Abstract

We experimentally demonstrated all-optical NOR, OR and AND logic gates at 100 Gb/s with a single semiconductor optical amplifier (SOA) assisted by optical filtering. The logics can be conveniently reconfigured by deploying or not continuous wave (CW) light at the input of the SOA and adjusting the tunable optical band pass filter (OBPF) at SOA output. Correct logic functions and high quality of the output signals can be achieved as proved by clear eye opening and bit error rate (BER) measurement. Influences of optical filter parameters and the SOA device length on the logical performance are experimentally investigated.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
100-Gb/s 2R regeneration using cross gain compression in semiconductor optical amplifiers

Xin Chen, Li Huo, Xiangyu Jiang, and Caiyun Lou
Opt. Express 23(18) 23143-23154 (2015)

High-performance all-optical or/nor logic gate in a single semiconductor optical amplifier with delay interference filtering

Yanming Feng, Xiaofan Zhao, Li Wang, and Caiyun Lou
Appl. Opt. 48(14) 2638-2641 (2009)

References

  • View by:
  • |
  • |
  • |

  1. C. Yu, L. Christen, T. Luo, Y. Wang, Z. Pan, L. S. Yan, and A. E. Willner, “All-optical XOR gate using polarization rotation in single highly nonlinear fiber,” IEEE Photonics Technol. Lett. 17(6), 1232–1234 (2005).
    [Crossref]
  2. H. Sun, Q. Wang, and H. Dong, l. Jaques, A. B. Piccirilli, and N. K. Dutta, “All-optical XOR gate at 80 Gb/s using SOA-MZI-DI,” in Optics East 2006 (ISOP, 2006), paper 63880T.
  3. K. L. Hall and K. A. Rauschenbach, “100-Gbit/s bitwise logic,” Opt. Lett. 23(16), 1271–1273 (1998).
    [Crossref] [PubMed]
  4. Z. Li and G. Li, “Ultrahigh-speed reconfigurable logic gates based on four-wave mixing in a semiconductor optical amplifier,” IEEE Photonics Technol. Lett. 18(9/12), 1341 (2006).
  5. G. Berrettini, A. Simi, A. Malacarne, A. Bogoni, and L. Poti, “Ultrafast integrable and reconfigurable XNOR, AND, NOR, and NOT photonic logic gate,” IEEE Photonics Technol. Lett. 18(8), 917–919 (2006).
    [Crossref]
  6. Z. Li, Y. Liu, S. Zhang, H. Ju, H. de Waardt, G. D. Khoe, H. J. S. Dorren, and D. Lenstra, “All-optical logic gates using semiconductor optical amplifier assisted by optical filter,” Electron. Lett. 41(25), 1397–1399 (2005).
    [Crossref]
  7. J. Dong, X. Zhang, S. Fu, J. Xu, P. Shum, and D. Huang, “Ultrafast all-optical signal processing based on single semiconductor optical amplifier and optical filtering,” IEEE J. Sel. Top. Quantum Electron. 14(3), 770–778 (2008).
    [Crossref]
  8. E. Lazzeri, A. Malacarne, G. Serafino, and A. Bogoni, “Optical XOR for error detection and coding of QPSK I and Q components in PPLN waveguide,” IEEE Photonics Technol. Lett. 24(24), 2258–2261 (2012).
    [Crossref]
  9. S. Gao, X. Wang, Y. Xie, P. Hu, and Q. Yan, “Reconfigurable dual-channel all-optical logic gate in a silicon waveguide using polarization encoding,” Opt. Lett. 40(7), 1448–1451 (2015).
    [Crossref] [PubMed]
  10. S. Zhou, J. Lin, J. Wu, H. Wang, J. Zhang, J. Zang, Y. Li, and D. Kong, “All-optical XOR gates for QPSK signal based optical networks,” Electron. Lett. 49(7), 486–488 (2013).
    [Crossref]
  11. X. Chen, Y. Yu, and X. Zhang, “All-optical logic minterms for three-input demodulated differential phase-shift keying signals at 40 Gb/s,” IEEE Photonics Technol. Lett. 23(2), 118–120 (2011).
    [Crossref]
  12. M. Matsuura, O. Raz, F. Gomez-Agis, N. Calabretta, and H. J. Dorren, “320 Gbit/s wavelength conversion using four-wave mixing in quantum-dot semiconductor optical amplifiers,” Opt. Lett. 36(15), 2910–2912 (2011).
    [Crossref] [PubMed]
  13. G. Contestabile, A. Maruta, S. Sekiguchi, K. Morito, M. Sugawara, and K. Kitayama, “Regenerative Amplification in a Quantum Dot SOA,” in Optical Fiber Communication Conference (2010), paper OMT2.
    [Crossref]
  14. E. Dimitriadou and K. E. Zoiros, “All-optical XOR gate using single quantum-dot SOA and optical filter,” J. Lightwave Technol. 31(23), 3813–3821 (2013).
    [Crossref]
  15. W. Li, S. Ma, H. Hu, and N. K. Dutta, “All optical latches using quantum-dot semiconductor optical amplifier,” Opt. Commun. 285(24), 5138–5143 (2012).
    [Crossref]
  16. W. Li, H. Hu, and N. K. Dutta, “High speed all-optical encryption and decryption using quantum dot semiconductor optical amplifiers,” J. Mod. Opt. 60(20), 1741–1749 (2013).
    [Crossref]
  17. C. S. Cleary, M. J. Power, S. Schneider, R. P. Webb, and R. J. Manning, “Fast gain recovery rates with strong wavelength dependence in a non-linear SOA,” Opt. Express 18(25), 25726–25737 (2010).
    [Crossref] [PubMed]
  18. X. Chen, L. Huo, Q. Wang, and C. Lou, “100-Gb/s 3R Regeneration with Cross Gain Compression in Semiconductor Optical Amplifiers,” IEEE Photonics Technol. Lett. 8(6), 1–7 (2016).
  19. Z. Zhao, L. Huo, H. chen, Yu, and C. Lou, “Short pulsewidth clock recovery at 100 GHz using Fabry-Perot cavity and semiconductor optical amplifiers,” in Optical Fiber Communication Conference (2016), paper W2A–27.
    [Crossref]
  20. L. Huo, H. Li, D. Wang, Q. Wang, and C. Lou, “Multiwavelength 25-GHz picosecond pulse generation with phase modulation and double-side Mamyshev reshaping,” Appl. Opt. 54(18), 5703–5707 (2015).
    [Crossref] [PubMed]
  21. Y. Liu, E. Tangdiongga, Z. Li, S. Zhang, H. de Waardt, G. D. Khoe, and H. J. S. Dorren, “Error-free all-optical wavelength conversion at 160 Gb/s using a semiconductor optical amplifier and an optical bandpass filter,” J. Lightwave Technol. 24(1), 230–236 (2006).
    [Crossref]
  22. M. L. Nielsen, B. Lavigne, and B. Dagens, “Polarity-preserving SOA-based wavelength conversion at 40 Gbit/s using bandpass filtering,” Electron. Lett. 39(18), 1334–1335 (2003).
    [Crossref]

2016 (1)

X. Chen, L. Huo, Q. Wang, and C. Lou, “100-Gb/s 3R Regeneration with Cross Gain Compression in Semiconductor Optical Amplifiers,” IEEE Photonics Technol. Lett. 8(6), 1–7 (2016).

2015 (2)

2013 (3)

S. Zhou, J. Lin, J. Wu, H. Wang, J. Zhang, J. Zang, Y. Li, and D. Kong, “All-optical XOR gates for QPSK signal based optical networks,” Electron. Lett. 49(7), 486–488 (2013).
[Crossref]

E. Dimitriadou and K. E. Zoiros, “All-optical XOR gate using single quantum-dot SOA and optical filter,” J. Lightwave Technol. 31(23), 3813–3821 (2013).
[Crossref]

W. Li, H. Hu, and N. K. Dutta, “High speed all-optical encryption and decryption using quantum dot semiconductor optical amplifiers,” J. Mod. Opt. 60(20), 1741–1749 (2013).
[Crossref]

2012 (2)

W. Li, S. Ma, H. Hu, and N. K. Dutta, “All optical latches using quantum-dot semiconductor optical amplifier,” Opt. Commun. 285(24), 5138–5143 (2012).
[Crossref]

E. Lazzeri, A. Malacarne, G. Serafino, and A. Bogoni, “Optical XOR for error detection and coding of QPSK I and Q components in PPLN waveguide,” IEEE Photonics Technol. Lett. 24(24), 2258–2261 (2012).
[Crossref]

2011 (2)

X. Chen, Y. Yu, and X. Zhang, “All-optical logic minterms for three-input demodulated differential phase-shift keying signals at 40 Gb/s,” IEEE Photonics Technol. Lett. 23(2), 118–120 (2011).
[Crossref]

M. Matsuura, O. Raz, F. Gomez-Agis, N. Calabretta, and H. J. Dorren, “320 Gbit/s wavelength conversion using four-wave mixing in quantum-dot semiconductor optical amplifiers,” Opt. Lett. 36(15), 2910–2912 (2011).
[Crossref] [PubMed]

2010 (1)

2008 (1)

J. Dong, X. Zhang, S. Fu, J. Xu, P. Shum, and D. Huang, “Ultrafast all-optical signal processing based on single semiconductor optical amplifier and optical filtering,” IEEE J. Sel. Top. Quantum Electron. 14(3), 770–778 (2008).
[Crossref]

2006 (3)

Y. Liu, E. Tangdiongga, Z. Li, S. Zhang, H. de Waardt, G. D. Khoe, and H. J. S. Dorren, “Error-free all-optical wavelength conversion at 160 Gb/s using a semiconductor optical amplifier and an optical bandpass filter,” J. Lightwave Technol. 24(1), 230–236 (2006).
[Crossref]

Z. Li and G. Li, “Ultrahigh-speed reconfigurable logic gates based on four-wave mixing in a semiconductor optical amplifier,” IEEE Photonics Technol. Lett. 18(9/12), 1341 (2006).

G. Berrettini, A. Simi, A. Malacarne, A. Bogoni, and L. Poti, “Ultrafast integrable and reconfigurable XNOR, AND, NOR, and NOT photonic logic gate,” IEEE Photonics Technol. Lett. 18(8), 917–919 (2006).
[Crossref]

2005 (2)

Z. Li, Y. Liu, S. Zhang, H. Ju, H. de Waardt, G. D. Khoe, H. J. S. Dorren, and D. Lenstra, “All-optical logic gates using semiconductor optical amplifier assisted by optical filter,” Electron. Lett. 41(25), 1397–1399 (2005).
[Crossref]

C. Yu, L. Christen, T. Luo, Y. Wang, Z. Pan, L. S. Yan, and A. E. Willner, “All-optical XOR gate using polarization rotation in single highly nonlinear fiber,” IEEE Photonics Technol. Lett. 17(6), 1232–1234 (2005).
[Crossref]

2003 (1)

M. L. Nielsen, B. Lavigne, and B. Dagens, “Polarity-preserving SOA-based wavelength conversion at 40 Gbit/s using bandpass filtering,” Electron. Lett. 39(18), 1334–1335 (2003).
[Crossref]

1998 (1)

Berrettini, G.

G. Berrettini, A. Simi, A. Malacarne, A. Bogoni, and L. Poti, “Ultrafast integrable and reconfigurable XNOR, AND, NOR, and NOT photonic logic gate,” IEEE Photonics Technol. Lett. 18(8), 917–919 (2006).
[Crossref]

Bogoni, A.

E. Lazzeri, A. Malacarne, G. Serafino, and A. Bogoni, “Optical XOR for error detection and coding of QPSK I and Q components in PPLN waveguide,” IEEE Photonics Technol. Lett. 24(24), 2258–2261 (2012).
[Crossref]

G. Berrettini, A. Simi, A. Malacarne, A. Bogoni, and L. Poti, “Ultrafast integrable and reconfigurable XNOR, AND, NOR, and NOT photonic logic gate,” IEEE Photonics Technol. Lett. 18(8), 917–919 (2006).
[Crossref]

Calabretta, N.

chen, H.

Z. Zhao, L. Huo, H. chen, Yu, and C. Lou, “Short pulsewidth clock recovery at 100 GHz using Fabry-Perot cavity and semiconductor optical amplifiers,” in Optical Fiber Communication Conference (2016), paper W2A–27.
[Crossref]

Chen, X.

X. Chen, L. Huo, Q. Wang, and C. Lou, “100-Gb/s 3R Regeneration with Cross Gain Compression in Semiconductor Optical Amplifiers,” IEEE Photonics Technol. Lett. 8(6), 1–7 (2016).

X. Chen, Y. Yu, and X. Zhang, “All-optical logic minterms for three-input demodulated differential phase-shift keying signals at 40 Gb/s,” IEEE Photonics Technol. Lett. 23(2), 118–120 (2011).
[Crossref]

Christen, L.

C. Yu, L. Christen, T. Luo, Y. Wang, Z. Pan, L. S. Yan, and A. E. Willner, “All-optical XOR gate using polarization rotation in single highly nonlinear fiber,” IEEE Photonics Technol. Lett. 17(6), 1232–1234 (2005).
[Crossref]

Cleary, C. S.

Dagens, B.

M. L. Nielsen, B. Lavigne, and B. Dagens, “Polarity-preserving SOA-based wavelength conversion at 40 Gbit/s using bandpass filtering,” Electron. Lett. 39(18), 1334–1335 (2003).
[Crossref]

de Waardt, H.

Y. Liu, E. Tangdiongga, Z. Li, S. Zhang, H. de Waardt, G. D. Khoe, and H. J. S. Dorren, “Error-free all-optical wavelength conversion at 160 Gb/s using a semiconductor optical amplifier and an optical bandpass filter,” J. Lightwave Technol. 24(1), 230–236 (2006).
[Crossref]

Z. Li, Y. Liu, S. Zhang, H. Ju, H. de Waardt, G. D. Khoe, H. J. S. Dorren, and D. Lenstra, “All-optical logic gates using semiconductor optical amplifier assisted by optical filter,” Electron. Lett. 41(25), 1397–1399 (2005).
[Crossref]

Dimitriadou, E.

Dong, J.

J. Dong, X. Zhang, S. Fu, J. Xu, P. Shum, and D. Huang, “Ultrafast all-optical signal processing based on single semiconductor optical amplifier and optical filtering,” IEEE J. Sel. Top. Quantum Electron. 14(3), 770–778 (2008).
[Crossref]

Dorren, H. J.

Dorren, H. J. S.

Y. Liu, E. Tangdiongga, Z. Li, S. Zhang, H. de Waardt, G. D. Khoe, and H. J. S. Dorren, “Error-free all-optical wavelength conversion at 160 Gb/s using a semiconductor optical amplifier and an optical bandpass filter,” J. Lightwave Technol. 24(1), 230–236 (2006).
[Crossref]

Z. Li, Y. Liu, S. Zhang, H. Ju, H. de Waardt, G. D. Khoe, H. J. S. Dorren, and D. Lenstra, “All-optical logic gates using semiconductor optical amplifier assisted by optical filter,” Electron. Lett. 41(25), 1397–1399 (2005).
[Crossref]

Dutta, N. K.

W. Li, H. Hu, and N. K. Dutta, “High speed all-optical encryption and decryption using quantum dot semiconductor optical amplifiers,” J. Mod. Opt. 60(20), 1741–1749 (2013).
[Crossref]

W. Li, S. Ma, H. Hu, and N. K. Dutta, “All optical latches using quantum-dot semiconductor optical amplifier,” Opt. Commun. 285(24), 5138–5143 (2012).
[Crossref]

Fu, S.

J. Dong, X. Zhang, S. Fu, J. Xu, P. Shum, and D. Huang, “Ultrafast all-optical signal processing based on single semiconductor optical amplifier and optical filtering,” IEEE J. Sel. Top. Quantum Electron. 14(3), 770–778 (2008).
[Crossref]

Gao, S.

Gomez-Agis, F.

Hall, K. L.

Hu, H.

W. Li, H. Hu, and N. K. Dutta, “High speed all-optical encryption and decryption using quantum dot semiconductor optical amplifiers,” J. Mod. Opt. 60(20), 1741–1749 (2013).
[Crossref]

W. Li, S. Ma, H. Hu, and N. K. Dutta, “All optical latches using quantum-dot semiconductor optical amplifier,” Opt. Commun. 285(24), 5138–5143 (2012).
[Crossref]

Hu, P.

Huang, D.

J. Dong, X. Zhang, S. Fu, J. Xu, P. Shum, and D. Huang, “Ultrafast all-optical signal processing based on single semiconductor optical amplifier and optical filtering,” IEEE J. Sel. Top. Quantum Electron. 14(3), 770–778 (2008).
[Crossref]

Huo, L.

X. Chen, L. Huo, Q. Wang, and C. Lou, “100-Gb/s 3R Regeneration with Cross Gain Compression in Semiconductor Optical Amplifiers,” IEEE Photonics Technol. Lett. 8(6), 1–7 (2016).

L. Huo, H. Li, D. Wang, Q. Wang, and C. Lou, “Multiwavelength 25-GHz picosecond pulse generation with phase modulation and double-side Mamyshev reshaping,” Appl. Opt. 54(18), 5703–5707 (2015).
[Crossref] [PubMed]

Z. Zhao, L. Huo, H. chen, Yu, and C. Lou, “Short pulsewidth clock recovery at 100 GHz using Fabry-Perot cavity and semiconductor optical amplifiers,” in Optical Fiber Communication Conference (2016), paper W2A–27.
[Crossref]

Ju, H.

Z. Li, Y. Liu, S. Zhang, H. Ju, H. de Waardt, G. D. Khoe, H. J. S. Dorren, and D. Lenstra, “All-optical logic gates using semiconductor optical amplifier assisted by optical filter,” Electron. Lett. 41(25), 1397–1399 (2005).
[Crossref]

Khoe, G. D.

Y. Liu, E. Tangdiongga, Z. Li, S. Zhang, H. de Waardt, G. D. Khoe, and H. J. S. Dorren, “Error-free all-optical wavelength conversion at 160 Gb/s using a semiconductor optical amplifier and an optical bandpass filter,” J. Lightwave Technol. 24(1), 230–236 (2006).
[Crossref]

Z. Li, Y. Liu, S. Zhang, H. Ju, H. de Waardt, G. D. Khoe, H. J. S. Dorren, and D. Lenstra, “All-optical logic gates using semiconductor optical amplifier assisted by optical filter,” Electron. Lett. 41(25), 1397–1399 (2005).
[Crossref]

Kong, D.

S. Zhou, J. Lin, J. Wu, H. Wang, J. Zhang, J. Zang, Y. Li, and D. Kong, “All-optical XOR gates for QPSK signal based optical networks,” Electron. Lett. 49(7), 486–488 (2013).
[Crossref]

Lavigne, B.

M. L. Nielsen, B. Lavigne, and B. Dagens, “Polarity-preserving SOA-based wavelength conversion at 40 Gbit/s using bandpass filtering,” Electron. Lett. 39(18), 1334–1335 (2003).
[Crossref]

Lazzeri, E.

E. Lazzeri, A. Malacarne, G. Serafino, and A. Bogoni, “Optical XOR for error detection and coding of QPSK I and Q components in PPLN waveguide,” IEEE Photonics Technol. Lett. 24(24), 2258–2261 (2012).
[Crossref]

Lenstra, D.

Z. Li, Y. Liu, S. Zhang, H. Ju, H. de Waardt, G. D. Khoe, H. J. S. Dorren, and D. Lenstra, “All-optical logic gates using semiconductor optical amplifier assisted by optical filter,” Electron. Lett. 41(25), 1397–1399 (2005).
[Crossref]

Li, G.

Z. Li and G. Li, “Ultrahigh-speed reconfigurable logic gates based on four-wave mixing in a semiconductor optical amplifier,” IEEE Photonics Technol. Lett. 18(9/12), 1341 (2006).

Li, H.

Li, W.

W. Li, H. Hu, and N. K. Dutta, “High speed all-optical encryption and decryption using quantum dot semiconductor optical amplifiers,” J. Mod. Opt. 60(20), 1741–1749 (2013).
[Crossref]

W. Li, S. Ma, H. Hu, and N. K. Dutta, “All optical latches using quantum-dot semiconductor optical amplifier,” Opt. Commun. 285(24), 5138–5143 (2012).
[Crossref]

Li, Y.

S. Zhou, J. Lin, J. Wu, H. Wang, J. Zhang, J. Zang, Y. Li, and D. Kong, “All-optical XOR gates for QPSK signal based optical networks,” Electron. Lett. 49(7), 486–488 (2013).
[Crossref]

Li, Z.

Z. Li and G. Li, “Ultrahigh-speed reconfigurable logic gates based on four-wave mixing in a semiconductor optical amplifier,” IEEE Photonics Technol. Lett. 18(9/12), 1341 (2006).

Y. Liu, E. Tangdiongga, Z. Li, S. Zhang, H. de Waardt, G. D. Khoe, and H. J. S. Dorren, “Error-free all-optical wavelength conversion at 160 Gb/s using a semiconductor optical amplifier and an optical bandpass filter,” J. Lightwave Technol. 24(1), 230–236 (2006).
[Crossref]

Z. Li, Y. Liu, S. Zhang, H. Ju, H. de Waardt, G. D. Khoe, H. J. S. Dorren, and D. Lenstra, “All-optical logic gates using semiconductor optical amplifier assisted by optical filter,” Electron. Lett. 41(25), 1397–1399 (2005).
[Crossref]

Lin, J.

S. Zhou, J. Lin, J. Wu, H. Wang, J. Zhang, J. Zang, Y. Li, and D. Kong, “All-optical XOR gates for QPSK signal based optical networks,” Electron. Lett. 49(7), 486–488 (2013).
[Crossref]

Liu, Y.

Y. Liu, E. Tangdiongga, Z. Li, S. Zhang, H. de Waardt, G. D. Khoe, and H. J. S. Dorren, “Error-free all-optical wavelength conversion at 160 Gb/s using a semiconductor optical amplifier and an optical bandpass filter,” J. Lightwave Technol. 24(1), 230–236 (2006).
[Crossref]

Z. Li, Y. Liu, S. Zhang, H. Ju, H. de Waardt, G. D. Khoe, H. J. S. Dorren, and D. Lenstra, “All-optical logic gates using semiconductor optical amplifier assisted by optical filter,” Electron. Lett. 41(25), 1397–1399 (2005).
[Crossref]

Lou, C.

X. Chen, L. Huo, Q. Wang, and C. Lou, “100-Gb/s 3R Regeneration with Cross Gain Compression in Semiconductor Optical Amplifiers,” IEEE Photonics Technol. Lett. 8(6), 1–7 (2016).

L. Huo, H. Li, D. Wang, Q. Wang, and C. Lou, “Multiwavelength 25-GHz picosecond pulse generation with phase modulation and double-side Mamyshev reshaping,” Appl. Opt. 54(18), 5703–5707 (2015).
[Crossref] [PubMed]

Z. Zhao, L. Huo, H. chen, Yu, and C. Lou, “Short pulsewidth clock recovery at 100 GHz using Fabry-Perot cavity and semiconductor optical amplifiers,” in Optical Fiber Communication Conference (2016), paper W2A–27.
[Crossref]

Luo, T.

C. Yu, L. Christen, T. Luo, Y. Wang, Z. Pan, L. S. Yan, and A. E. Willner, “All-optical XOR gate using polarization rotation in single highly nonlinear fiber,” IEEE Photonics Technol. Lett. 17(6), 1232–1234 (2005).
[Crossref]

Ma, S.

W. Li, S. Ma, H. Hu, and N. K. Dutta, “All optical latches using quantum-dot semiconductor optical amplifier,” Opt. Commun. 285(24), 5138–5143 (2012).
[Crossref]

Malacarne, A.

E. Lazzeri, A. Malacarne, G. Serafino, and A. Bogoni, “Optical XOR for error detection and coding of QPSK I and Q components in PPLN waveguide,” IEEE Photonics Technol. Lett. 24(24), 2258–2261 (2012).
[Crossref]

G. Berrettini, A. Simi, A. Malacarne, A. Bogoni, and L. Poti, “Ultrafast integrable and reconfigurable XNOR, AND, NOR, and NOT photonic logic gate,” IEEE Photonics Technol. Lett. 18(8), 917–919 (2006).
[Crossref]

Manning, R. J.

Matsuura, M.

Nielsen, M. L.

M. L. Nielsen, B. Lavigne, and B. Dagens, “Polarity-preserving SOA-based wavelength conversion at 40 Gbit/s using bandpass filtering,” Electron. Lett. 39(18), 1334–1335 (2003).
[Crossref]

Pan, Z.

C. Yu, L. Christen, T. Luo, Y. Wang, Z. Pan, L. S. Yan, and A. E. Willner, “All-optical XOR gate using polarization rotation in single highly nonlinear fiber,” IEEE Photonics Technol. Lett. 17(6), 1232–1234 (2005).
[Crossref]

Poti, L.

G. Berrettini, A. Simi, A. Malacarne, A. Bogoni, and L. Poti, “Ultrafast integrable and reconfigurable XNOR, AND, NOR, and NOT photonic logic gate,” IEEE Photonics Technol. Lett. 18(8), 917–919 (2006).
[Crossref]

Power, M. J.

Rauschenbach, K. A.

Raz, O.

Schneider, S.

Serafino, G.

E. Lazzeri, A. Malacarne, G. Serafino, and A. Bogoni, “Optical XOR for error detection and coding of QPSK I and Q components in PPLN waveguide,” IEEE Photonics Technol. Lett. 24(24), 2258–2261 (2012).
[Crossref]

Shum, P.

J. Dong, X. Zhang, S. Fu, J. Xu, P. Shum, and D. Huang, “Ultrafast all-optical signal processing based on single semiconductor optical amplifier and optical filtering,” IEEE J. Sel. Top. Quantum Electron. 14(3), 770–778 (2008).
[Crossref]

Simi, A.

G. Berrettini, A. Simi, A. Malacarne, A. Bogoni, and L. Poti, “Ultrafast integrable and reconfigurable XNOR, AND, NOR, and NOT photonic logic gate,” IEEE Photonics Technol. Lett. 18(8), 917–919 (2006).
[Crossref]

Tangdiongga, E.

Wang, D.

Wang, H.

S. Zhou, J. Lin, J. Wu, H. Wang, J. Zhang, J. Zang, Y. Li, and D. Kong, “All-optical XOR gates for QPSK signal based optical networks,” Electron. Lett. 49(7), 486–488 (2013).
[Crossref]

Wang, Q.

X. Chen, L. Huo, Q. Wang, and C. Lou, “100-Gb/s 3R Regeneration with Cross Gain Compression in Semiconductor Optical Amplifiers,” IEEE Photonics Technol. Lett. 8(6), 1–7 (2016).

L. Huo, H. Li, D. Wang, Q. Wang, and C. Lou, “Multiwavelength 25-GHz picosecond pulse generation with phase modulation and double-side Mamyshev reshaping,” Appl. Opt. 54(18), 5703–5707 (2015).
[Crossref] [PubMed]

Wang, X.

Wang, Y.

C. Yu, L. Christen, T. Luo, Y. Wang, Z. Pan, L. S. Yan, and A. E. Willner, “All-optical XOR gate using polarization rotation in single highly nonlinear fiber,” IEEE Photonics Technol. Lett. 17(6), 1232–1234 (2005).
[Crossref]

Webb, R. P.

Willner, A. E.

C. Yu, L. Christen, T. Luo, Y. Wang, Z. Pan, L. S. Yan, and A. E. Willner, “All-optical XOR gate using polarization rotation in single highly nonlinear fiber,” IEEE Photonics Technol. Lett. 17(6), 1232–1234 (2005).
[Crossref]

Wu, J.

S. Zhou, J. Lin, J. Wu, H. Wang, J. Zhang, J. Zang, Y. Li, and D. Kong, “All-optical XOR gates for QPSK signal based optical networks,” Electron. Lett. 49(7), 486–488 (2013).
[Crossref]

Xie, Y.

Xu, J.

J. Dong, X. Zhang, S. Fu, J. Xu, P. Shum, and D. Huang, “Ultrafast all-optical signal processing based on single semiconductor optical amplifier and optical filtering,” IEEE J. Sel. Top. Quantum Electron. 14(3), 770–778 (2008).
[Crossref]

Yan, L. S.

C. Yu, L. Christen, T. Luo, Y. Wang, Z. Pan, L. S. Yan, and A. E. Willner, “All-optical XOR gate using polarization rotation in single highly nonlinear fiber,” IEEE Photonics Technol. Lett. 17(6), 1232–1234 (2005).
[Crossref]

Yan, Q.

Yu,

Z. Zhao, L. Huo, H. chen, Yu, and C. Lou, “Short pulsewidth clock recovery at 100 GHz using Fabry-Perot cavity and semiconductor optical amplifiers,” in Optical Fiber Communication Conference (2016), paper W2A–27.
[Crossref]

Yu, C.

C. Yu, L. Christen, T. Luo, Y. Wang, Z. Pan, L. S. Yan, and A. E. Willner, “All-optical XOR gate using polarization rotation in single highly nonlinear fiber,” IEEE Photonics Technol. Lett. 17(6), 1232–1234 (2005).
[Crossref]

Yu, Y.

X. Chen, Y. Yu, and X. Zhang, “All-optical logic minterms for three-input demodulated differential phase-shift keying signals at 40 Gb/s,” IEEE Photonics Technol. Lett. 23(2), 118–120 (2011).
[Crossref]

Zang, J.

S. Zhou, J. Lin, J. Wu, H. Wang, J. Zhang, J. Zang, Y. Li, and D. Kong, “All-optical XOR gates for QPSK signal based optical networks,” Electron. Lett. 49(7), 486–488 (2013).
[Crossref]

Zhang, J.

S. Zhou, J. Lin, J. Wu, H. Wang, J. Zhang, J. Zang, Y. Li, and D. Kong, “All-optical XOR gates for QPSK signal based optical networks,” Electron. Lett. 49(7), 486–488 (2013).
[Crossref]

Zhang, S.

Y. Liu, E. Tangdiongga, Z. Li, S. Zhang, H. de Waardt, G. D. Khoe, and H. J. S. Dorren, “Error-free all-optical wavelength conversion at 160 Gb/s using a semiconductor optical amplifier and an optical bandpass filter,” J. Lightwave Technol. 24(1), 230–236 (2006).
[Crossref]

Z. Li, Y. Liu, S. Zhang, H. Ju, H. de Waardt, G. D. Khoe, H. J. S. Dorren, and D. Lenstra, “All-optical logic gates using semiconductor optical amplifier assisted by optical filter,” Electron. Lett. 41(25), 1397–1399 (2005).
[Crossref]

Zhang, X.

X. Chen, Y. Yu, and X. Zhang, “All-optical logic minterms for three-input demodulated differential phase-shift keying signals at 40 Gb/s,” IEEE Photonics Technol. Lett. 23(2), 118–120 (2011).
[Crossref]

J. Dong, X. Zhang, S. Fu, J. Xu, P. Shum, and D. Huang, “Ultrafast all-optical signal processing based on single semiconductor optical amplifier and optical filtering,” IEEE J. Sel. Top. Quantum Electron. 14(3), 770–778 (2008).
[Crossref]

Zhao, Z.

Z. Zhao, L. Huo, H. chen, Yu, and C. Lou, “Short pulsewidth clock recovery at 100 GHz using Fabry-Perot cavity and semiconductor optical amplifiers,” in Optical Fiber Communication Conference (2016), paper W2A–27.
[Crossref]

Zhou, S.

S. Zhou, J. Lin, J. Wu, H. Wang, J. Zhang, J. Zang, Y. Li, and D. Kong, “All-optical XOR gates for QPSK signal based optical networks,” Electron. Lett. 49(7), 486–488 (2013).
[Crossref]

Zoiros, K. E.

Appl. Opt. (1)

Electron. Lett. (3)

Z. Li, Y. Liu, S. Zhang, H. Ju, H. de Waardt, G. D. Khoe, H. J. S. Dorren, and D. Lenstra, “All-optical logic gates using semiconductor optical amplifier assisted by optical filter,” Electron. Lett. 41(25), 1397–1399 (2005).
[Crossref]

S. Zhou, J. Lin, J. Wu, H. Wang, J. Zhang, J. Zang, Y. Li, and D. Kong, “All-optical XOR gates for QPSK signal based optical networks,” Electron. Lett. 49(7), 486–488 (2013).
[Crossref]

M. L. Nielsen, B. Lavigne, and B. Dagens, “Polarity-preserving SOA-based wavelength conversion at 40 Gbit/s using bandpass filtering,” Electron. Lett. 39(18), 1334–1335 (2003).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

J. Dong, X. Zhang, S. Fu, J. Xu, P. Shum, and D. Huang, “Ultrafast all-optical signal processing based on single semiconductor optical amplifier and optical filtering,” IEEE J. Sel. Top. Quantum Electron. 14(3), 770–778 (2008).
[Crossref]

IEEE Photonics Technol. Lett. (6)

E. Lazzeri, A. Malacarne, G. Serafino, and A. Bogoni, “Optical XOR for error detection and coding of QPSK I and Q components in PPLN waveguide,” IEEE Photonics Technol. Lett. 24(24), 2258–2261 (2012).
[Crossref]

C. Yu, L. Christen, T. Luo, Y. Wang, Z. Pan, L. S. Yan, and A. E. Willner, “All-optical XOR gate using polarization rotation in single highly nonlinear fiber,” IEEE Photonics Technol. Lett. 17(6), 1232–1234 (2005).
[Crossref]

X. Chen, Y. Yu, and X. Zhang, “All-optical logic minterms for three-input demodulated differential phase-shift keying signals at 40 Gb/s,” IEEE Photonics Technol. Lett. 23(2), 118–120 (2011).
[Crossref]

Z. Li and G. Li, “Ultrahigh-speed reconfigurable logic gates based on four-wave mixing in a semiconductor optical amplifier,” IEEE Photonics Technol. Lett. 18(9/12), 1341 (2006).

G. Berrettini, A. Simi, A. Malacarne, A. Bogoni, and L. Poti, “Ultrafast integrable and reconfigurable XNOR, AND, NOR, and NOT photonic logic gate,” IEEE Photonics Technol. Lett. 18(8), 917–919 (2006).
[Crossref]

X. Chen, L. Huo, Q. Wang, and C. Lou, “100-Gb/s 3R Regeneration with Cross Gain Compression in Semiconductor Optical Amplifiers,” IEEE Photonics Technol. Lett. 8(6), 1–7 (2016).

J. Lightwave Technol. (2)

J. Mod. Opt. (1)

W. Li, H. Hu, and N. K. Dutta, “High speed all-optical encryption and decryption using quantum dot semiconductor optical amplifiers,” J. Mod. Opt. 60(20), 1741–1749 (2013).
[Crossref]

Opt. Commun. (1)

W. Li, S. Ma, H. Hu, and N. K. Dutta, “All optical latches using quantum-dot semiconductor optical amplifier,” Opt. Commun. 285(24), 5138–5143 (2012).
[Crossref]

Opt. Express (1)

Opt. Lett. (3)

Other (3)

Z. Zhao, L. Huo, H. chen, Yu, and C. Lou, “Short pulsewidth clock recovery at 100 GHz using Fabry-Perot cavity and semiconductor optical amplifiers,” in Optical Fiber Communication Conference (2016), paper W2A–27.
[Crossref]

G. Contestabile, A. Maruta, S. Sekiguchi, K. Morito, M. Sugawara, and K. Kitayama, “Regenerative Amplification in a Quantum Dot SOA,” in Optical Fiber Communication Conference (2010), paper OMT2.
[Crossref]

H. Sun, Q. Wang, and H. Dong, l. Jaques, A. B. Piccirilli, and N. K. Dutta, “All-optical XOR gate at 80 Gb/s using SOA-MZI-DI,” in Optics East 2006 (ISOP, 2006), paper 63880T.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Experimental setup for 100-Gb/s reconfigurable logic gates.
Fig. 2
Fig. 2 Spectral domain explanation of operation principle for NOR/OR and AND logics.
Fig. 3
Fig. 3 Experimental result of logic NOR gate:(a)Spectra of probe light after the SOA, the filter and the logic output; (b) Eye diagram of logic NOR output; (c) Waveforms of input signals and logic NOR output; (d) BER curves for the input signals and output result.
Fig. 4
Fig. 4 Experimental result of logic OR gate: (a) Spectra of probe light after the SOA, the filter and the logic output; (b) Eye diagram of logic OR output; (c) Waveforms of input signals and logic OR output; (d) BER curves for the input signals and output result.
Fig. 5
Fig. 5 Experimental result of logic AND gate: (a) Spectra of probe light after the SOA, the filter and the logic output; (b) Eye diagram of logic AND output; (c) Waveforms of input signals and logic AND output; (d) BER curves for the input signals and output result.
Fig. 6
Fig. 6 The recovery time of SOAs injected with a 25-GHz pulse and a probe light (CW light). (Result of long SOA is depicted in red and short SOA in blue).
Fig. 7
Fig. 7 Eye diagrams of logic NOR and OR using short SOA.
Fig. 8
Fig. 8 The Q factor (dB) performance of the obtained logic NOR/OR gates under different filter configurations. The two dotted lines for the OR logics overlap with each other. (a) Using 2-mm (long) SOA; (b) Using 0.8-mm (short) SOA.

Metrics