Abstract

Resonant optical cavities have been demonstrated to improve energy efficiencies in Holographic Data Storage Systems (HDSS). The orthogonal reference beams supported as cavity eigenmodes can provide another multiplexing degree of freedom to push storage densities toward the limit of 3D optical data storage. While keeping the increased energy efficiency of a cavity enhanced reference arm, image bearing holograms are multiplexed by orthogonal phase code multiplexing via Hermite-Gaussian eigenmodes in a Fe:LiNbO3 medium with a 532 nm laser at two Bragg angles. We experimentally confirmed write rates are enhanced by an average factor of 1.1, and page crosstalk is about 2.5%. This hybrid multiplexing opens up a pathway to increase storage density while minimizing modification of current angular multiplexing HDSS.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Cavity techniques for holographic data storage recording

Bo E. Miller and Yuzuru Takashima
Opt. Express 24(6) 6300-6317 (2016)

Multiplexed phase-conjugate holographic data storage with a buffer hologram

Geoffrey W. Burr and Inmaculada Leyva
Opt. Lett. 25(7) 499-501 (2000)

Orthogonal reference pattern multiplexing for collinear holographic data storage

Liangcai Cao, Jinqiu Liu, Jianhua Li, Qingsheng He, and Guofan Jin
Appl. Opt. 53(1) 1-8 (2014)

References

  • View by:
  • |
  • |
  • |

  1. “White Paper: Archival Disc Technology,” http://panasonic.net/avc/archiver/pdf/E_WhitePaper_ArchivalDisc_Ver100.pdf .
  2. J. Zhang, A. Čerkauskaitė, R. Drevinskas, A. Patel, M. Beresna, and P. G. Kazansky, “Eternal 5D data storage by ultrafast laser writing in glass,” Proc. SPIE 9736, 97360U (2016).
  3. K. Anderson, M. Ayres, F. Askham, and B. Sissom, “Holographic data storage: science fiction or science fact,” Proc. SPIE 9201, 920102 (2014).
    [Crossref]
  4. P. J. van Heerden, “Theory of optical information storage in solids,” Appl. Opt. 2(4), 393 (1963).
    [Crossref]
  5. M. R. Ayres, K. Anderson, F. Askham, B. Sissom, and A. C. Urness, “Holographic data storage at 2+ tbit/in2,” Proc. SPIE 9386, 93860G (2015).
  6. A. Sinha and G. Barbastathis, “Resonant holography,” Opt. Lett. 27(6), 385–387 (2002).
    [Crossref] [PubMed]
  7. B. E. Miller and Y. Takashima, “Cavity techniques for holographic data storage recording,” Opt. Express 24(6), 6300–6317 (2016).
    [Crossref] [PubMed]
  8. M. C. Bashaw, J. F. Heanue, A. Aharoni, J. F. Walkup, and L. Hesselink, “Cross-talk considerations for angular and phase-encoded multiplexing in volume holography,” J. Opt. Soc. Am. B 11(9), 1820 (1994).
    [Crossref]
  9. K. Tian, “Three dimensional (3D) optical information processing,” Thesis, Massachusetts Institute of Technology (2006).
  10. C. Denz, G. Pauliat, G. Roosen, and T. Tschudi, “Volume hologram multiplexing using a deterministic phase encoding method,” Opt. Commun. 85(2-3), 171–176 (1991).
    [Crossref]
  11. J. W. Goodman, “Introduction to Fourier Optics,” in Introduction to Fourier Optics, 3rd ed. (Roberts & Company Publishers, 2005), pp. 107–108.
  12. J. Kühn and P. Patapis, “Digital adaptive coronagraphy using slms: promising prospects of a novel approach, including high-contrast imaging of multiple stars systems,” Proc. SPIE 9912, 99122M (2016).
    [Crossref]
  13. “HOLOEYE Photonics AG » LC 2012 Spatial Light Modulator (transmissive),” http://holoeye.com/spatial-light-modulators/lc-2012-spatial-light-modulator/ .
  14. A. E. Siegman, “Lasers,” in Lasers (University Science Books, 1986).
  15. T. Hoshizawa, K. Shimada, K. Fujita, and Y. Tada, “Practical angular-multiplexing holographic data storage system with 2 terabyte capacity and 1 gigabit transfer rate,” Jpn. J. Appl. Phys. 55(9S), 09SA06 (2016).
    [Crossref]
  16. F. Dai and C. Gu, “Effect of gaussian references on cross-talk noise reduction in volume holographic memory,” Opt. Lett. 22(23), 1802–1804 (1997).
    [Crossref] [PubMed]
  17. H. Mikami and K. Watanabe, “Microholographic optical data storage with spatial mode multiplexing,” Jpn. J. Appl. Phys. 52(9S2), 09LD02 (2013).
    [Crossref]

2016 (4)

J. Zhang, A. Čerkauskaitė, R. Drevinskas, A. Patel, M. Beresna, and P. G. Kazansky, “Eternal 5D data storage by ultrafast laser writing in glass,” Proc. SPIE 9736, 97360U (2016).

B. E. Miller and Y. Takashima, “Cavity techniques for holographic data storage recording,” Opt. Express 24(6), 6300–6317 (2016).
[Crossref] [PubMed]

J. Kühn and P. Patapis, “Digital adaptive coronagraphy using slms: promising prospects of a novel approach, including high-contrast imaging of multiple stars systems,” Proc. SPIE 9912, 99122M (2016).
[Crossref]

T. Hoshizawa, K. Shimada, K. Fujita, and Y. Tada, “Practical angular-multiplexing holographic data storage system with 2 terabyte capacity and 1 gigabit transfer rate,” Jpn. J. Appl. Phys. 55(9S), 09SA06 (2016).
[Crossref]

2015 (1)

M. R. Ayres, K. Anderson, F. Askham, B. Sissom, and A. C. Urness, “Holographic data storage at 2+ tbit/in2,” Proc. SPIE 9386, 93860G (2015).

2014 (1)

K. Anderson, M. Ayres, F. Askham, and B. Sissom, “Holographic data storage: science fiction or science fact,” Proc. SPIE 9201, 920102 (2014).
[Crossref]

2013 (1)

H. Mikami and K. Watanabe, “Microholographic optical data storage with spatial mode multiplexing,” Jpn. J. Appl. Phys. 52(9S2), 09LD02 (2013).
[Crossref]

2002 (1)

1997 (1)

1994 (1)

1991 (1)

C. Denz, G. Pauliat, G. Roosen, and T. Tschudi, “Volume hologram multiplexing using a deterministic phase encoding method,” Opt. Commun. 85(2-3), 171–176 (1991).
[Crossref]

1963 (1)

Aharoni, A.

Anderson, K.

M. R. Ayres, K. Anderson, F. Askham, B. Sissom, and A. C. Urness, “Holographic data storage at 2+ tbit/in2,” Proc. SPIE 9386, 93860G (2015).

K. Anderson, M. Ayres, F. Askham, and B. Sissom, “Holographic data storage: science fiction or science fact,” Proc. SPIE 9201, 920102 (2014).
[Crossref]

Askham, F.

M. R. Ayres, K. Anderson, F. Askham, B. Sissom, and A. C. Urness, “Holographic data storage at 2+ tbit/in2,” Proc. SPIE 9386, 93860G (2015).

K. Anderson, M. Ayres, F. Askham, and B. Sissom, “Holographic data storage: science fiction or science fact,” Proc. SPIE 9201, 920102 (2014).
[Crossref]

Ayres, M.

K. Anderson, M. Ayres, F. Askham, and B. Sissom, “Holographic data storage: science fiction or science fact,” Proc. SPIE 9201, 920102 (2014).
[Crossref]

Ayres, M. R.

M. R. Ayres, K. Anderson, F. Askham, B. Sissom, and A. C. Urness, “Holographic data storage at 2+ tbit/in2,” Proc. SPIE 9386, 93860G (2015).

Barbastathis, G.

Bashaw, M. C.

Beresna, M.

J. Zhang, A. Čerkauskaitė, R. Drevinskas, A. Patel, M. Beresna, and P. G. Kazansky, “Eternal 5D data storage by ultrafast laser writing in glass,” Proc. SPIE 9736, 97360U (2016).

Cerkauskaite, A.

J. Zhang, A. Čerkauskaitė, R. Drevinskas, A. Patel, M. Beresna, and P. G. Kazansky, “Eternal 5D data storage by ultrafast laser writing in glass,” Proc. SPIE 9736, 97360U (2016).

Dai, F.

Denz, C.

C. Denz, G. Pauliat, G. Roosen, and T. Tschudi, “Volume hologram multiplexing using a deterministic phase encoding method,” Opt. Commun. 85(2-3), 171–176 (1991).
[Crossref]

Drevinskas, R.

J. Zhang, A. Čerkauskaitė, R. Drevinskas, A. Patel, M. Beresna, and P. G. Kazansky, “Eternal 5D data storage by ultrafast laser writing in glass,” Proc. SPIE 9736, 97360U (2016).

Fujita, K.

T. Hoshizawa, K. Shimada, K. Fujita, and Y. Tada, “Practical angular-multiplexing holographic data storage system with 2 terabyte capacity and 1 gigabit transfer rate,” Jpn. J. Appl. Phys. 55(9S), 09SA06 (2016).
[Crossref]

Gu, C.

Heanue, J. F.

Hesselink, L.

Hoshizawa, T.

T. Hoshizawa, K. Shimada, K. Fujita, and Y. Tada, “Practical angular-multiplexing holographic data storage system with 2 terabyte capacity and 1 gigabit transfer rate,” Jpn. J. Appl. Phys. 55(9S), 09SA06 (2016).
[Crossref]

Kazansky, P. G.

J. Zhang, A. Čerkauskaitė, R. Drevinskas, A. Patel, M. Beresna, and P. G. Kazansky, “Eternal 5D data storage by ultrafast laser writing in glass,” Proc. SPIE 9736, 97360U (2016).

Kühn, J.

J. Kühn and P. Patapis, “Digital adaptive coronagraphy using slms: promising prospects of a novel approach, including high-contrast imaging of multiple stars systems,” Proc. SPIE 9912, 99122M (2016).
[Crossref]

Mikami, H.

H. Mikami and K. Watanabe, “Microholographic optical data storage with spatial mode multiplexing,” Jpn. J. Appl. Phys. 52(9S2), 09LD02 (2013).
[Crossref]

Miller, B. E.

Patapis, P.

J. Kühn and P. Patapis, “Digital adaptive coronagraphy using slms: promising prospects of a novel approach, including high-contrast imaging of multiple stars systems,” Proc. SPIE 9912, 99122M (2016).
[Crossref]

Patel, A.

J. Zhang, A. Čerkauskaitė, R. Drevinskas, A. Patel, M. Beresna, and P. G. Kazansky, “Eternal 5D data storage by ultrafast laser writing in glass,” Proc. SPIE 9736, 97360U (2016).

Pauliat, G.

C. Denz, G. Pauliat, G. Roosen, and T. Tschudi, “Volume hologram multiplexing using a deterministic phase encoding method,” Opt. Commun. 85(2-3), 171–176 (1991).
[Crossref]

Roosen, G.

C. Denz, G. Pauliat, G. Roosen, and T. Tschudi, “Volume hologram multiplexing using a deterministic phase encoding method,” Opt. Commun. 85(2-3), 171–176 (1991).
[Crossref]

Shimada, K.

T. Hoshizawa, K. Shimada, K. Fujita, and Y. Tada, “Practical angular-multiplexing holographic data storage system with 2 terabyte capacity and 1 gigabit transfer rate,” Jpn. J. Appl. Phys. 55(9S), 09SA06 (2016).
[Crossref]

Sinha, A.

Sissom, B.

M. R. Ayres, K. Anderson, F. Askham, B. Sissom, and A. C. Urness, “Holographic data storage at 2+ tbit/in2,” Proc. SPIE 9386, 93860G (2015).

K. Anderson, M. Ayres, F. Askham, and B. Sissom, “Holographic data storage: science fiction or science fact,” Proc. SPIE 9201, 920102 (2014).
[Crossref]

Tada, Y.

T. Hoshizawa, K. Shimada, K. Fujita, and Y. Tada, “Practical angular-multiplexing holographic data storage system with 2 terabyte capacity and 1 gigabit transfer rate,” Jpn. J. Appl. Phys. 55(9S), 09SA06 (2016).
[Crossref]

Takashima, Y.

Tschudi, T.

C. Denz, G. Pauliat, G. Roosen, and T. Tschudi, “Volume hologram multiplexing using a deterministic phase encoding method,” Opt. Commun. 85(2-3), 171–176 (1991).
[Crossref]

Urness, A. C.

M. R. Ayres, K. Anderson, F. Askham, B. Sissom, and A. C. Urness, “Holographic data storage at 2+ tbit/in2,” Proc. SPIE 9386, 93860G (2015).

van Heerden, P. J.

Walkup, J. F.

Watanabe, K.

H. Mikami and K. Watanabe, “Microholographic optical data storage with spatial mode multiplexing,” Jpn. J. Appl. Phys. 52(9S2), 09LD02 (2013).
[Crossref]

Zhang, J.

J. Zhang, A. Čerkauskaitė, R. Drevinskas, A. Patel, M. Beresna, and P. G. Kazansky, “Eternal 5D data storage by ultrafast laser writing in glass,” Proc. SPIE 9736, 97360U (2016).

Appl. Opt. (1)

J. Opt. Soc. Am. B (1)

Jpn. J. Appl. Phys. (2)

H. Mikami and K. Watanabe, “Microholographic optical data storage with spatial mode multiplexing,” Jpn. J. Appl. Phys. 52(9S2), 09LD02 (2013).
[Crossref]

T. Hoshizawa, K. Shimada, K. Fujita, and Y. Tada, “Practical angular-multiplexing holographic data storage system with 2 terabyte capacity and 1 gigabit transfer rate,” Jpn. J. Appl. Phys. 55(9S), 09SA06 (2016).
[Crossref]

Opt. Commun. (1)

C. Denz, G. Pauliat, G. Roosen, and T. Tschudi, “Volume hologram multiplexing using a deterministic phase encoding method,” Opt. Commun. 85(2-3), 171–176 (1991).
[Crossref]

Opt. Express (1)

Opt. Lett. (2)

Proc. SPIE (4)

J. Kühn and P. Patapis, “Digital adaptive coronagraphy using slms: promising prospects of a novel approach, including high-contrast imaging of multiple stars systems,” Proc. SPIE 9912, 99122M (2016).
[Crossref]

J. Zhang, A. Čerkauskaitė, R. Drevinskas, A. Patel, M. Beresna, and P. G. Kazansky, “Eternal 5D data storage by ultrafast laser writing in glass,” Proc. SPIE 9736, 97360U (2016).

K. Anderson, M. Ayres, F. Askham, and B. Sissom, “Holographic data storage: science fiction or science fact,” Proc. SPIE 9201, 920102 (2014).
[Crossref]

M. R. Ayres, K. Anderson, F. Askham, B. Sissom, and A. C. Urness, “Holographic data storage at 2+ tbit/in2,” Proc. SPIE 9386, 93860G (2015).

Other (5)

“White Paper: Archival Disc Technology,” http://panasonic.net/avc/archiver/pdf/E_WhitePaper_ArchivalDisc_Ver100.pdf .

“HOLOEYE Photonics AG » LC 2012 Spatial Light Modulator (transmissive),” http://holoeye.com/spatial-light-modulators/lc-2012-spatial-light-modulator/ .

A. E. Siegman, “Lasers,” in Lasers (University Science Books, 1986).

J. W. Goodman, “Introduction to Fourier Optics,” in Introduction to Fourier Optics, 3rd ed. (Roberts & Company Publishers, 2005), pp. 107–108.

K. Tian, “Three dimensional (3D) optical information processing,” Thesis, Massachusetts Institute of Technology (2006).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Experimental setup for evaluating the crosstalk of single holograms.
Fig. 2
Fig. 2 Beam profiles for (a) the Gaussian reference beam and (b) the HG 1,0 reference beam at the location of the recording material.
Fig. 3
Fig. 3 Images of the (a) original object recorded; (b) readout by an HG 0,0 beam of a hologram written with a HG 0,0 beam; (c) readout by an HG 1,0 beam of a hologram written with an HG 0,0 beam; (d) readout by an HG 0,0 beam of a hologram written with an HG 1,0 beam; (e) readout by an HG 1,0 beam of a hologram written with an HG 1,0 beam.
Fig. 4
Fig. 4 Reconstructed images from HG mode multiplexing. (a) Image of the number ‘0’ reconstructed with the HG 0,0 beam, crosstalk of 2.58%. (b) Image of the number ‘1’ reconstructed with the HG 1,0 beam, crosstalk of 1.25%.
Fig. 5
Fig. 5 Experimental setup for cavity enhanced recording with HG cavity eigenmodes.
Fig. 6
Fig. 6 Data and fitting curves for the best data set including a histogram of the write rate enhancements using a HG 1,0 reference beam. The non-cavity and cavity diffraction efficiency data in the curves have a time constants of 1.06x105 sec., and 0.909x105 sec., which yield a 1.17 enhancement in write data rate for the best trial pair. The inset shows a histogram of write rate enhancements for the five trial pairs.
Fig. 7
Fig. 7 Pseudo-phase conjugate reconstruction of image recorded (a) at 0° with HG 0,0, (b) at 0° with HG 1,0, (c) at 0.6° with HG 1,0, (d) at 0.6° with HG 0,0. ~10% Cross talk is visible in the reconstructions, and all holograms were written with an average enhancement of GF = 1.20.
Fig. 8
Fig. 8 Maximum mode size (units of Gaussian beam 1/e field radius) as a function of the number of modes used, and storage density enhancement as a function of number of modes used.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

D spot = 2λf w π ,
V( t )= P ref ( 1b η 1 ( t ) ) R 2 η 1 ( t )α,
α= V max P ref R 2 η max ( 1b η max ) .
V( t )= V max η max ( 1b η max ) ( 1b η 1 ( t ) ) η 1 ( t ).
η 1 ( t )= 1b 2 ( 1 1 4 η max ( 1b η max )V( t ) V max ( 1b ) 2 ).
η 1 ( t )= sin 2 ( A( 1 e t τ ) ).
Storage Density mode# mode# = mode# .

Metrics