Magnusson, N. T. Son, L. Storasta, and E. Janzén, “HTCVD grown semi-insulating SiC substrates,” Mat. Sci. Forum 433–436, 33–38 (2003).
[Crossref]

Matsubara, A.

K. Nakayama, A. Matsubara, S. Okajima, K. Kawahata, K. Tanaka, T. Akiyama, H. Kinoshita, M. Yoshimoto, and T. Takahashi, “Precise measurements of optical constants of SiC in 40 to 120 μm wavelength region,” in Proceedings of IEEE Conference on Infrared, Millimeter and Terahertz Waves (IEEE, 2010), pp. 1–2.
[Crossref]

Midwinter, J. E.

F. Zernike and J. E. Midwinter, Applied Nonlinear Optics (John Willey & Sons, 1973).

Morkoç, H.

H. Morkoç, S. Strite, G. B. Gao, M. E. Lin, B. Sverdlov, and M. Burns, “Large-band-gap SiC, III-V nitride, and II-VI ZnSe-based semiconductor device technologies,” J. Appl. Phys. 76(3), 1363–1398 (1994).
[Crossref]

Naftaly, M.

Nakayama, K.

K. Nakayama, A. Matsubara, S. Okajima, K. Kawahata, K. Tanaka, T. Akiyama, H. Kinoshita, M. Yoshimoto, and T. Takahashi, “Precise measurements of optical constants of SiC in 40 to 120 μm wavelength region,” in Proceedings of IEEE Conference on Infrared, Millimeter and Terahertz Waves (IEEE, 2010), pp. 1–2.
[Crossref]

Niedermeier, S.

S. Niedermeier, H. Schillinger, R. Sauerbrey, B. Adolph, and F. Bechstedt, “Second-harmonic generation in silicon carbide polytypes,” Appl. Phys. Lett. 75, 618–620 (1999).
[Crossref]

Okajima, S.

K. Nakayama, A. Matsubara, S. Okajima, K. Kawahata, K. Tanaka, T. Akiyama, H. Kinoshita, M. Yoshimoto, and T. Takahashi, “Precise measurements of optical constants of SiC in 40 to 120 μm wavelength region,” in Proceedings of IEEE Conference on Infrared, Millimeter and Terahertz Waves (IEEE, 2010), pp. 1–2.
[Crossref]

Potopowicz, J. R.

S. Singh, J. R. Potopowicz, L. G. van Uitert, and S. H. Wemple, “Nonlinear optical properties of hexagonal silicon carbide,” Appl. Phys. Lett. 19, 53–56 (1971).
[Crossref]

Radovanova, E. I.

G. B. Dubrovskii and E. I. Radovanova, “Infrared impurity absorption in n-type silicon carbide,” Phys. Stat. Solidi (B) 48(2), 875–879 (1971).
[Crossref]

Rana, F.

J. H. Strait, P. A. George, J. Dawlaty, S. Shivaraman, M. Chandrashekhar, F. Rana, and M. G. Spencer, “Emission of terahertz radiation from SiC,” Appl. Phys. Lett. 95, 051912 (2009).
[Crossref]

Razeghi, M.

P. M. Lundquist, W. P. Lin, G. K. Wong, M. Razeghi, and J. B. Ketterson, “Second harmonic generation in hexagonal silicon carbide,” Appl. Phys. Lett. 66, 1883–1885 (1995).
[Crossref]

Rogers, S.

Rubano, A.

A. Rubano, M. Wolf, and T. Kampfrath, “Terahertz conductivity and ultrafast dynamics of photoinduced charge carriers in intrinsic 3C and 6H silicon carbide,” Appl. Phys. Lett. 105, 032104 (2014).
[Crossref]

Sakdatorn, D.

Shu Chen, M. N. Afsar, and D. Sakdatorn, “Dielectric-parameter measurements of SiC at millimeter and submillimeter wavelengths,” IEEE Trans. Instrument. Meas. 57(4), 706–715 (2008).
[Crossref]

Sato, H.

Sauerbrey, R.

S. Niedermeier, H. Schillinger, R. Sauerbrey, B. Adolph, and F. Bechstedt, “Second-harmonic generation in silicon carbide polytypes,” Appl. Phys. Lett. 75, 618–620 (1999).
[Crossref]

Schillinger, H.

S. Niedermeier, H. Schillinger, R. Sauerbrey, B. Adolph, and F. Bechstedt, “Second-harmonic generation in silicon carbide polytypes,” Appl. Phys. Lett. 75, 618–620 (1999).
[Crossref]

Shaffer, P. T. B.

Shivaraman, S.

J. H. Strait, P. A. George, J. Dawlaty, S. Shivaraman, M. Chandrashekhar, F. Rana, and M. G. Spencer, “Emission of terahertz radiation from SiC,” Appl. Phys. Lett. 95, 051912 (2009).
[Crossref]

Shoji, I.

Singh, S.

S. Singh, J. R. Potopowicz, L. G. van Uitert, and S. H. Wemple, “Nonlinear optical properties of hexagonal silicon carbide,” Appl. Phys. Lett. 19, 53–56 (1971).
[Crossref]

Son, N. T.

A. Ellison, B. Magnusson, N. T. Son, L. Storasta, and E. Janzén, “HTCVD grown semi-insulating SiC substrates,” Mat. Sci. Forum 433–436, 33–38 (2003).
[Crossref]

Spencer, M. G.

J. H. Strait, P. A. George, J. Dawlaty, S. Shivaraman, M. Chandrashekhar, F. Rana, and M. G. Spencer, “Emission of terahertz radiation from SiC,” Appl. Phys. Lett. 95, 051912 (2009).
[Crossref]

Storasta, L.

A. Ellison, B. Magnusson, N. T. Son, L. Storasta, and E. Janzén, “HTCVD grown semi-insulating SiC substrates,” Mat. Sci. Forum 433–436, 33–38 (2003).
[Crossref]

Strait, J. H.

J. H. Strait, P. A. George, J. Dawlaty, S. Shivaraman, M. Chandrashekhar, F. Rana, and M. G. Spencer, “Emission of terahertz radiation from SiC,” Appl. Phys. Lett. 95, 051912 (2009).
[Crossref]

Strite, S.

H. Morkoç, S. Strite, G. B. Gao, M. E. Lin, B. Sverdlov, and M. Burns, “Large-band-gap SiC, III-V nitride, and II-VI ZnSe-based semiconductor device technologies,” J. Appl. Phys. 76(3), 1363–1398 (1994).
[Crossref]

Suda, J.

Sverdlov, B.

H. Morkoç, S. Strite, G. B. Gao, M. E. Lin, B. Sverdlov, and M. Burns, “Large-band-gap SiC, III-V nitride, and II-VI ZnSe-based semiconductor device technologies,” J. Appl. Phys. 76(3), 1363–1398 (1994).
[Crossref]

Svetlichnyi, V. A.

J. Guo, J. J. Xie, D. J. Li, G. L. Yang, F. Chen, C. R. Wang, L. M. Zhang, Yu. M. Andreev, K. A. Kokh, G. V. Lanskii, and V. A. Svetlichnyi, “Doped GaSe crystals for laser frequency conversion,” Light Sci. Appl. 4, e362 (2015) (in press).
[Crossref]

Takahashi, T.

K. Nakayama, A. Matsubara, S. Okajima, K. Kawahata, K. Tanaka, T. Akiyama, H. Kinoshita, M. Yoshimoto, and T. Takahashi, “Precise measurements of optical constants of SiC in 40 to 120 μm wavelength region,” in Proceedings of IEEE Conference on Infrared, Millimeter and Terahertz Waves (IEEE, 2010), pp. 1–2.
[Crossref]

Tanaka, K.

K. Nakayama, A. Matsubara, S. Okajima, K. Kawahata, K. Tanaka, T. Akiyama, H. Kinoshita, M. Yoshimoto, and T. Takahashi, “Precise measurements of optical constants of SiC in 40 to 120 μm wavelength region,” in Proceedings of IEEE Conference on Infrared, Millimeter and Terahertz Waves (IEEE, 2010), pp. 1–2.
[Crossref]

van Uitert, L. G.

S. Singh, J. R. Potopowicz, L. G. van Uitert, and S. H. Wemple, “Nonlinear optical properties of hexagonal silicon carbide,” Appl. Phys. Lett. 19, 53–56 (1971).
[Crossref]

Vodopyanov, K. L.

K. L. Vodopyanov and L. A. Kulevskii, “New dispersion relationships for GaSe in the 0.65–18 μm spectral region,” Opt. Commun. 118, 375–378 (1995).
[Crossref]

Wang, C. R.

J. Guo, J. J. Xie, D. J. Li, G. L. Yang, F. Chen, C. R. Wang, L. M. Zhang, Yu. M. Andreev, K. A. Kokh, G. V. Lanskii, and V. A. Svetlichnyi, “Doped GaSe crystals for laser frequency conversion,” Light Sci. Appl. 4, e362 (2015) (in press).
[Crossref]

Wang, G.

S. Wang, M. Zhan, G. Wang, H. Xuan, W. Zhang, C. Liu, C. Xu, Y. Liu, Z. Wei, and X. Chen, “4H-SiC: a new nonlinear material for midinfrared lasers,” Laser Photon. Rev. 7(5), 831–838 (2013).
[Crossref]

Wang, S.

S. Wang, M. Zhan, G. Wang, H. Xuan, W. Zhang, C. Liu, C. Xu, Y. Liu, Z. Wei, and X. Chen, “4H-SiC: a new nonlinear material for midinfrared lasers,” Laser Photon. Rev. 7(5), 831–838 (2013).
[Crossref]

Wei, Z.

S. Wang, M. Zhan, G. Wang, H. Xuan, W. Zhang, C. Liu, C. Xu, Y. Liu, Z. Wei, and X. Chen, “4H-SiC: a new nonlinear material for midinfrared lasers,” Laser Photon. Rev. 7(5), 831–838 (2013).
[Crossref]

Wemple, S. H.

S. Singh, J. R. Potopowicz, L. G. van Uitert, and S. H. Wemple, “Nonlinear optical properties of hexagonal silicon carbide,” Appl. Phys. Lett. 19, 53–56 (1971).
[Crossref]

Withayachumnankul, W.

Wolf, M.

A. Rubano, M. Wolf, and T. Kampfrath, “Terahertz conductivity and ultrafast dynamics of photoinduced charge carriers in intrinsic 3C and 6H silicon carbide,” Appl. Phys. Lett. 105, 032104 (2014).
[Crossref]

Wong, G. K.

P. M. Lundquist, W. P. Lin, G. K. Wong, M. Razeghi, and J. B. Ketterson, “Second harmonic generation in hexagonal silicon carbide,” Appl. Phys. Lett. 66, 1883–1885 (1995).
[Crossref]

Xie, J. J.

J. Guo, J. J. Xie, D. J. Li, G. L. Yang, F. Chen, C. R. Wang, L. M. Zhang, Yu. M. Andreev, K. A. Kokh, G. V. Lanskii, and V. A. Svetlichnyi, “Doped GaSe crystals for laser frequency conversion,” Light Sci. Appl. 4, e362 (2015) (in press).
[Crossref]

Xu, C.

S. Wang, M. Zhan, G. Wang, H. Xuan, W. Zhang, C. Liu, C. Xu, Y. Liu, Z. Wei, and X. Chen, “4H-SiC: a new nonlinear material for midinfrared lasers,” Laser Photon. Rev. 7(5), 831–838 (2013).
[Crossref]

Xuan, H.

S. Wang, M. Zhan, G. Wang, H. Xuan, W. Zhang, C. Liu, C. Xu, Y. Liu, Z. Wei, and X. Chen, “4H-SiC: a new nonlinear material for midinfrared lasers,” Laser Photon. Rev. 7(5), 831–838 (2013).
[Crossref]

Yang, G. L.

J. Guo, J. J. Xie, D. J. Li, G. L. Yang, F. Chen, C. R. Wang, L. M. Zhang, Yu. M. Andreev, K. A. Kokh, G. V. Lanskii, and V. A. Svetlichnyi, “Doped GaSe crystals for laser frequency conversion,” Light Sci. Appl. 4, e362 (2015) (in press).
[Crossref]

Yoshimoto, M.

K. Nakayama, A. Matsubara, S. Okajima, K. Kawahata, K. Tanaka, T. Akiyama, H. Kinoshita, M. Yoshimoto, and T. Takahashi, “Precise measurements of optical constants of SiC in 40 to 120 μm wavelength region,” in Proceedings of IEEE Conference on Infrared, Millimeter and Terahertz Waves (IEEE, 2010), pp. 1–2.
[Crossref]

Yu, G.

C. R. Jones, J. Dutta, G. Yu, and Y. Gao, “Measurement of dielectric properties for low-loss materials at millimeter wavelengths,” J. Infrared Millim. Terahertz Waves 32, 838–847 (2011).
[Crossref]

Zernike, F.

F. Zernike and J. E. Midwinter, Applied Nonlinear Optics (John Willey & Sons, 1973).

Zhan, M.

S. Wang, M. Zhan, G. Wang, H. Xuan, W. Zhang, C. Liu, C. Xu, Y. Liu, Z. Wei, and X. Chen, “4H-SiC: a new nonlinear material for midinfrared lasers,” Laser Photon. Rev. 7(5), 831–838 (2013).
[Crossref]

Zhang, L. M.

J. Guo, J. J. Xie, D. J. Li, G. L. Yang, F. Chen, C. R. Wang, L. M. Zhang, Yu. M. Andreev, K. A. Kokh, G. V. Lanskii, and V. A. Svetlichnyi, “Doped GaSe crystals for laser frequency conversion,” Light Sci. Appl. 4, e362 (2015) (in press).
[Crossref]

Zhang, W.

S. Wang, M. Zhan, G. Wang, H. Xuan, W. Zhang, C. Liu, C. Xu, Y. Liu, Z. Wei, and X. Chen, “4H-SiC: a new nonlinear material for midinfrared lasers,” Laser Photon. Rev. 7(5), 831–838 (2013).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (5)

S. Niedermeier, H. Schillinger, R. Sauerbrey, B. Adolph, and F. Bechstedt, “Second-harmonic generation in silicon carbide polytypes,” Appl. Phys. Lett. 75, 618–620 (1999).
[Crossref]

J. H. Strait, P. A. George, J. Dawlaty, S. Shivaraman, M. Chandrashekhar, F. Rana, and M. G. Spencer, “Emission of terahertz radiation from SiC,” Appl. Phys. Lett. 95, 051912 (2009).
[Crossref]

S. Singh, J. R. Potopowicz, L. G. van Uitert, and S. H. Wemple, “Nonlinear optical properties of hexagonal silicon carbide,” Appl. Phys. Lett. 19, 53–56 (1971).
[Crossref]

P. M. Lundquist, W. P. Lin, G. K. Wong, M. Razeghi, and J. B. Ketterson, “Second harmonic generation in hexagonal silicon carbide,” Appl. Phys. Lett. 66, 1883–1885 (1995).
[Crossref]

A. Rubano, M. Wolf, and T. Kampfrath, “Terahertz conductivity and ultrafast dynamics of photoinduced charge carriers in intrinsic 3C and 6H silicon carbide,” Appl. Phys. Lett. 105, 032104 (2014).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

Y. J. Ding, “High-power tunable terahertz sources based on parametric processes and applications,” IEEE J. Sel. Top. Quantum Electron. 13(3), 705–720 (2007).
[Crossref]

IEEE Trans. Instrument. Meas. (1)

Shu Chen, M. N. Afsar, and D. Sakdatorn, “Dielectric-parameter measurements of SiC at millimeter and submillimeter wavelengths,” IEEE Trans. Instrument. Meas. 57(4), 706–715 (2008).
[Crossref]

J. Appl. Phys. (1)

H. Morkoç, S. Strite, G. B. Gao, M. E. Lin, B. Sverdlov, and M. Burns, “Large-band-gap SiC, III-V nitride, and II-VI ZnSe-based semiconductor device technologies,” J. Appl. Phys. 76(3), 1363–1398 (1994).
[Crossref]

J. Infrared Millim. Terahertz Waves (1)

C. R. Jones, J. Dutta, G. Yu, and Y. Gao, “Measurement of dielectric properties for low-loss materials at millimeter wavelengths,” J. Infrared Millim. Terahertz Waves 32, 838–847 (2011).
[Crossref]

J. Opt. Soc. Am. B (2)

Laser Photon. Rev. (1)

S. Wang, M. Zhan, G. Wang, H. Xuan, W. Zhang, C. Liu, C. Xu, Y. Liu, Z. Wei, and X. Chen, “4H-SiC: a new nonlinear material for midinfrared lasers,” Laser Photon. Rev. 7(5), 831–838 (2013).
[Crossref]

Light Sci. Appl. (1)

J. Guo, J. J. Xie, D. J. Li, G. L. Yang, F. Chen, C. R. Wang, L. M. Zhang, Yu. M. Andreev, K. A. Kokh, G. V. Lanskii, and V. A. Svetlichnyi, “Doped GaSe crystals for laser frequency conversion,” Light Sci. Appl. 4, e362 (2015) (in press).
[Crossref]

Mat. Sci. Forum (1)

A. Ellison, B. Magnusson, N. T. Son, L. Storasta, and E. Janzén, “HTCVD grown semi-insulating SiC substrates,” Mat. Sci. Forum 433–436, 33–38 (2003).
[Crossref]

Opt. Commun. (1)

K. L. Vodopyanov and L. A. Kulevskii, “New dispersion relationships for GaSe in the 0.65–18 μm spectral region,” Opt. Commun. 118, 375–378 (1995).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Phys. Stat. Solidi (B) (1)

G. B. Dubrovskii and E. I. Radovanova, “Infrared impurity absorption in n-type silicon carbide,” Phys. Stat. Solidi (B) 48(2), 875–879 (1971).
[Crossref]

Quantum Electron. (1)

S. G. Grechin, “Integral criterion for selecting nonlinear crystals for frequency conversion,” Quantum Electron. 39 (2), 171–173 (2009).
[Crossref]

Other (6)

F. Zernike and J. E. Midwinter, Applied Nonlinear Optics (John Willey & Sons, 1973).

M. N. Afsar, C. Liu, and K. A. Korolev, “Dielectric measurements and characterization of impurities of photovoltaic cell materials at millimeter and THz waves,” in Proceedings of IEEE Conference on Infrared, Millimeter and Terahertz Waves (IEEE, 2011), pp. 1–2.

B. M. Garin, “Lower loss limits at millimeter and terahertz ranges,” in Proceedings of IEEE Conference on Infrared and Millimeter Waves and Terahertz Electronics (IEEE, 2004), pp. 393–394.

A. F. Ioffe institute database. NSM archive. Physical properties of semiconductors, “Silicon carbide (SiC),” http://www.ioffe.rssi.ru/SVA/NSM/Semicond/SiC/index.html .

J. M. Dutta, Y. Guofen, and C. R. Jones, “Loss properties of SiC at millimeter wavelengths,” in Proceedings of IEEE Conference on Infrared and Millimeter Waves (IEEE, 2005), pp. 213–214.

K. Nakayama, A. Matsubara, S. Okajima, K. Kawahata, K. Tanaka, T. Akiyama, H. Kinoshita, M. Yoshimoto, and T. Takahashi, “Precise measurements of optical constants of SiC in 40 to 120 μm wavelength region,” in Proceedings of IEEE Conference on Infrared, Millimeter and Terahertz Waves (IEEE, 2010), pp. 1–2.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1 Power transmission (a) and refractive index (b) in 4H-SiC measured by TDS and FTS. Transmission curves (a) are calculated from Fresnel reflection losses using refractive index values shown in (b). The FTS refractive index (b) was calculated from the frequency spacing of etalon oscillations shown in figure (a).
Fig. 2
Fig. 2 Refractive index of 4H-SiC measured by TDS (a). Also shown are uncertainty limits due to the uncertainty in the sample thickness (±1 μm). Refractive indices (b) no and ne of 4H-SiC: green lines represent measurement data from this work.
Fig. 3
Fig. 3 PM curves (a) for eoo type of DFG to THz for the pump wavelengths at 800 nm (Ti:Sapphire), 1064 nm (Nd:YAG), and 1550 nm (Er). Generalized PM diagrams for ooe type of three-wave interaction in 4H-SiC (b). For example, at the tilt of 20° (cyan line) a DFG output of 100 μm requires pump wavelengths of ≈1 μm.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

n 0 2 ( λ ) = 9.90 + 0.1364 λ 2 0.0334 + 545.0 λ 2 163.69
n e 2 ( λ ) = 10.52 + 0.1701 λ 2 0.0258 + 729.2 λ 2 194.72 .

Metrics