Abstract

Nanostructured metals have been intensively studied for optical applications over the past few decades. However, the intrinsic loss of metals has limited the optical performance of the metal nanostructures in diverse applications. In particular, light concentration in metals by surface plasmons or other resonances causes substantial absorption in metals. Here, we avoid plasmonic excitations for low loss and investigate methods to further suppress loss in nanostructured metals. We demonstrate that parasitic absorption in metal nanostructures can be significantly reduced over a broad band by increasing the Faraday inductance and the electron path length. For an example structure, the loss is reduced in comparison to flat films by more than an order of magnitude over most of the very broad spectrum between short and long wavelength infrared. For a photodetector structure, the fraction of absorption in the photoactive material increases by two orders of magnitude and the photoresponsivity increases by 15 times because of the selective suppression of metal absorption. These findings could benefit many metal-based applications that require low loss such as photovoltaics, photoconductive detectors, solar selective surfaces, infrared-transparent defrosting windows, and other metamaterials.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Decoupling and tuning the light absorption and scattering resonances in metallic composite nanostructures

Yossef Danan, Yehonatan Ramon, Jonathan Azougi, Alexandre Douplik, and Zeev Zalevsky
Opt. Express 23(22) 29089-29099 (2015)

Enhanced near-infrared absorption in graphene with multilayer metal-dielectric-metal nanostructure

Lei Zhang, Linlong Tang, Wei Wei, Xinlu Cheng, Wei Wang, and Hong Zhang
Opt. Express 24(18) 20002-20009 (2016)

Two-dimensional metamaterial transparent metal electrodes for infrared optoelectronics

Samuel M. Clark and Sang Eon Han
Opt. Lett. 39(12) 3666-3669 (2014)

References

  • View by:
  • |
  • |
  • |

  1. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010).
    [Crossref] [PubMed]
  2. J. B. Khurgin, “How to deal with the loss in plasmonics and metamaterials,” Nat. Nanotechnol. 10, 2–6 (2015).
    [Crossref] [PubMed]
  3. K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3, 601–605 (2004).
    [Crossref] [PubMed]
  4. W. L. Barnes, “Light-emitting devices: turning the tables on surface plasmons,” Nat. Mater. 3, 588–589 (2004).
    [Crossref] [PubMed]
  5. R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. 21, 3504–3509 (2009).
    [Crossref]
  6. A. Boltasseva and H. A. Atwater, “Low-loss plasmonic metamaterials,” Science 331, 290–291 (2011).
    [Crossref] [PubMed]
  7. P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4, 795–808 (2010).
    [Crossref]
  8. P. A. Hobson, S. Wedge, J. A. E. Wasey, I. Sage, and W. L. Barnes, “Surface plasmon mediated emission from organic light emitting diodes,” Adv. Mater. 14, 1393–1396 (2002).
    [Crossref]
  9. S. Krishna, “Quantum dots-in-a-well infrared photodetectors,” Infrared Phys. Technol. 47, 153–163 (2005).
    [Crossref]
  10. P. Martyniuk, J. Antoszewski, M. Martyniuk, L. Faraone, and A. Rogalski, “New concepts in infrared photodetector designs,” Appl. Phys. Rev. 1, 041102 (2014).
    [Crossref]
  11. C.-C. Chang, Y. D. Sharma, Y.-S. Kim, J. A. Bur, R. V. Shenoi, S. Krishna, D. Huang, and S.-Y. Lin, “A surface plasmon enhanced infrared photodetector based on InAs quantum dots,” Nano Lett. 10, 1704–1709 (2010).
    [Crossref] [PubMed]
  12. Z. Yu, G. Veronis, S. Fan, and M. L. Brongersma, “Design of midinfrared photodetectors enhanced by surface plasmons on grating structures,” Appl. Phys. Lett. 89, 151116 (2006).
    [Crossref]
  13. P. Tassin, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “A comparison of graphene, superconductors and metals as conductors for metamaterials and plasmonics,” Nat. Photonics 6, 259–264 (2012).
    [Crossref]
  14. A. Woessner, M. B. Lundeberg, Y. Gao, A. Principi, P. Alonso-González, M. Carrega, K. Watanabe, T. Taniguchi, F. Vignale, M. Polini, J. Hone, R. Hillenbrand, and F. H. L. Koppens, “Highly confined low-loss plasmons in graphene-boron nitride heterostructures,” Nat. Mater. 14, 421–425 (2015).
    [Crossref]
  15. S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H.-K. Yuan, and V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature 466, 735–738 (2010).
    [Crossref] [PubMed]
  16. C. M. Soukoulis and M. Wegener, “Optical metamaterials - more bulky and less lossy,” Science 330, 1633–1634 (2010).
    [Crossref] [PubMed]
  17. D. Ö. Güney, T. Koschny, and C. M. Soukoulis, “Reducing ohmic losses in metamaterials by geometric tailoring,” Phys. Rev. B 80, 125129 (2009).
    [Crossref]
  18. S. M. Clark and S. E. Han, “Two-dimensional metamaterial transparent metal electrodes for infrared optoelectronics,” Opt. Lett. 39, 3666–3669 (2014).
    [Crossref] [PubMed]
  19. S. E. Han and S. M. Clark, “Optical properties of metamaterial serpentine metal electrodes,” AIP Adv. 4, 123002 (2014).
    [Crossref]
  20. J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76, 4773–4776 (1996).
    [Crossref] [PubMed]
  21. D. R. Smith, D. C. Vier, W. Padilla, S. C. Nemat-Nasser, and S. Schultz, “Loop-wire medium for investigating plasmons at microwave frequencies,” Appl. Phys. Lett. 75, 1425–1427 (1999).
    [Crossref]
  22. D. F. Sievenpiper, M. E. Sickmiller, and E. Yablonovitch, “3D wire mesh photonic crystals,” Phys. Rev. Lett. 76, 2480–2483 (1996).
    [Crossref] [PubMed]
  23. M. Staffaroni, J. Conway, S. Vedantam, J. Tang, and E. Yablonovitch, “Circuit analysis in metal-optics,” Photonics Nanostruct. Fundam. Appl. 10, 166–176 (2012).
    [Crossref]
  24. N. Engheta, “Circuits with light at nanoscales: optical nanocircuits inspired by metamaterials,” Science 317, 1698–1702 (2007).
    [Crossref] [PubMed]
  25. S. E. Han and S. M. Clark, “Suppressing optical loss in nanostructured metals by increasing self-inductance and electron path length,” US Patent US9246031 B1 (2016).
  26. D. R. Smith, S. Schultz, P. Markoš, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65, 195104 (2002).
    [Crossref]
  27. D. Y. Smith, E. Shiles, and M. Inokuti, “The Optical Properties of Metallic Aluminum,” in Handbook of Optical Constants of Solids, E. D. Palik, ed. (Academic, 1985).
    [Crossref]
  28. C. G. Granqvist, Spectrally Selective Surfaces for Heating and Cooling Applications (SPIE Press, 1989), Ch. 5.
  29. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1998), Ch. 8.
    [Crossref]
  30. S. E. Han and D. J. Norris, “Control of thermal emission by selective heating of periodic structures,” Phys. Rev. Lett. 104, 043901 (2010).
    [Crossref] [PubMed]
  31. M. Thiel, H. Fischer, G. von Freymann, and M. Wegener, “Three-dimensional chiral photonic superlattices,” Opt. Lett. 35, 166–168 (2010).
    [Crossref] [PubMed]
  32. A. K. Raub and S. R. J. Brueck, “Large area 3D helical photonic crystals,” J. Vac. Sci. Technol. B 29, 06FF02 (2011).
    [Crossref]
  33. M. J. Brett and M. M. Hawkeye, “New materials at a glance,” Science 319, 1192–1193 (2008).
    [Crossref] [PubMed]
  34. P. X. Gao, Y. Ding, W. Mai, W. L. Hughes, C. Lao, and Z. L. Wang, “Conversion of zinc oxide nanobelts into superlattice-structured nanohelices,” Science 309, 1700–1704 (2005).
    [Crossref] [PubMed]
  35. L. Zhang, E. Ruh, D. Grützmacher, L. Dong, D. J. Bell, B. J. Nelson, and C. Schönenberger, “Anomalous coiling of SiGe/Si and SiGe/Si/Cr helical nanobelts,” Nano Lett. 6, 1311–1317 (2006).
    [Crossref] [PubMed]
  36. L. Zhang, E. Deckhardt, A. Weber, C. Schönenberger, and D. Grützmacher, “Controllable fabrication of SiGe/Si and SiGe/Si/Cr helical nanobelts,” Nanotechnology 16, 655–663 (2005).
    [Crossref]
  37. R. H. Bube, Photoconductivity of Solids (John Wiley and Sons, 1960), Ch. 3.
  38. E. Yablonovitch, “Statistical ray optics,” J. Opt. Soc. Am. 72, 899–907 (1982).
    [Crossref]
  39. D. M. Callahan, J. N. Munday, and H. A. Atwater, “Solar cell light trapping beyond the ray optic limit,” Nano Lett. 12, 214–218 (2012).
    [Crossref]
  40. S. E. Han and G. Chen, “Toward the Lambertian limit of light trapping in thin nanostructured silicon solar cells,” Nano Lett. 10, 4692–4696 (2010).
    [Crossref] [PubMed]
  41. Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. U. S. A. 10717491–17496 (2010).
    [Crossref] [PubMed]
  42. S. Kiruthika, R. Gupta, and G. U. Kulkarni, “Large area defrosting windows based on electrothermal heating of highly conducting and transmitting Ag wire mesh,” RSC Adv. 4, 49745–49751 (2014).
    [Crossref]
  43. D. Sui, Y. Huang, L. Huang, J. Liang, Y. Ma, and Y. Chen, “Flexible and transparent electrothermal film heaters based on graphene materials,” Small 7, 3186–3192 (2011).
    [Crossref] [PubMed]
  44. Y. H. Yoon, J. W. Song, D. Kim, J. Kim, J. K. Park, S. K. Oh, and C. S. Han, “Transparent film heater using single-walled carbon nanotubes,” Adv. Mater. 19, 4284–4287 (2007).
    [Crossref]

2015 (2)

J. B. Khurgin, “How to deal with the loss in plasmonics and metamaterials,” Nat. Nanotechnol. 10, 2–6 (2015).
[Crossref] [PubMed]

A. Woessner, M. B. Lundeberg, Y. Gao, A. Principi, P. Alonso-González, M. Carrega, K. Watanabe, T. Taniguchi, F. Vignale, M. Polini, J. Hone, R. Hillenbrand, and F. H. L. Koppens, “Highly confined low-loss plasmons in graphene-boron nitride heterostructures,” Nat. Mater. 14, 421–425 (2015).
[Crossref]

2014 (4)

S. E. Han and S. M. Clark, “Optical properties of metamaterial serpentine metal electrodes,” AIP Adv. 4, 123002 (2014).
[Crossref]

P. Martyniuk, J. Antoszewski, M. Martyniuk, L. Faraone, and A. Rogalski, “New concepts in infrared photodetector designs,” Appl. Phys. Rev. 1, 041102 (2014).
[Crossref]

S. Kiruthika, R. Gupta, and G. U. Kulkarni, “Large area defrosting windows based on electrothermal heating of highly conducting and transmitting Ag wire mesh,” RSC Adv. 4, 49745–49751 (2014).
[Crossref]

S. M. Clark and S. E. Han, “Two-dimensional metamaterial transparent metal electrodes for infrared optoelectronics,” Opt. Lett. 39, 3666–3669 (2014).
[Crossref] [PubMed]

2012 (3)

D. M. Callahan, J. N. Munday, and H. A. Atwater, “Solar cell light trapping beyond the ray optic limit,” Nano Lett. 12, 214–218 (2012).
[Crossref]

M. Staffaroni, J. Conway, S. Vedantam, J. Tang, and E. Yablonovitch, “Circuit analysis in metal-optics,” Photonics Nanostruct. Fundam. Appl. 10, 166–176 (2012).
[Crossref]

P. Tassin, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “A comparison of graphene, superconductors and metals as conductors for metamaterials and plasmonics,” Nat. Photonics 6, 259–264 (2012).
[Crossref]

2011 (3)

A. Boltasseva and H. A. Atwater, “Low-loss plasmonic metamaterials,” Science 331, 290–291 (2011).
[Crossref] [PubMed]

A. K. Raub and S. R. J. Brueck, “Large area 3D helical photonic crystals,” J. Vac. Sci. Technol. B 29, 06FF02 (2011).
[Crossref]

D. Sui, Y. Huang, L. Huang, J. Liang, Y. Ma, and Y. Chen, “Flexible and transparent electrothermal film heaters based on graphene materials,” Small 7, 3186–3192 (2011).
[Crossref] [PubMed]

2010 (9)

S. E. Han and G. Chen, “Toward the Lambertian limit of light trapping in thin nanostructured silicon solar cells,” Nano Lett. 10, 4692–4696 (2010).
[Crossref] [PubMed]

Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. U. S. A. 10717491–17496 (2010).
[Crossref] [PubMed]

S. E. Han and D. J. Norris, “Control of thermal emission by selective heating of periodic structures,” Phys. Rev. Lett. 104, 043901 (2010).
[Crossref] [PubMed]

M. Thiel, H. Fischer, G. von Freymann, and M. Wegener, “Three-dimensional chiral photonic superlattices,” Opt. Lett. 35, 166–168 (2010).
[Crossref] [PubMed]

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4, 795–808 (2010).
[Crossref]

C.-C. Chang, Y. D. Sharma, Y.-S. Kim, J. A. Bur, R. V. Shenoi, S. Krishna, D. Huang, and S.-Y. Lin, “A surface plasmon enhanced infrared photodetector based on InAs quantum dots,” Nano Lett. 10, 1704–1709 (2010).
[Crossref] [PubMed]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010).
[Crossref] [PubMed]

S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H.-K. Yuan, and V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature 466, 735–738 (2010).
[Crossref] [PubMed]

C. M. Soukoulis and M. Wegener, “Optical metamaterials - more bulky and less lossy,” Science 330, 1633–1634 (2010).
[Crossref] [PubMed]

2009 (2)

D. Ö. Güney, T. Koschny, and C. M. Soukoulis, “Reducing ohmic losses in metamaterials by geometric tailoring,” Phys. Rev. B 80, 125129 (2009).
[Crossref]

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. 21, 3504–3509 (2009).
[Crossref]

2008 (1)

M. J. Brett and M. M. Hawkeye, “New materials at a glance,” Science 319, 1192–1193 (2008).
[Crossref] [PubMed]

2007 (2)

N. Engheta, “Circuits with light at nanoscales: optical nanocircuits inspired by metamaterials,” Science 317, 1698–1702 (2007).
[Crossref] [PubMed]

Y. H. Yoon, J. W. Song, D. Kim, J. Kim, J. K. Park, S. K. Oh, and C. S. Han, “Transparent film heater using single-walled carbon nanotubes,” Adv. Mater. 19, 4284–4287 (2007).
[Crossref]

2006 (2)

L. Zhang, E. Ruh, D. Grützmacher, L. Dong, D. J. Bell, B. J. Nelson, and C. Schönenberger, “Anomalous coiling of SiGe/Si and SiGe/Si/Cr helical nanobelts,” Nano Lett. 6, 1311–1317 (2006).
[Crossref] [PubMed]

Z. Yu, G. Veronis, S. Fan, and M. L. Brongersma, “Design of midinfrared photodetectors enhanced by surface plasmons on grating structures,” Appl. Phys. Lett. 89, 151116 (2006).
[Crossref]

2005 (3)

S. Krishna, “Quantum dots-in-a-well infrared photodetectors,” Infrared Phys. Technol. 47, 153–163 (2005).
[Crossref]

L. Zhang, E. Deckhardt, A. Weber, C. Schönenberger, and D. Grützmacher, “Controllable fabrication of SiGe/Si and SiGe/Si/Cr helical nanobelts,” Nanotechnology 16, 655–663 (2005).
[Crossref]

P. X. Gao, Y. Ding, W. Mai, W. L. Hughes, C. Lao, and Z. L. Wang, “Conversion of zinc oxide nanobelts into superlattice-structured nanohelices,” Science 309, 1700–1704 (2005).
[Crossref] [PubMed]

2004 (2)

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3, 601–605 (2004).
[Crossref] [PubMed]

W. L. Barnes, “Light-emitting devices: turning the tables on surface plasmons,” Nat. Mater. 3, 588–589 (2004).
[Crossref] [PubMed]

2002 (2)

P. A. Hobson, S. Wedge, J. A. E. Wasey, I. Sage, and W. L. Barnes, “Surface plasmon mediated emission from organic light emitting diodes,” Adv. Mater. 14, 1393–1396 (2002).
[Crossref]

D. R. Smith, S. Schultz, P. Markoš, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65, 195104 (2002).
[Crossref]

1999 (1)

D. R. Smith, D. C. Vier, W. Padilla, S. C. Nemat-Nasser, and S. Schultz, “Loop-wire medium for investigating plasmons at microwave frequencies,” Appl. Phys. Lett. 75, 1425–1427 (1999).
[Crossref]

1996 (2)

D. F. Sievenpiper, M. E. Sickmiller, and E. Yablonovitch, “3D wire mesh photonic crystals,” Phys. Rev. Lett. 76, 2480–2483 (1996).
[Crossref] [PubMed]

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76, 4773–4776 (1996).
[Crossref] [PubMed]

1982 (1)

1960 (1)

R. H. Bube, Photoconductivity of Solids (John Wiley and Sons, 1960), Ch. 3.

Alonso-González, P.

A. Woessner, M. B. Lundeberg, Y. Gao, A. Principi, P. Alonso-González, M. Carrega, K. Watanabe, T. Taniguchi, F. Vignale, M. Polini, J. Hone, R. Hillenbrand, and F. H. L. Koppens, “Highly confined low-loss plasmons in graphene-boron nitride heterostructures,” Nat. Mater. 14, 421–425 (2015).
[Crossref]

Antoszewski, J.

P. Martyniuk, J. Antoszewski, M. Martyniuk, L. Faraone, and A. Rogalski, “New concepts in infrared photodetector designs,” Appl. Phys. Rev. 1, 041102 (2014).
[Crossref]

Atwater, H. A.

D. M. Callahan, J. N. Munday, and H. A. Atwater, “Solar cell light trapping beyond the ray optic limit,” Nano Lett. 12, 214–218 (2012).
[Crossref]

A. Boltasseva and H. A. Atwater, “Low-loss plasmonic metamaterials,” Science 331, 290–291 (2011).
[Crossref] [PubMed]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010).
[Crossref] [PubMed]

Barnard, E.

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. 21, 3504–3509 (2009).
[Crossref]

Barnes, W. L.

W. L. Barnes, “Light-emitting devices: turning the tables on surface plasmons,” Nat. Mater. 3, 588–589 (2004).
[Crossref] [PubMed]

P. A. Hobson, S. Wedge, J. A. E. Wasey, I. Sage, and W. L. Barnes, “Surface plasmon mediated emission from organic light emitting diodes,” Adv. Mater. 14, 1393–1396 (2002).
[Crossref]

Bell, D. J.

L. Zhang, E. Ruh, D. Grützmacher, L. Dong, D. J. Bell, B. J. Nelson, and C. Schönenberger, “Anomalous coiling of SiGe/Si and SiGe/Si/Cr helical nanobelts,” Nano Lett. 6, 1311–1317 (2006).
[Crossref] [PubMed]

Bohren, C. F.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1998), Ch. 8.
[Crossref]

Boltasseva, A.

A. Boltasseva and H. A. Atwater, “Low-loss plasmonic metamaterials,” Science 331, 290–291 (2011).
[Crossref] [PubMed]

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4, 795–808 (2010).
[Crossref]

Brett, M. J.

M. J. Brett and M. M. Hawkeye, “New materials at a glance,” Science 319, 1192–1193 (2008).
[Crossref] [PubMed]

Brongersma, M. L.

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. 21, 3504–3509 (2009).
[Crossref]

Z. Yu, G. Veronis, S. Fan, and M. L. Brongersma, “Design of midinfrared photodetectors enhanced by surface plasmons on grating structures,” Appl. Phys. Lett. 89, 151116 (2006).
[Crossref]

Brueck, S. R. J.

A. K. Raub and S. R. J. Brueck, “Large area 3D helical photonic crystals,” J. Vac. Sci. Technol. B 29, 06FF02 (2011).
[Crossref]

Bube, R. H.

R. H. Bube, Photoconductivity of Solids (John Wiley and Sons, 1960), Ch. 3.

Bur, J. A.

C.-C. Chang, Y. D. Sharma, Y.-S. Kim, J. A. Bur, R. V. Shenoi, S. Krishna, D. Huang, and S.-Y. Lin, “A surface plasmon enhanced infrared photodetector based on InAs quantum dots,” Nano Lett. 10, 1704–1709 (2010).
[Crossref] [PubMed]

Callahan, D. M.

D. M. Callahan, J. N. Munday, and H. A. Atwater, “Solar cell light trapping beyond the ray optic limit,” Nano Lett. 12, 214–218 (2012).
[Crossref]

Carrega, M.

A. Woessner, M. B. Lundeberg, Y. Gao, A. Principi, P. Alonso-González, M. Carrega, K. Watanabe, T. Taniguchi, F. Vignale, M. Polini, J. Hone, R. Hillenbrand, and F. H. L. Koppens, “Highly confined low-loss plasmons in graphene-boron nitride heterostructures,” Nat. Mater. 14, 421–425 (2015).
[Crossref]

Chang, C.-C.

C.-C. Chang, Y. D. Sharma, Y.-S. Kim, J. A. Bur, R. V. Shenoi, S. Krishna, D. Huang, and S.-Y. Lin, “A surface plasmon enhanced infrared photodetector based on InAs quantum dots,” Nano Lett. 10, 1704–1709 (2010).
[Crossref] [PubMed]

Chen, G.

S. E. Han and G. Chen, “Toward the Lambertian limit of light trapping in thin nanostructured silicon solar cells,” Nano Lett. 10, 4692–4696 (2010).
[Crossref] [PubMed]

Chen, Y.

D. Sui, Y. Huang, L. Huang, J. Liang, Y. Ma, and Y. Chen, “Flexible and transparent electrothermal film heaters based on graphene materials,” Small 7, 3186–3192 (2011).
[Crossref] [PubMed]

Chettiar, U. K.

S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H.-K. Yuan, and V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature 466, 735–738 (2010).
[Crossref] [PubMed]

Clark, S. M.

S. E. Han and S. M. Clark, “Optical properties of metamaterial serpentine metal electrodes,” AIP Adv. 4, 123002 (2014).
[Crossref]

S. M. Clark and S. E. Han, “Two-dimensional metamaterial transparent metal electrodes for infrared optoelectronics,” Opt. Lett. 39, 3666–3669 (2014).
[Crossref] [PubMed]

S. E. Han and S. M. Clark, “Suppressing optical loss in nanostructured metals by increasing self-inductance and electron path length,” US Patent US9246031 B1 (2016).

Conway, J.

M. Staffaroni, J. Conway, S. Vedantam, J. Tang, and E. Yablonovitch, “Circuit analysis in metal-optics,” Photonics Nanostruct. Fundam. Appl. 10, 166–176 (2012).
[Crossref]

Deckhardt, E.

L. Zhang, E. Deckhardt, A. Weber, C. Schönenberger, and D. Grützmacher, “Controllable fabrication of SiGe/Si and SiGe/Si/Cr helical nanobelts,” Nanotechnology 16, 655–663 (2005).
[Crossref]

Ding, Y.

P. X. Gao, Y. Ding, W. Mai, W. L. Hughes, C. Lao, and Z. L. Wang, “Conversion of zinc oxide nanobelts into superlattice-structured nanohelices,” Science 309, 1700–1704 (2005).
[Crossref] [PubMed]

Dong, L.

L. Zhang, E. Ruh, D. Grützmacher, L. Dong, D. J. Bell, B. J. Nelson, and C. Schönenberger, “Anomalous coiling of SiGe/Si and SiGe/Si/Cr helical nanobelts,” Nano Lett. 6, 1311–1317 (2006).
[Crossref] [PubMed]

Drachev, V. P.

S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H.-K. Yuan, and V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature 466, 735–738 (2010).
[Crossref] [PubMed]

Emani, N. K.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4, 795–808 (2010).
[Crossref]

Engheta, N.

N. Engheta, “Circuits with light at nanoscales: optical nanocircuits inspired by metamaterials,” Science 317, 1698–1702 (2007).
[Crossref] [PubMed]

Fan, S.

Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. U. S. A. 10717491–17496 (2010).
[Crossref] [PubMed]

Z. Yu, G. Veronis, S. Fan, and M. L. Brongersma, “Design of midinfrared photodetectors enhanced by surface plasmons on grating structures,” Appl. Phys. Lett. 89, 151116 (2006).
[Crossref]

Faraone, L.

P. Martyniuk, J. Antoszewski, M. Martyniuk, L. Faraone, and A. Rogalski, “New concepts in infrared photodetector designs,” Appl. Phys. Rev. 1, 041102 (2014).
[Crossref]

Fischer, H.

Gao, P. X.

P. X. Gao, Y. Ding, W. Mai, W. L. Hughes, C. Lao, and Z. L. Wang, “Conversion of zinc oxide nanobelts into superlattice-structured nanohelices,” Science 309, 1700–1704 (2005).
[Crossref] [PubMed]

Gao, Y.

A. Woessner, M. B. Lundeberg, Y. Gao, A. Principi, P. Alonso-González, M. Carrega, K. Watanabe, T. Taniguchi, F. Vignale, M. Polini, J. Hone, R. Hillenbrand, and F. H. L. Koppens, “Highly confined low-loss plasmons in graphene-boron nitride heterostructures,” Nat. Mater. 14, 421–425 (2015).
[Crossref]

Granqvist, C. G.

C. G. Granqvist, Spectrally Selective Surfaces for Heating and Cooling Applications (SPIE Press, 1989), Ch. 5.

Grützmacher, D.

L. Zhang, E. Ruh, D. Grützmacher, L. Dong, D. J. Bell, B. J. Nelson, and C. Schönenberger, “Anomalous coiling of SiGe/Si and SiGe/Si/Cr helical nanobelts,” Nano Lett. 6, 1311–1317 (2006).
[Crossref] [PubMed]

L. Zhang, E. Deckhardt, A. Weber, C. Schönenberger, and D. Grützmacher, “Controllable fabrication of SiGe/Si and SiGe/Si/Cr helical nanobelts,” Nanotechnology 16, 655–663 (2005).
[Crossref]

Güney, D. Ö.

D. Ö. Güney, T. Koschny, and C. M. Soukoulis, “Reducing ohmic losses in metamaterials by geometric tailoring,” Phys. Rev. B 80, 125129 (2009).
[Crossref]

Gupta, R.

S. Kiruthika, R. Gupta, and G. U. Kulkarni, “Large area defrosting windows based on electrothermal heating of highly conducting and transmitting Ag wire mesh,” RSC Adv. 4, 49745–49751 (2014).
[Crossref]

Han, C. S.

Y. H. Yoon, J. W. Song, D. Kim, J. Kim, J. K. Park, S. K. Oh, and C. S. Han, “Transparent film heater using single-walled carbon nanotubes,” Adv. Mater. 19, 4284–4287 (2007).
[Crossref]

Han, S. E.

S. M. Clark and S. E. Han, “Two-dimensional metamaterial transparent metal electrodes for infrared optoelectronics,” Opt. Lett. 39, 3666–3669 (2014).
[Crossref] [PubMed]

S. E. Han and S. M. Clark, “Optical properties of metamaterial serpentine metal electrodes,” AIP Adv. 4, 123002 (2014).
[Crossref]

S. E. Han and D. J. Norris, “Control of thermal emission by selective heating of periodic structures,” Phys. Rev. Lett. 104, 043901 (2010).
[Crossref] [PubMed]

S. E. Han and G. Chen, “Toward the Lambertian limit of light trapping in thin nanostructured silicon solar cells,” Nano Lett. 10, 4692–4696 (2010).
[Crossref] [PubMed]

S. E. Han and S. M. Clark, “Suppressing optical loss in nanostructured metals by increasing self-inductance and electron path length,” US Patent US9246031 B1 (2016).

Hawkeye, M. M.

M. J. Brett and M. M. Hawkeye, “New materials at a glance,” Science 319, 1192–1193 (2008).
[Crossref] [PubMed]

Hillenbrand, R.

A. Woessner, M. B. Lundeberg, Y. Gao, A. Principi, P. Alonso-González, M. Carrega, K. Watanabe, T. Taniguchi, F. Vignale, M. Polini, J. Hone, R. Hillenbrand, and F. H. L. Koppens, “Highly confined low-loss plasmons in graphene-boron nitride heterostructures,” Nat. Mater. 14, 421–425 (2015).
[Crossref]

Hobson, P. A.

P. A. Hobson, S. Wedge, J. A. E. Wasey, I. Sage, and W. L. Barnes, “Surface plasmon mediated emission from organic light emitting diodes,” Adv. Mater. 14, 1393–1396 (2002).
[Crossref]

Holden, A. J.

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76, 4773–4776 (1996).
[Crossref] [PubMed]

Hone, J.

A. Woessner, M. B. Lundeberg, Y. Gao, A. Principi, P. Alonso-González, M. Carrega, K. Watanabe, T. Taniguchi, F. Vignale, M. Polini, J. Hone, R. Hillenbrand, and F. H. L. Koppens, “Highly confined low-loss plasmons in graphene-boron nitride heterostructures,” Nat. Mater. 14, 421–425 (2015).
[Crossref]

Huang, D.

C.-C. Chang, Y. D. Sharma, Y.-S. Kim, J. A. Bur, R. V. Shenoi, S. Krishna, D. Huang, and S.-Y. Lin, “A surface plasmon enhanced infrared photodetector based on InAs quantum dots,” Nano Lett. 10, 1704–1709 (2010).
[Crossref] [PubMed]

Huang, L.

D. Sui, Y. Huang, L. Huang, J. Liang, Y. Ma, and Y. Chen, “Flexible and transparent electrothermal film heaters based on graphene materials,” Small 7, 3186–3192 (2011).
[Crossref] [PubMed]

Huang, Y.

D. Sui, Y. Huang, L. Huang, J. Liang, Y. Ma, and Y. Chen, “Flexible and transparent electrothermal film heaters based on graphene materials,” Small 7, 3186–3192 (2011).
[Crossref] [PubMed]

Huffman, D. R.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1998), Ch. 8.
[Crossref]

Hughes, W. L.

P. X. Gao, Y. Ding, W. Mai, W. L. Hughes, C. Lao, and Z. L. Wang, “Conversion of zinc oxide nanobelts into superlattice-structured nanohelices,” Science 309, 1700–1704 (2005).
[Crossref] [PubMed]

Inokuti, M.

D. Y. Smith, E. Shiles, and M. Inokuti, “The Optical Properties of Metallic Aluminum,” in Handbook of Optical Constants of Solids, E. D. Palik, ed. (Academic, 1985).
[Crossref]

Ishii, S.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4, 795–808 (2010).
[Crossref]

Kafesaki, M.

P. Tassin, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “A comparison of graphene, superconductors and metals as conductors for metamaterials and plasmonics,” Nat. Photonics 6, 259–264 (2012).
[Crossref]

Khurgin, J. B.

J. B. Khurgin, “How to deal with the loss in plasmonics and metamaterials,” Nat. Nanotechnol. 10, 2–6 (2015).
[Crossref] [PubMed]

Kildishev, A. V.

S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H.-K. Yuan, and V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature 466, 735–738 (2010).
[Crossref] [PubMed]

Kim, D.

Y. H. Yoon, J. W. Song, D. Kim, J. Kim, J. K. Park, S. K. Oh, and C. S. Han, “Transparent film heater using single-walled carbon nanotubes,” Adv. Mater. 19, 4284–4287 (2007).
[Crossref]

Kim, J.

Y. H. Yoon, J. W. Song, D. Kim, J. Kim, J. K. Park, S. K. Oh, and C. S. Han, “Transparent film heater using single-walled carbon nanotubes,” Adv. Mater. 19, 4284–4287 (2007).
[Crossref]

Kim, Y.-S.

C.-C. Chang, Y. D. Sharma, Y.-S. Kim, J. A. Bur, R. V. Shenoi, S. Krishna, D. Huang, and S.-Y. Lin, “A surface plasmon enhanced infrared photodetector based on InAs quantum dots,” Nano Lett. 10, 1704–1709 (2010).
[Crossref] [PubMed]

Kiruthika, S.

S. Kiruthika, R. Gupta, and G. U. Kulkarni, “Large area defrosting windows based on electrothermal heating of highly conducting and transmitting Ag wire mesh,” RSC Adv. 4, 49745–49751 (2014).
[Crossref]

Koppens, F. H. L.

A. Woessner, M. B. Lundeberg, Y. Gao, A. Principi, P. Alonso-González, M. Carrega, K. Watanabe, T. Taniguchi, F. Vignale, M. Polini, J. Hone, R. Hillenbrand, and F. H. L. Koppens, “Highly confined low-loss plasmons in graphene-boron nitride heterostructures,” Nat. Mater. 14, 421–425 (2015).
[Crossref]

Koschny, T.

P. Tassin, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “A comparison of graphene, superconductors and metals as conductors for metamaterials and plasmonics,” Nat. Photonics 6, 259–264 (2012).
[Crossref]

D. Ö. Güney, T. Koschny, and C. M. Soukoulis, “Reducing ohmic losses in metamaterials by geometric tailoring,” Phys. Rev. B 80, 125129 (2009).
[Crossref]

Krishna, S.

C.-C. Chang, Y. D. Sharma, Y.-S. Kim, J. A. Bur, R. V. Shenoi, S. Krishna, D. Huang, and S.-Y. Lin, “A surface plasmon enhanced infrared photodetector based on InAs quantum dots,” Nano Lett. 10, 1704–1709 (2010).
[Crossref] [PubMed]

S. Krishna, “Quantum dots-in-a-well infrared photodetectors,” Infrared Phys. Technol. 47, 153–163 (2005).
[Crossref]

Kulkarni, G. U.

S. Kiruthika, R. Gupta, and G. U. Kulkarni, “Large area defrosting windows based on electrothermal heating of highly conducting and transmitting Ag wire mesh,” RSC Adv. 4, 49745–49751 (2014).
[Crossref]

Lao, C.

P. X. Gao, Y. Ding, W. Mai, W. L. Hughes, C. Lao, and Z. L. Wang, “Conversion of zinc oxide nanobelts into superlattice-structured nanohelices,” Science 309, 1700–1704 (2005).
[Crossref] [PubMed]

Liang, J.

D. Sui, Y. Huang, L. Huang, J. Liang, Y. Ma, and Y. Chen, “Flexible and transparent electrothermal film heaters based on graphene materials,” Small 7, 3186–3192 (2011).
[Crossref] [PubMed]

Lin, S.-Y.

C.-C. Chang, Y. D. Sharma, Y.-S. Kim, J. A. Bur, R. V. Shenoi, S. Krishna, D. Huang, and S.-Y. Lin, “A surface plasmon enhanced infrared photodetector based on InAs quantum dots,” Nano Lett. 10, 1704–1709 (2010).
[Crossref] [PubMed]

Liu, J.

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. 21, 3504–3509 (2009).
[Crossref]

Lundeberg, M. B.

A. Woessner, M. B. Lundeberg, Y. Gao, A. Principi, P. Alonso-González, M. Carrega, K. Watanabe, T. Taniguchi, F. Vignale, M. Polini, J. Hone, R. Hillenbrand, and F. H. L. Koppens, “Highly confined low-loss plasmons in graphene-boron nitride heterostructures,” Nat. Mater. 14, 421–425 (2015).
[Crossref]

Ma, Y.

D. Sui, Y. Huang, L. Huang, J. Liang, Y. Ma, and Y. Chen, “Flexible and transparent electrothermal film heaters based on graphene materials,” Small 7, 3186–3192 (2011).
[Crossref] [PubMed]

Mai, W.

P. X. Gao, Y. Ding, W. Mai, W. L. Hughes, C. Lao, and Z. L. Wang, “Conversion of zinc oxide nanobelts into superlattice-structured nanohelices,” Science 309, 1700–1704 (2005).
[Crossref] [PubMed]

Markoš, P.

D. R. Smith, S. Schultz, P. Markoš, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65, 195104 (2002).
[Crossref]

Martyniuk, M.

P. Martyniuk, J. Antoszewski, M. Martyniuk, L. Faraone, and A. Rogalski, “New concepts in infrared photodetector designs,” Appl. Phys. Rev. 1, 041102 (2014).
[Crossref]

Martyniuk, P.

P. Martyniuk, J. Antoszewski, M. Martyniuk, L. Faraone, and A. Rogalski, “New concepts in infrared photodetector designs,” Appl. Phys. Rev. 1, 041102 (2014).
[Crossref]

Mukai, T.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3, 601–605 (2004).
[Crossref] [PubMed]

Munday, J. N.

D. M. Callahan, J. N. Munday, and H. A. Atwater, “Solar cell light trapping beyond the ray optic limit,” Nano Lett. 12, 214–218 (2012).
[Crossref]

Naik, G. V.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4, 795–808 (2010).
[Crossref]

Narukawa, Y.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3, 601–605 (2004).
[Crossref] [PubMed]

Nelson, B. J.

L. Zhang, E. Ruh, D. Grützmacher, L. Dong, D. J. Bell, B. J. Nelson, and C. Schönenberger, “Anomalous coiling of SiGe/Si and SiGe/Si/Cr helical nanobelts,” Nano Lett. 6, 1311–1317 (2006).
[Crossref] [PubMed]

Nemat-Nasser, S. C.

D. R. Smith, D. C. Vier, W. Padilla, S. C. Nemat-Nasser, and S. Schultz, “Loop-wire medium for investigating plasmons at microwave frequencies,” Appl. Phys. Lett. 75, 1425–1427 (1999).
[Crossref]

Ni, X.

S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H.-K. Yuan, and V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature 466, 735–738 (2010).
[Crossref] [PubMed]

Niki, I.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3, 601–605 (2004).
[Crossref] [PubMed]

Norris, D. J.

S. E. Han and D. J. Norris, “Control of thermal emission by selective heating of periodic structures,” Phys. Rev. Lett. 104, 043901 (2010).
[Crossref] [PubMed]

Oh, S. K.

Y. H. Yoon, J. W. Song, D. Kim, J. Kim, J. K. Park, S. K. Oh, and C. S. Han, “Transparent film heater using single-walled carbon nanotubes,” Adv. Mater. 19, 4284–4287 (2007).
[Crossref]

Okamoto, K.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3, 601–605 (2004).
[Crossref] [PubMed]

Padilla, W.

D. R. Smith, D. C. Vier, W. Padilla, S. C. Nemat-Nasser, and S. Schultz, “Loop-wire medium for investigating plasmons at microwave frequencies,” Appl. Phys. Lett. 75, 1425–1427 (1999).
[Crossref]

Pala, R. A.

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. 21, 3504–3509 (2009).
[Crossref]

Park, J. K.

Y. H. Yoon, J. W. Song, D. Kim, J. Kim, J. K. Park, S. K. Oh, and C. S. Han, “Transparent film heater using single-walled carbon nanotubes,” Adv. Mater. 19, 4284–4287 (2007).
[Crossref]

Pendry, J. B.

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76, 4773–4776 (1996).
[Crossref] [PubMed]

Polini, M.

A. Woessner, M. B. Lundeberg, Y. Gao, A. Principi, P. Alonso-González, M. Carrega, K. Watanabe, T. Taniguchi, F. Vignale, M. Polini, J. Hone, R. Hillenbrand, and F. H. L. Koppens, “Highly confined low-loss plasmons in graphene-boron nitride heterostructures,” Nat. Mater. 14, 421–425 (2015).
[Crossref]

Polman, A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010).
[Crossref] [PubMed]

Principi, A.

A. Woessner, M. B. Lundeberg, Y. Gao, A. Principi, P. Alonso-González, M. Carrega, K. Watanabe, T. Taniguchi, F. Vignale, M. Polini, J. Hone, R. Hillenbrand, and F. H. L. Koppens, “Highly confined low-loss plasmons in graphene-boron nitride heterostructures,” Nat. Mater. 14, 421–425 (2015).
[Crossref]

Raman, A.

Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. U. S. A. 10717491–17496 (2010).
[Crossref] [PubMed]

Raub, A. K.

A. K. Raub and S. R. J. Brueck, “Large area 3D helical photonic crystals,” J. Vac. Sci. Technol. B 29, 06FF02 (2011).
[Crossref]

Rogalski, A.

P. Martyniuk, J. Antoszewski, M. Martyniuk, L. Faraone, and A. Rogalski, “New concepts in infrared photodetector designs,” Appl. Phys. Rev. 1, 041102 (2014).
[Crossref]

Ruh, E.

L. Zhang, E. Ruh, D. Grützmacher, L. Dong, D. J. Bell, B. J. Nelson, and C. Schönenberger, “Anomalous coiling of SiGe/Si and SiGe/Si/Cr helical nanobelts,” Nano Lett. 6, 1311–1317 (2006).
[Crossref] [PubMed]

Sage, I.

P. A. Hobson, S. Wedge, J. A. E. Wasey, I. Sage, and W. L. Barnes, “Surface plasmon mediated emission from organic light emitting diodes,” Adv. Mater. 14, 1393–1396 (2002).
[Crossref]

Scherer, A.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3, 601–605 (2004).
[Crossref] [PubMed]

Schönenberger, C.

L. Zhang, E. Ruh, D. Grützmacher, L. Dong, D. J. Bell, B. J. Nelson, and C. Schönenberger, “Anomalous coiling of SiGe/Si and SiGe/Si/Cr helical nanobelts,” Nano Lett. 6, 1311–1317 (2006).
[Crossref] [PubMed]

L. Zhang, E. Deckhardt, A. Weber, C. Schönenberger, and D. Grützmacher, “Controllable fabrication of SiGe/Si and SiGe/Si/Cr helical nanobelts,” Nanotechnology 16, 655–663 (2005).
[Crossref]

Schultz, S.

D. R. Smith, S. Schultz, P. Markoš, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65, 195104 (2002).
[Crossref]

D. R. Smith, D. C. Vier, W. Padilla, S. C. Nemat-Nasser, and S. Schultz, “Loop-wire medium for investigating plasmons at microwave frequencies,” Appl. Phys. Lett. 75, 1425–1427 (1999).
[Crossref]

Shalaev, V. M.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4, 795–808 (2010).
[Crossref]

S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H.-K. Yuan, and V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature 466, 735–738 (2010).
[Crossref] [PubMed]

Sharma, Y. D.

C.-C. Chang, Y. D. Sharma, Y.-S. Kim, J. A. Bur, R. V. Shenoi, S. Krishna, D. Huang, and S.-Y. Lin, “A surface plasmon enhanced infrared photodetector based on InAs quantum dots,” Nano Lett. 10, 1704–1709 (2010).
[Crossref] [PubMed]

Shenoi, R. V.

C.-C. Chang, Y. D. Sharma, Y.-S. Kim, J. A. Bur, R. V. Shenoi, S. Krishna, D. Huang, and S.-Y. Lin, “A surface plasmon enhanced infrared photodetector based on InAs quantum dots,” Nano Lett. 10, 1704–1709 (2010).
[Crossref] [PubMed]

Shiles, E.

D. Y. Smith, E. Shiles, and M. Inokuti, “The Optical Properties of Metallic Aluminum,” in Handbook of Optical Constants of Solids, E. D. Palik, ed. (Academic, 1985).
[Crossref]

Shvartser, A.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3, 601–605 (2004).
[Crossref] [PubMed]

Sickmiller, M. E.

D. F. Sievenpiper, M. E. Sickmiller, and E. Yablonovitch, “3D wire mesh photonic crystals,” Phys. Rev. Lett. 76, 2480–2483 (1996).
[Crossref] [PubMed]

Sievenpiper, D. F.

D. F. Sievenpiper, M. E. Sickmiller, and E. Yablonovitch, “3D wire mesh photonic crystals,” Phys. Rev. Lett. 76, 2480–2483 (1996).
[Crossref] [PubMed]

Smith, D. R.

D. R. Smith, S. Schultz, P. Markoš, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65, 195104 (2002).
[Crossref]

D. R. Smith, D. C. Vier, W. Padilla, S. C. Nemat-Nasser, and S. Schultz, “Loop-wire medium for investigating plasmons at microwave frequencies,” Appl. Phys. Lett. 75, 1425–1427 (1999).
[Crossref]

Smith, D. Y.

D. Y. Smith, E. Shiles, and M. Inokuti, “The Optical Properties of Metallic Aluminum,” in Handbook of Optical Constants of Solids, E. D. Palik, ed. (Academic, 1985).
[Crossref]

Song, J. W.

Y. H. Yoon, J. W. Song, D. Kim, J. Kim, J. K. Park, S. K. Oh, and C. S. Han, “Transparent film heater using single-walled carbon nanotubes,” Adv. Mater. 19, 4284–4287 (2007).
[Crossref]

Soukoulis, C. M.

P. Tassin, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “A comparison of graphene, superconductors and metals as conductors for metamaterials and plasmonics,” Nat. Photonics 6, 259–264 (2012).
[Crossref]

C. M. Soukoulis and M. Wegener, “Optical metamaterials - more bulky and less lossy,” Science 330, 1633–1634 (2010).
[Crossref] [PubMed]

D. Ö. Güney, T. Koschny, and C. M. Soukoulis, “Reducing ohmic losses in metamaterials by geometric tailoring,” Phys. Rev. B 80, 125129 (2009).
[Crossref]

D. R. Smith, S. Schultz, P. Markoš, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65, 195104 (2002).
[Crossref]

Staffaroni, M.

M. Staffaroni, J. Conway, S. Vedantam, J. Tang, and E. Yablonovitch, “Circuit analysis in metal-optics,” Photonics Nanostruct. Fundam. Appl. 10, 166–176 (2012).
[Crossref]

Stewart, W. J.

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76, 4773–4776 (1996).
[Crossref] [PubMed]

Sui, D.

D. Sui, Y. Huang, L. Huang, J. Liang, Y. Ma, and Y. Chen, “Flexible and transparent electrothermal film heaters based on graphene materials,” Small 7, 3186–3192 (2011).
[Crossref] [PubMed]

Tang, J.

M. Staffaroni, J. Conway, S. Vedantam, J. Tang, and E. Yablonovitch, “Circuit analysis in metal-optics,” Photonics Nanostruct. Fundam. Appl. 10, 166–176 (2012).
[Crossref]

Taniguchi, T.

A. Woessner, M. B. Lundeberg, Y. Gao, A. Principi, P. Alonso-González, M. Carrega, K. Watanabe, T. Taniguchi, F. Vignale, M. Polini, J. Hone, R. Hillenbrand, and F. H. L. Koppens, “Highly confined low-loss plasmons in graphene-boron nitride heterostructures,” Nat. Mater. 14, 421–425 (2015).
[Crossref]

Tassin, P.

P. Tassin, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “A comparison of graphene, superconductors and metals as conductors for metamaterials and plasmonics,” Nat. Photonics 6, 259–264 (2012).
[Crossref]

Thiel, M.

Vedantam, S.

M. Staffaroni, J. Conway, S. Vedantam, J. Tang, and E. Yablonovitch, “Circuit analysis in metal-optics,” Photonics Nanostruct. Fundam. Appl. 10, 166–176 (2012).
[Crossref]

Veronis, G.

Z. Yu, G. Veronis, S. Fan, and M. L. Brongersma, “Design of midinfrared photodetectors enhanced by surface plasmons on grating structures,” Appl. Phys. Lett. 89, 151116 (2006).
[Crossref]

Vier, D. C.

D. R. Smith, D. C. Vier, W. Padilla, S. C. Nemat-Nasser, and S. Schultz, “Loop-wire medium for investigating plasmons at microwave frequencies,” Appl. Phys. Lett. 75, 1425–1427 (1999).
[Crossref]

Vignale, F.

A. Woessner, M. B. Lundeberg, Y. Gao, A. Principi, P. Alonso-González, M. Carrega, K. Watanabe, T. Taniguchi, F. Vignale, M. Polini, J. Hone, R. Hillenbrand, and F. H. L. Koppens, “Highly confined low-loss plasmons in graphene-boron nitride heterostructures,” Nat. Mater. 14, 421–425 (2015).
[Crossref]

von Freymann, G.

Wang, Z. L.

P. X. Gao, Y. Ding, W. Mai, W. L. Hughes, C. Lao, and Z. L. Wang, “Conversion of zinc oxide nanobelts into superlattice-structured nanohelices,” Science 309, 1700–1704 (2005).
[Crossref] [PubMed]

Wasey, J. A. E.

P. A. Hobson, S. Wedge, J. A. E. Wasey, I. Sage, and W. L. Barnes, “Surface plasmon mediated emission from organic light emitting diodes,” Adv. Mater. 14, 1393–1396 (2002).
[Crossref]

Watanabe, K.

A. Woessner, M. B. Lundeberg, Y. Gao, A. Principi, P. Alonso-González, M. Carrega, K. Watanabe, T. Taniguchi, F. Vignale, M. Polini, J. Hone, R. Hillenbrand, and F. H. L. Koppens, “Highly confined low-loss plasmons in graphene-boron nitride heterostructures,” Nat. Mater. 14, 421–425 (2015).
[Crossref]

Weber, A.

L. Zhang, E. Deckhardt, A. Weber, C. Schönenberger, and D. Grützmacher, “Controllable fabrication of SiGe/Si and SiGe/Si/Cr helical nanobelts,” Nanotechnology 16, 655–663 (2005).
[Crossref]

Wedge, S.

P. A. Hobson, S. Wedge, J. A. E. Wasey, I. Sage, and W. L. Barnes, “Surface plasmon mediated emission from organic light emitting diodes,” Adv. Mater. 14, 1393–1396 (2002).
[Crossref]

Wegener, M.

C. M. Soukoulis and M. Wegener, “Optical metamaterials - more bulky and less lossy,” Science 330, 1633–1634 (2010).
[Crossref] [PubMed]

M. Thiel, H. Fischer, G. von Freymann, and M. Wegener, “Three-dimensional chiral photonic superlattices,” Opt. Lett. 35, 166–168 (2010).
[Crossref] [PubMed]

West, P. R.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4, 795–808 (2010).
[Crossref]

White, J.

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. 21, 3504–3509 (2009).
[Crossref]

Woessner, A.

A. Woessner, M. B. Lundeberg, Y. Gao, A. Principi, P. Alonso-González, M. Carrega, K. Watanabe, T. Taniguchi, F. Vignale, M. Polini, J. Hone, R. Hillenbrand, and F. H. L. Koppens, “Highly confined low-loss plasmons in graphene-boron nitride heterostructures,” Nat. Mater. 14, 421–425 (2015).
[Crossref]

Xiao, S.

S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H.-K. Yuan, and V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature 466, 735–738 (2010).
[Crossref] [PubMed]

Yablonovitch, E.

M. Staffaroni, J. Conway, S. Vedantam, J. Tang, and E. Yablonovitch, “Circuit analysis in metal-optics,” Photonics Nanostruct. Fundam. Appl. 10, 166–176 (2012).
[Crossref]

D. F. Sievenpiper, M. E. Sickmiller, and E. Yablonovitch, “3D wire mesh photonic crystals,” Phys. Rev. Lett. 76, 2480–2483 (1996).
[Crossref] [PubMed]

E. Yablonovitch, “Statistical ray optics,” J. Opt. Soc. Am. 72, 899–907 (1982).
[Crossref]

Yoon, Y. H.

Y. H. Yoon, J. W. Song, D. Kim, J. Kim, J. K. Park, S. K. Oh, and C. S. Han, “Transparent film heater using single-walled carbon nanotubes,” Adv. Mater. 19, 4284–4287 (2007).
[Crossref]

Youngs, I.

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76, 4773–4776 (1996).
[Crossref] [PubMed]

Yu, Z.

Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. U. S. A. 10717491–17496 (2010).
[Crossref] [PubMed]

Z. Yu, G. Veronis, S. Fan, and M. L. Brongersma, “Design of midinfrared photodetectors enhanced by surface plasmons on grating structures,” Appl. Phys. Lett. 89, 151116 (2006).
[Crossref]

Yuan, H.-K.

S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H.-K. Yuan, and V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature 466, 735–738 (2010).
[Crossref] [PubMed]

Zhang, L.

L. Zhang, E. Ruh, D. Grützmacher, L. Dong, D. J. Bell, B. J. Nelson, and C. Schönenberger, “Anomalous coiling of SiGe/Si and SiGe/Si/Cr helical nanobelts,” Nano Lett. 6, 1311–1317 (2006).
[Crossref] [PubMed]

L. Zhang, E. Deckhardt, A. Weber, C. Schönenberger, and D. Grützmacher, “Controllable fabrication of SiGe/Si and SiGe/Si/Cr helical nanobelts,” Nanotechnology 16, 655–663 (2005).
[Crossref]

Adv. Mater. (3)

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. 21, 3504–3509 (2009).
[Crossref]

P. A. Hobson, S. Wedge, J. A. E. Wasey, I. Sage, and W. L. Barnes, “Surface plasmon mediated emission from organic light emitting diodes,” Adv. Mater. 14, 1393–1396 (2002).
[Crossref]

Y. H. Yoon, J. W. Song, D. Kim, J. Kim, J. K. Park, S. K. Oh, and C. S. Han, “Transparent film heater using single-walled carbon nanotubes,” Adv. Mater. 19, 4284–4287 (2007).
[Crossref]

AIP Adv. (1)

S. E. Han and S. M. Clark, “Optical properties of metamaterial serpentine metal electrodes,” AIP Adv. 4, 123002 (2014).
[Crossref]

Appl. Phys. Lett. (2)

D. R. Smith, D. C. Vier, W. Padilla, S. C. Nemat-Nasser, and S. Schultz, “Loop-wire medium for investigating plasmons at microwave frequencies,” Appl. Phys. Lett. 75, 1425–1427 (1999).
[Crossref]

Z. Yu, G. Veronis, S. Fan, and M. L. Brongersma, “Design of midinfrared photodetectors enhanced by surface plasmons on grating structures,” Appl. Phys. Lett. 89, 151116 (2006).
[Crossref]

Appl. Phys. Rev. (1)

P. Martyniuk, J. Antoszewski, M. Martyniuk, L. Faraone, and A. Rogalski, “New concepts in infrared photodetector designs,” Appl. Phys. Rev. 1, 041102 (2014).
[Crossref]

Infrared Phys. Technol. (1)

S. Krishna, “Quantum dots-in-a-well infrared photodetectors,” Infrared Phys. Technol. 47, 153–163 (2005).
[Crossref]

J. Opt. Soc. Am. (1)

J. Vac. Sci. Technol. B (1)

A. K. Raub and S. R. J. Brueck, “Large area 3D helical photonic crystals,” J. Vac. Sci. Technol. B 29, 06FF02 (2011).
[Crossref]

Laser Photonics Rev. (1)

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4, 795–808 (2010).
[Crossref]

Nano Lett. (4)

C.-C. Chang, Y. D. Sharma, Y.-S. Kim, J. A. Bur, R. V. Shenoi, S. Krishna, D. Huang, and S.-Y. Lin, “A surface plasmon enhanced infrared photodetector based on InAs quantum dots,” Nano Lett. 10, 1704–1709 (2010).
[Crossref] [PubMed]

L. Zhang, E. Ruh, D. Grützmacher, L. Dong, D. J. Bell, B. J. Nelson, and C. Schönenberger, “Anomalous coiling of SiGe/Si and SiGe/Si/Cr helical nanobelts,” Nano Lett. 6, 1311–1317 (2006).
[Crossref] [PubMed]

D. M. Callahan, J. N. Munday, and H. A. Atwater, “Solar cell light trapping beyond the ray optic limit,” Nano Lett. 12, 214–218 (2012).
[Crossref]

S. E. Han and G. Chen, “Toward the Lambertian limit of light trapping in thin nanostructured silicon solar cells,” Nano Lett. 10, 4692–4696 (2010).
[Crossref] [PubMed]

Nanotechnology (1)

L. Zhang, E. Deckhardt, A. Weber, C. Schönenberger, and D. Grützmacher, “Controllable fabrication of SiGe/Si and SiGe/Si/Cr helical nanobelts,” Nanotechnology 16, 655–663 (2005).
[Crossref]

Nat. Mater. (4)

A. Woessner, M. B. Lundeberg, Y. Gao, A. Principi, P. Alonso-González, M. Carrega, K. Watanabe, T. Taniguchi, F. Vignale, M. Polini, J. Hone, R. Hillenbrand, and F. H. L. Koppens, “Highly confined low-loss plasmons in graphene-boron nitride heterostructures,” Nat. Mater. 14, 421–425 (2015).
[Crossref]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010).
[Crossref] [PubMed]

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3, 601–605 (2004).
[Crossref] [PubMed]

W. L. Barnes, “Light-emitting devices: turning the tables on surface plasmons,” Nat. Mater. 3, 588–589 (2004).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

J. B. Khurgin, “How to deal with the loss in plasmonics and metamaterials,” Nat. Nanotechnol. 10, 2–6 (2015).
[Crossref] [PubMed]

Nat. Photonics (1)

P. Tassin, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “A comparison of graphene, superconductors and metals as conductors for metamaterials and plasmonics,” Nat. Photonics 6, 259–264 (2012).
[Crossref]

Nature (1)

S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H.-K. Yuan, and V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature 466, 735–738 (2010).
[Crossref] [PubMed]

Opt. Lett. (2)

Photoconductivity of Solids (1)

R. H. Bube, Photoconductivity of Solids (John Wiley and Sons, 1960), Ch. 3.

Photonics Nanostruct. Fundam. Appl. (1)

M. Staffaroni, J. Conway, S. Vedantam, J. Tang, and E. Yablonovitch, “Circuit analysis in metal-optics,” Photonics Nanostruct. Fundam. Appl. 10, 166–176 (2012).
[Crossref]

Phys. Rev. B (2)

D. R. Smith, S. Schultz, P. Markoš, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65, 195104 (2002).
[Crossref]

D. Ö. Güney, T. Koschny, and C. M. Soukoulis, “Reducing ohmic losses in metamaterials by geometric tailoring,” Phys. Rev. B 80, 125129 (2009).
[Crossref]

Phys. Rev. Lett. (3)

D. F. Sievenpiper, M. E. Sickmiller, and E. Yablonovitch, “3D wire mesh photonic crystals,” Phys. Rev. Lett. 76, 2480–2483 (1996).
[Crossref] [PubMed]

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76, 4773–4776 (1996).
[Crossref] [PubMed]

S. E. Han and D. J. Norris, “Control of thermal emission by selective heating of periodic structures,” Phys. Rev. Lett. 104, 043901 (2010).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U. S. A. (1)

Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. U. S. A. 10717491–17496 (2010).
[Crossref] [PubMed]

RSC Adv. (1)

S. Kiruthika, R. Gupta, and G. U. Kulkarni, “Large area defrosting windows based on electrothermal heating of highly conducting and transmitting Ag wire mesh,” RSC Adv. 4, 49745–49751 (2014).
[Crossref]

Science (5)

N. Engheta, “Circuits with light at nanoscales: optical nanocircuits inspired by metamaterials,” Science 317, 1698–1702 (2007).
[Crossref] [PubMed]

M. J. Brett and M. M. Hawkeye, “New materials at a glance,” Science 319, 1192–1193 (2008).
[Crossref] [PubMed]

P. X. Gao, Y. Ding, W. Mai, W. L. Hughes, C. Lao, and Z. L. Wang, “Conversion of zinc oxide nanobelts into superlattice-structured nanohelices,” Science 309, 1700–1704 (2005).
[Crossref] [PubMed]

C. M. Soukoulis and M. Wegener, “Optical metamaterials - more bulky and less lossy,” Science 330, 1633–1634 (2010).
[Crossref] [PubMed]

A. Boltasseva and H. A. Atwater, “Low-loss plasmonic metamaterials,” Science 331, 290–291 (2011).
[Crossref] [PubMed]

Small (1)

D. Sui, Y. Huang, L. Huang, J. Liang, Y. Ma, and Y. Chen, “Flexible and transparent electrothermal film heaters based on graphene materials,” Small 7, 3186–3192 (2011).
[Crossref] [PubMed]

Other (4)

S. E. Han and S. M. Clark, “Suppressing optical loss in nanostructured metals by increasing self-inductance and electron path length,” US Patent US9246031 B1 (2016).

D. Y. Smith, E. Shiles, and M. Inokuti, “The Optical Properties of Metallic Aluminum,” in Handbook of Optical Constants of Solids, E. D. Palik, ed. (Academic, 1985).
[Crossref]

C. G. Granqvist, Spectrally Selective Surfaces for Heating and Cooling Applications (SPIE Press, 1989), Ch. 5.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1998), Ch. 8.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Illustration of a nanocoil array. Top: nanocoil array with the direction of light incidence (k) and polarization (E0). Bottom: a single nanocoil with its geometrical parameters, cylindrical coordinates, tangential and normal vectors (ŝ) and ( n ^ ), and electric fields.
Fig. 2
Fig. 2 Absorptance and effective dielectric function of a nanocoil array. (a) Numerical solutions (solid circles) and model predictions (solid line) of absorptance and (b) numerical solutions (open square for the real part and solid square for the imaginary part of εeff) and model predictions (solid line) of effective dielectric function for the nanocoil array as a function of photon energy. The aluminum wire of cross-section 20 nm × 20 nm is wound into a coil with outer radius R = 500 nm and pitch p = 100 nm. The coils form a monolayer array with the center-to-center distance a = 1.5 μm and light polarized parallel to the coil axes is incident normally on the monolayer surface.
Fig. 3
Fig. 3 Absorptance ratio of a flat film to a nanocoil array. The two structures has the same mass of aluminum per unit surface area so that the film thickness is fa = 8.2 nm. The structural parameters of the nanocoil array are in Fig. 2. Experimentally determined dielectric function was used for calculations [27]. The incident light polarization is parallel to the coil axes.
Fig. 4
Fig. 4 Numerical solutions of transmittance between the nanocoil and the nanotube aluminum monolayer array. The filling fraction, the center-to-center distance, and the outer diameter are the same for the two structures. The structural parameters of the nanocoil array is in Fig. 2. The incident light polarization is parallel to the axes of the nanocoils and the nanotubes.
Fig. 5
Fig. 5 Angular dependence of metal loss in nanocoil array. (a) Definition of incidence angles for nanocoil arrays. (b and c) Angular dependence of metal absorption in a nanocoil array when (b) ϕinc = 0° and (c) ϕinc = 90°. Light is polarized in the yz plane. The structural parameters of the nanocoil array are the same as in Fig. 2.
Fig. 6
Fig. 6 Metal loss suppression in IR detectors. (a) Schematic of a coiled metal-semiconductor-metal strip. The width of the metal (Ag) and the semiconductor (InSb) strips is wm = 10 nm and ws = 40 nm, respectively, and both strips have a thickness 10 nm. (b) Spectrum of partial absorptance in semiconductor and metal for a monolayer array of the composite nanocoils in (a) with a periodicity of a = 750 nm and a coil winding angle θ = 2.5°. Light polarized parallel to the coil axes is incident normally on the monolayer surface. (c) Fraction of absorption in semiconductor, ρs, as a function of θ for the mono-layer array of the composite nanocoils. The ρs for an array of flat composite strips with the same dimensions and periodicity is shown in dashed line. (d and e) The ρs as a function of θinc when (d) ϕinc = 0° and (e) ϕinc = 90°. The definition of the angles is given in Fig. 5. The ρs for an array of flat composite strips with the same dimensions and periodicity for θinc = 60° is shown in blue line. (f) Angular dependence of partial absorptance in metal, Am, for the θ = 2.5° structure at ϕinc = 90°.
Fig. 7
Fig. 7 Photoresponsivity enhancement in IR detectors by metal loss suppression. (a) Schematic of a coiled metal-semiconductor-metal nanostrip array fabricated by releasing strained strips from mesa lines. (b) A close-up view of the array showing electrical connections to measure photoconductance. (c) Calculated change in conductance per unit incident power as a function of the coil winding angle at a temperature T = 77 K. The light source is a black body at T = 500 K that is frequency filtered within 3.5 μm < λ < 7.3 μm. The incident power density is 0.2 W/m2. Nanostrips with a length L = 200 μm are coiled. The material and structural parameters are the same as in Fig. 6.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

η = 2 π R / cos θ p = 1 sin θ .
L = μ 0 4 π tan 2 θ ,
f = δ 1 a 2 tan θ ( 1 δ 2 R ) .
A ω a c ε m f | 1 η i ω δ 1 σ 0 1 i ω τ | 2 ,
ε e f f = 1 + i σ e f f ε 0 ω ,
σ e f f f σ 0 η 2 1 1 i ω τ e f f ,
τ e f f τ + δ 1 σ 0 μ 0 L 4 π .
ρ s λ m i n λ m a x A s d λ λ m i n λ m a x ( A s + A m ) d λ ,

Metrics