Abstract

We demonstrate that Digital Holographic Microscopy can be used for accurate 3D tracking and sizing of a colloidal probe trapped in a diamond anvil cell (DAC). Polystyrene beads were optically trapped in water up to Gigapascal pressures while simultaneously recording in-line holograms at 1 KHz frame rate. Using Lorenz-Mie scattering theory to fit interference patterns, we detected a 10% shrinking in the bead’s radius due to the high applied pressure. Accurate bead sizing is crucial for obtaining reliable viscosity measurements and provides a convenient optical tool for the determination of the bulk modulus of probe material. Our technique may provide a new method for pressure measurements inside a DAC.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Digital holographic tracking of microprobes for multipoint viscosity measurements

G. Bolognesi, S. Bianchi, and R. Di Leonardo
Opt. Express 19(20) 19245-19254 (2011)

Microscopic flow measurements with optically trapped microprobes

Boaz A. Nemet and Mark Cronin-Golomb
Opt. Lett. 27(15) 1357-1359 (2002)

Recent advances in holographic 3D particle tracking

Pasquale Memmolo, Lisa Miccio, Melania Paturzo, Giuseppe Di Caprio, Giuseppe Coppola, Paolo A. Netti, and Pietro Ferraro
Adv. Opt. Photon. 7(4) 713-755 (2015)

References

  • View by:
  • |
  • |
  • |

  1. S. H. Lee, Y. Roichman, G. R. Yi, S. H. Kim, S. M. Yang, A. van Blaaderen, P. van Oostrum, and D. G. Grier, “Characterizing and tracking single colloidal particles with video holographic microscopy,” Opt. Express 15, 18275–18282 (2007).
    [Crossref] [PubMed]
  2. G. Bolognesi, S. Bianchi, and R. Di Leonardo, “Digital holographic tracking of microprobes for multipoint viscosity measurements,” Opt. Express 19, 19245–19254 (2011).
    [Crossref] [PubMed]
  3. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288–290 (1986).
    [Crossref] [PubMed]
  4. J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207, 1–6 (2002).
    [Crossref]
  5. G. M. Gibson, R. W. Bowman, A. Linnenberger, M. Dienerowitz, D. B. Phillips, D. M. Carberry, M. J. Miles, and M. J. Padgett, “A compact holographic optical tweezers instrument,” Rev. Sci. Instrum. 83, 113107 (2012).
    [Crossref] [PubMed]
  6. S. Keen, A. Yao, J. Leach, R. Di Leonardo, C. Saunter, G. Love, J. Cooperd, and M. Padgett, “Multipoint viscosity measurements in microfluidic channels using optical tweezers,” Lab Chip 9, 2059–2062 (2009).
    [Crossref] [PubMed]
  7. G. Pesce, G. Rusciano, and A. Sasso, “Blinking Optical Tweezers for microrheology measurements of weak elasticity complex fluids,” Opt. Express 18, 2116–2126 (2010).
    [Crossref] [PubMed]
  8. Q. L., T. Asavei, T. Lee, H. Rubinsztein-Dunlop, S. He, and I. I. Smalyukh, “Measurement of viscosity of lyotropic liquid crystals by means of rotating laser-trapped microparticles,” Opt. Express 19, 25134–25143 (2011).
    [Crossref]
  9. M. Pitzek, R. Stieger, G. Thalhammer, S. Bernet, and M. Ritsch-Marte, “Optical mirror trap with a large field of view,” Opt. Express 17, 19414–19423 (2009).
    [Crossref] [PubMed]
  10. S. Zwick, T. Haist, Y. Miyamoto, L. He, M. Warber, A. Hermerschmidt, and W. Osten, “Holographic twin traps,” J. Opt. A 11, 03011 (2009).
    [Crossref]
  11. A. Jayaraman, “Diamond anvil cell and high-pressure physical investigations,” Rev. Mod. Phys. 55, 65–108 (1983).
    [Crossref]
  12. R. W. Bowman, G. M. Gibson, M. J. Padgett, F. Saglimbeni, and R. Di Leonardo, “Optical trapping at gigapascal pressures,” Phys. Rev. Lett. 110, 095902 (2013).
    [Crossref] [PubMed]
  13. R. W. Bowman, F. Saglimbeni, G. M. Gibson, R. Di Leonardo, and M. J. Padgett, “Optical tweezing at extremes,” in Optical Trapping and Optical Micromanipulation X, Proc. SPIE8810, 881009, K. Dholakia and G. C. Spalding, eds. (SPIE, 2013).
    [Crossref]
  14. R. R. Brau, J. M. Ferrer, H. Lee, C. E. Castro, B. K. Tam, P. B. Tarsa, P. Matsudaira, M. C. Boyce, R. D. Kamm, and M. J. Lang, “Passive and active microrheology with optical tweezers,” J. Opt. A 9, S103–S112 (2007).
    [Crossref]
  15. F. J. Martínez Boza and C. Gallegos, Rheology-Volume I (EOLSS Publications, 2010).
  16. H. W. Moyses, B. J. Krishnatreya, and D. G. Grier, “Robustness of Lorenz-Mie microscopy against defects in illumination,” Opt. Express 21, 5968–5973 (2013).
    [Crossref] [PubMed]
  17. C. Bohren and D. Huffman, Absorption and Scattering of Light by Small Particles (Wiley Interscience, 1983).
  18. A. Dewaele, J. H. Eggert, P. Loubeyre, and R. Le Toullec, “Measurement of refractive index and equation of state in dense He, H2, H2O, and Ne under high pressure in a diamond anvil cell,” Phys. Rev. B 67, 094112 (2003).
    [Crossref]
  19. F. Saglimbeni, S. Bianchi, G. Bolognesi, G. Paradossi, and R. Di Leonardo, “Optical characterization of an individual polymer-shelled microbubble structure via digital holography,” Soft Matter 8, 8822–8825 (2012).
    [Crossref]
  20. S. Bianchi and R. Di Leonardo, “Real-time optical micro-manipulation using optimized holograms generated on the GPU,” Comp. Phys. Comm. 181, 1444–1448 (2010).
    [Crossref]
  21. B. M. Hanser, M. G. L. Gustafsson, D. A. Agard, and J. W. Sedat, “Phase-retrieved pupil functions in wide-field fluorescence microscopy,” J. Microsc. 216, 32–48 (2004).
    [Crossref] [PubMed]
  22. P. de Groot and X. Colonna de Lega, “Interpreting interferometric height measurements using the instrument transfer function,” in Fringe 2005: the 5th International Workshop on Automatic Processing of Fringe Patterns, W. Osten, ed. (Springer, 2006), pp. 30–37.
    [Crossref]
  23. R. A. Forman, G. J. Piermarini, J. D. Barnett, and S. Block, “Pressure measurement made by the utilization of ruby sharp-line luminescence,” Science 176, 284–285 (1972).
    [Crossref] [PubMed]
  24. A. D. Chijioke, W. J. Nellis, A. Soldatov, and I. F. Silvera, “The ruby pressure standard to 150 GPa,” J. Appl. Phys. 98, 114905 (2005).
  25. K. Berg-Sørensen and H. Flyvbjerg, “Power spectrum analysis for optical tweezers,” Rev. Sci. Instrum. 75, 594 (2004).
    [Crossref]
  26. E. H. Abramson, “Viscosity of water measured to pressures of 6 GPa and temperatures of 300°,” Phys. Rev. E 76, 051203 (2007).
    [Crossref]
  27. K. E. Bett and J. B. Cappi, “Effect of pressure on the viscosity of water,” Nature 207, 620–621 (1965).
    [Crossref]
  28. E. J. G. Peterman, F. Gittes, and C. F. Schmidt, “Laser-induced heating in optical traps,” Biophys J. 84, 1308–1316 (2003).
    [Crossref] [PubMed]
  29. http://webbook.nist.gov/chemistry/fluid/
  30. R. Kono, “The dynamic bulk viscosity of polystyrene and polymethyl methacrylate,” J. Phys. Soc. Jpn. 15, 718–725 (1960).
    [Crossref]
  31. P. H. Mott, J. R. Dorgan, and C. M. Roland, “The bulk modulus and Poisson’s ratio of “incompressible” materials,” J. Sound. Vib. 312, 572–575 (2008).
    [Crossref]
  32. T. Kenichi, “Bulk modulus of osmium: high-pressure powder x-ray diffraction experiments under quasihydrostatic conditions,” Phys. Rev. B 70, 012101 (2004).
    [Crossref]
  33. J. R. Hemley, P. M. Bell, and H. K. Mao, “Laser techniques in high-pressure geophysics,” Science 237, 605–612 (1987).
    [Crossref] [PubMed]

2013 (2)

R. W. Bowman, G. M. Gibson, M. J. Padgett, F. Saglimbeni, and R. Di Leonardo, “Optical trapping at gigapascal pressures,” Phys. Rev. Lett. 110, 095902 (2013).
[Crossref] [PubMed]

H. W. Moyses, B. J. Krishnatreya, and D. G. Grier, “Robustness of Lorenz-Mie microscopy against defects in illumination,” Opt. Express 21, 5968–5973 (2013).
[Crossref] [PubMed]

2012 (2)

G. M. Gibson, R. W. Bowman, A. Linnenberger, M. Dienerowitz, D. B. Phillips, D. M. Carberry, M. J. Miles, and M. J. Padgett, “A compact holographic optical tweezers instrument,” Rev. Sci. Instrum. 83, 113107 (2012).
[Crossref] [PubMed]

F. Saglimbeni, S. Bianchi, G. Bolognesi, G. Paradossi, and R. Di Leonardo, “Optical characterization of an individual polymer-shelled microbubble structure via digital holography,” Soft Matter 8, 8822–8825 (2012).
[Crossref]

2011 (2)

2010 (2)

S. Bianchi and R. Di Leonardo, “Real-time optical micro-manipulation using optimized holograms generated on the GPU,” Comp. Phys. Comm. 181, 1444–1448 (2010).
[Crossref]

G. Pesce, G. Rusciano, and A. Sasso, “Blinking Optical Tweezers for microrheology measurements of weak elasticity complex fluids,” Opt. Express 18, 2116–2126 (2010).
[Crossref] [PubMed]

2009 (3)

S. Keen, A. Yao, J. Leach, R. Di Leonardo, C. Saunter, G. Love, J. Cooperd, and M. Padgett, “Multipoint viscosity measurements in microfluidic channels using optical tweezers,” Lab Chip 9, 2059–2062 (2009).
[Crossref] [PubMed]

M. Pitzek, R. Stieger, G. Thalhammer, S. Bernet, and M. Ritsch-Marte, “Optical mirror trap with a large field of view,” Opt. Express 17, 19414–19423 (2009).
[Crossref] [PubMed]

S. Zwick, T. Haist, Y. Miyamoto, L. He, M. Warber, A. Hermerschmidt, and W. Osten, “Holographic twin traps,” J. Opt. A 11, 03011 (2009).
[Crossref]

2008 (1)

P. H. Mott, J. R. Dorgan, and C. M. Roland, “The bulk modulus and Poisson’s ratio of “incompressible” materials,” J. Sound. Vib. 312, 572–575 (2008).
[Crossref]

2007 (3)

E. H. Abramson, “Viscosity of water measured to pressures of 6 GPa and temperatures of 300°,” Phys. Rev. E 76, 051203 (2007).
[Crossref]

S. H. Lee, Y. Roichman, G. R. Yi, S. H. Kim, S. M. Yang, A. van Blaaderen, P. van Oostrum, and D. G. Grier, “Characterizing and tracking single colloidal particles with video holographic microscopy,” Opt. Express 15, 18275–18282 (2007).
[Crossref] [PubMed]

R. R. Brau, J. M. Ferrer, H. Lee, C. E. Castro, B. K. Tam, P. B. Tarsa, P. Matsudaira, M. C. Boyce, R. D. Kamm, and M. J. Lang, “Passive and active microrheology with optical tweezers,” J. Opt. A 9, S103–S112 (2007).
[Crossref]

2005 (1)

A. D. Chijioke, W. J. Nellis, A. Soldatov, and I. F. Silvera, “The ruby pressure standard to 150 GPa,” J. Appl. Phys. 98, 114905 (2005).

2004 (3)

K. Berg-Sørensen and H. Flyvbjerg, “Power spectrum analysis for optical tweezers,” Rev. Sci. Instrum. 75, 594 (2004).
[Crossref]

T. Kenichi, “Bulk modulus of osmium: high-pressure powder x-ray diffraction experiments under quasihydrostatic conditions,” Phys. Rev. B 70, 012101 (2004).
[Crossref]

B. M. Hanser, M. G. L. Gustafsson, D. A. Agard, and J. W. Sedat, “Phase-retrieved pupil functions in wide-field fluorescence microscopy,” J. Microsc. 216, 32–48 (2004).
[Crossref] [PubMed]

2003 (2)

A. Dewaele, J. H. Eggert, P. Loubeyre, and R. Le Toullec, “Measurement of refractive index and equation of state in dense He, H2, H2O, and Ne under high pressure in a diamond anvil cell,” Phys. Rev. B 67, 094112 (2003).
[Crossref]

E. J. G. Peterman, F. Gittes, and C. F. Schmidt, “Laser-induced heating in optical traps,” Biophys J. 84, 1308–1316 (2003).
[Crossref] [PubMed]

2002 (1)

J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207, 1–6 (2002).
[Crossref]

1987 (1)

J. R. Hemley, P. M. Bell, and H. K. Mao, “Laser techniques in high-pressure geophysics,” Science 237, 605–612 (1987).
[Crossref] [PubMed]

1986 (1)

1983 (1)

A. Jayaraman, “Diamond anvil cell and high-pressure physical investigations,” Rev. Mod. Phys. 55, 65–108 (1983).
[Crossref]

1972 (1)

R. A. Forman, G. J. Piermarini, J. D. Barnett, and S. Block, “Pressure measurement made by the utilization of ruby sharp-line luminescence,” Science 176, 284–285 (1972).
[Crossref] [PubMed]

1965 (1)

K. E. Bett and J. B. Cappi, “Effect of pressure on the viscosity of water,” Nature 207, 620–621 (1965).
[Crossref]

1960 (1)

R. Kono, “The dynamic bulk viscosity of polystyrene and polymethyl methacrylate,” J. Phys. Soc. Jpn. 15, 718–725 (1960).
[Crossref]

Abramson, E. H.

E. H. Abramson, “Viscosity of water measured to pressures of 6 GPa and temperatures of 300°,” Phys. Rev. E 76, 051203 (2007).
[Crossref]

Agard, D. A.

B. M. Hanser, M. G. L. Gustafsson, D. A. Agard, and J. W. Sedat, “Phase-retrieved pupil functions in wide-field fluorescence microscopy,” J. Microsc. 216, 32–48 (2004).
[Crossref] [PubMed]

Asavei, T.

Ashkin, A.

Barnett, J. D.

R. A. Forman, G. J. Piermarini, J. D. Barnett, and S. Block, “Pressure measurement made by the utilization of ruby sharp-line luminescence,” Science 176, 284–285 (1972).
[Crossref] [PubMed]

Bell, P. M.

J. R. Hemley, P. M. Bell, and H. K. Mao, “Laser techniques in high-pressure geophysics,” Science 237, 605–612 (1987).
[Crossref] [PubMed]

Berg-Sørensen, K.

K. Berg-Sørensen and H. Flyvbjerg, “Power spectrum analysis for optical tweezers,” Rev. Sci. Instrum. 75, 594 (2004).
[Crossref]

Bernet, S.

Bett, K. E.

K. E. Bett and J. B. Cappi, “Effect of pressure on the viscosity of water,” Nature 207, 620–621 (1965).
[Crossref]

Bianchi, S.

F. Saglimbeni, S. Bianchi, G. Bolognesi, G. Paradossi, and R. Di Leonardo, “Optical characterization of an individual polymer-shelled microbubble structure via digital holography,” Soft Matter 8, 8822–8825 (2012).
[Crossref]

G. Bolognesi, S. Bianchi, and R. Di Leonardo, “Digital holographic tracking of microprobes for multipoint viscosity measurements,” Opt. Express 19, 19245–19254 (2011).
[Crossref] [PubMed]

S. Bianchi and R. Di Leonardo, “Real-time optical micro-manipulation using optimized holograms generated on the GPU,” Comp. Phys. Comm. 181, 1444–1448 (2010).
[Crossref]

Bjorkholm, J. E.

Block, S.

R. A. Forman, G. J. Piermarini, J. D. Barnett, and S. Block, “Pressure measurement made by the utilization of ruby sharp-line luminescence,” Science 176, 284–285 (1972).
[Crossref] [PubMed]

Bohren, C.

C. Bohren and D. Huffman, Absorption and Scattering of Light by Small Particles (Wiley Interscience, 1983).

Bolognesi, G.

F. Saglimbeni, S. Bianchi, G. Bolognesi, G. Paradossi, and R. Di Leonardo, “Optical characterization of an individual polymer-shelled microbubble structure via digital holography,” Soft Matter 8, 8822–8825 (2012).
[Crossref]

G. Bolognesi, S. Bianchi, and R. Di Leonardo, “Digital holographic tracking of microprobes for multipoint viscosity measurements,” Opt. Express 19, 19245–19254 (2011).
[Crossref] [PubMed]

Bowman, R. W.

R. W. Bowman, G. M. Gibson, M. J. Padgett, F. Saglimbeni, and R. Di Leonardo, “Optical trapping at gigapascal pressures,” Phys. Rev. Lett. 110, 095902 (2013).
[Crossref] [PubMed]

G. M. Gibson, R. W. Bowman, A. Linnenberger, M. Dienerowitz, D. B. Phillips, D. M. Carberry, M. J. Miles, and M. J. Padgett, “A compact holographic optical tweezers instrument,” Rev. Sci. Instrum. 83, 113107 (2012).
[Crossref] [PubMed]

R. W. Bowman, F. Saglimbeni, G. M. Gibson, R. Di Leonardo, and M. J. Padgett, “Optical tweezing at extremes,” in Optical Trapping and Optical Micromanipulation X, Proc. SPIE8810, 881009, K. Dholakia and G. C. Spalding, eds. (SPIE, 2013).
[Crossref]

Boyce, M. C.

R. R. Brau, J. M. Ferrer, H. Lee, C. E. Castro, B. K. Tam, P. B. Tarsa, P. Matsudaira, M. C. Boyce, R. D. Kamm, and M. J. Lang, “Passive and active microrheology with optical tweezers,” J. Opt. A 9, S103–S112 (2007).
[Crossref]

Brau, R. R.

R. R. Brau, J. M. Ferrer, H. Lee, C. E. Castro, B. K. Tam, P. B. Tarsa, P. Matsudaira, M. C. Boyce, R. D. Kamm, and M. J. Lang, “Passive and active microrheology with optical tweezers,” J. Opt. A 9, S103–S112 (2007).
[Crossref]

Cappi, J. B.

K. E. Bett and J. B. Cappi, “Effect of pressure on the viscosity of water,” Nature 207, 620–621 (1965).
[Crossref]

Carberry, D. M.

G. M. Gibson, R. W. Bowman, A. Linnenberger, M. Dienerowitz, D. B. Phillips, D. M. Carberry, M. J. Miles, and M. J. Padgett, “A compact holographic optical tweezers instrument,” Rev. Sci. Instrum. 83, 113107 (2012).
[Crossref] [PubMed]

Castro, C. E.

R. R. Brau, J. M. Ferrer, H. Lee, C. E. Castro, B. K. Tam, P. B. Tarsa, P. Matsudaira, M. C. Boyce, R. D. Kamm, and M. J. Lang, “Passive and active microrheology with optical tweezers,” J. Opt. A 9, S103–S112 (2007).
[Crossref]

Chijioke, A. D.

A. D. Chijioke, W. J. Nellis, A. Soldatov, and I. F. Silvera, “The ruby pressure standard to 150 GPa,” J. Appl. Phys. 98, 114905 (2005).

Chu, S.

Colonna de Lega, X.

P. de Groot and X. Colonna de Lega, “Interpreting interferometric height measurements using the instrument transfer function,” in Fringe 2005: the 5th International Workshop on Automatic Processing of Fringe Patterns, W. Osten, ed. (Springer, 2006), pp. 30–37.
[Crossref]

Cooperd, J.

S. Keen, A. Yao, J. Leach, R. Di Leonardo, C. Saunter, G. Love, J. Cooperd, and M. Padgett, “Multipoint viscosity measurements in microfluidic channels using optical tweezers,” Lab Chip 9, 2059–2062 (2009).
[Crossref] [PubMed]

Curtis, J. E.

J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207, 1–6 (2002).
[Crossref]

de Groot, P.

P. de Groot and X. Colonna de Lega, “Interpreting interferometric height measurements using the instrument transfer function,” in Fringe 2005: the 5th International Workshop on Automatic Processing of Fringe Patterns, W. Osten, ed. (Springer, 2006), pp. 30–37.
[Crossref]

Dewaele, A.

A. Dewaele, J. H. Eggert, P. Loubeyre, and R. Le Toullec, “Measurement of refractive index and equation of state in dense He, H2, H2O, and Ne under high pressure in a diamond anvil cell,” Phys. Rev. B 67, 094112 (2003).
[Crossref]

Di Leonardo, R.

R. W. Bowman, G. M. Gibson, M. J. Padgett, F. Saglimbeni, and R. Di Leonardo, “Optical trapping at gigapascal pressures,” Phys. Rev. Lett. 110, 095902 (2013).
[Crossref] [PubMed]

F. Saglimbeni, S. Bianchi, G. Bolognesi, G. Paradossi, and R. Di Leonardo, “Optical characterization of an individual polymer-shelled microbubble structure via digital holography,” Soft Matter 8, 8822–8825 (2012).
[Crossref]

G. Bolognesi, S. Bianchi, and R. Di Leonardo, “Digital holographic tracking of microprobes for multipoint viscosity measurements,” Opt. Express 19, 19245–19254 (2011).
[Crossref] [PubMed]

S. Bianchi and R. Di Leonardo, “Real-time optical micro-manipulation using optimized holograms generated on the GPU,” Comp. Phys. Comm. 181, 1444–1448 (2010).
[Crossref]

S. Keen, A. Yao, J. Leach, R. Di Leonardo, C. Saunter, G. Love, J. Cooperd, and M. Padgett, “Multipoint viscosity measurements in microfluidic channels using optical tweezers,” Lab Chip 9, 2059–2062 (2009).
[Crossref] [PubMed]

R. W. Bowman, F. Saglimbeni, G. M. Gibson, R. Di Leonardo, and M. J. Padgett, “Optical tweezing at extremes,” in Optical Trapping and Optical Micromanipulation X, Proc. SPIE8810, 881009, K. Dholakia and G. C. Spalding, eds. (SPIE, 2013).
[Crossref]

Dienerowitz, M.

G. M. Gibson, R. W. Bowman, A. Linnenberger, M. Dienerowitz, D. B. Phillips, D. M. Carberry, M. J. Miles, and M. J. Padgett, “A compact holographic optical tweezers instrument,” Rev. Sci. Instrum. 83, 113107 (2012).
[Crossref] [PubMed]

Dorgan, J. R.

P. H. Mott, J. R. Dorgan, and C. M. Roland, “The bulk modulus and Poisson’s ratio of “incompressible” materials,” J. Sound. Vib. 312, 572–575 (2008).
[Crossref]

Dziedzic, J. M.

Eggert, J. H.

A. Dewaele, J. H. Eggert, P. Loubeyre, and R. Le Toullec, “Measurement of refractive index and equation of state in dense He, H2, H2O, and Ne under high pressure in a diamond anvil cell,” Phys. Rev. B 67, 094112 (2003).
[Crossref]

Ferrer, J. M.

R. R. Brau, J. M. Ferrer, H. Lee, C. E. Castro, B. K. Tam, P. B. Tarsa, P. Matsudaira, M. C. Boyce, R. D. Kamm, and M. J. Lang, “Passive and active microrheology with optical tweezers,” J. Opt. A 9, S103–S112 (2007).
[Crossref]

Flyvbjerg, H.

K. Berg-Sørensen and H. Flyvbjerg, “Power spectrum analysis for optical tweezers,” Rev. Sci. Instrum. 75, 594 (2004).
[Crossref]

Forman, R. A.

R. A. Forman, G. J. Piermarini, J. D. Barnett, and S. Block, “Pressure measurement made by the utilization of ruby sharp-line luminescence,” Science 176, 284–285 (1972).
[Crossref] [PubMed]

Gallegos, C.

F. J. Martínez Boza and C. Gallegos, Rheology-Volume I (EOLSS Publications, 2010).

Gibson, G. M.

R. W. Bowman, G. M. Gibson, M. J. Padgett, F. Saglimbeni, and R. Di Leonardo, “Optical trapping at gigapascal pressures,” Phys. Rev. Lett. 110, 095902 (2013).
[Crossref] [PubMed]

G. M. Gibson, R. W. Bowman, A. Linnenberger, M. Dienerowitz, D. B. Phillips, D. M. Carberry, M. J. Miles, and M. J. Padgett, “A compact holographic optical tweezers instrument,” Rev. Sci. Instrum. 83, 113107 (2012).
[Crossref] [PubMed]

R. W. Bowman, F. Saglimbeni, G. M. Gibson, R. Di Leonardo, and M. J. Padgett, “Optical tweezing at extremes,” in Optical Trapping and Optical Micromanipulation X, Proc. SPIE8810, 881009, K. Dholakia and G. C. Spalding, eds. (SPIE, 2013).
[Crossref]

Gittes, F.

E. J. G. Peterman, F. Gittes, and C. F. Schmidt, “Laser-induced heating in optical traps,” Biophys J. 84, 1308–1316 (2003).
[Crossref] [PubMed]

Grier, D. G.

Gustafsson, M. G. L.

B. M. Hanser, M. G. L. Gustafsson, D. A. Agard, and J. W. Sedat, “Phase-retrieved pupil functions in wide-field fluorescence microscopy,” J. Microsc. 216, 32–48 (2004).
[Crossref] [PubMed]

Haist, T.

S. Zwick, T. Haist, Y. Miyamoto, L. He, M. Warber, A. Hermerschmidt, and W. Osten, “Holographic twin traps,” J. Opt. A 11, 03011 (2009).
[Crossref]

Hanser, B. M.

B. M. Hanser, M. G. L. Gustafsson, D. A. Agard, and J. W. Sedat, “Phase-retrieved pupil functions in wide-field fluorescence microscopy,” J. Microsc. 216, 32–48 (2004).
[Crossref] [PubMed]

He, L.

S. Zwick, T. Haist, Y. Miyamoto, L. He, M. Warber, A. Hermerschmidt, and W. Osten, “Holographic twin traps,” J. Opt. A 11, 03011 (2009).
[Crossref]

He, S.

Hemley, J. R.

J. R. Hemley, P. M. Bell, and H. K. Mao, “Laser techniques in high-pressure geophysics,” Science 237, 605–612 (1987).
[Crossref] [PubMed]

Hermerschmidt, A.

S. Zwick, T. Haist, Y. Miyamoto, L. He, M. Warber, A. Hermerschmidt, and W. Osten, “Holographic twin traps,” J. Opt. A 11, 03011 (2009).
[Crossref]

Huffman, D.

C. Bohren and D. Huffman, Absorption and Scattering of Light by Small Particles (Wiley Interscience, 1983).

Jayaraman, A.

A. Jayaraman, “Diamond anvil cell and high-pressure physical investigations,” Rev. Mod. Phys. 55, 65–108 (1983).
[Crossref]

Kamm, R. D.

R. R. Brau, J. M. Ferrer, H. Lee, C. E. Castro, B. K. Tam, P. B. Tarsa, P. Matsudaira, M. C. Boyce, R. D. Kamm, and M. J. Lang, “Passive and active microrheology with optical tweezers,” J. Opt. A 9, S103–S112 (2007).
[Crossref]

Keen, S.

S. Keen, A. Yao, J. Leach, R. Di Leonardo, C. Saunter, G. Love, J. Cooperd, and M. Padgett, “Multipoint viscosity measurements in microfluidic channels using optical tweezers,” Lab Chip 9, 2059–2062 (2009).
[Crossref] [PubMed]

Kenichi, T.

T. Kenichi, “Bulk modulus of osmium: high-pressure powder x-ray diffraction experiments under quasihydrostatic conditions,” Phys. Rev. B 70, 012101 (2004).
[Crossref]

Kim, S. H.

Kono, R.

R. Kono, “The dynamic bulk viscosity of polystyrene and polymethyl methacrylate,” J. Phys. Soc. Jpn. 15, 718–725 (1960).
[Crossref]

Koss, B. A.

J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207, 1–6 (2002).
[Crossref]

Krishnatreya, B. J.

L., Q.

Lang, M. J.

R. R. Brau, J. M. Ferrer, H. Lee, C. E. Castro, B. K. Tam, P. B. Tarsa, P. Matsudaira, M. C. Boyce, R. D. Kamm, and M. J. Lang, “Passive and active microrheology with optical tweezers,” J. Opt. A 9, S103–S112 (2007).
[Crossref]

Le Toullec, R.

A. Dewaele, J. H. Eggert, P. Loubeyre, and R. Le Toullec, “Measurement of refractive index and equation of state in dense He, H2, H2O, and Ne under high pressure in a diamond anvil cell,” Phys. Rev. B 67, 094112 (2003).
[Crossref]

Leach, J.

S. Keen, A. Yao, J. Leach, R. Di Leonardo, C. Saunter, G. Love, J. Cooperd, and M. Padgett, “Multipoint viscosity measurements in microfluidic channels using optical tweezers,” Lab Chip 9, 2059–2062 (2009).
[Crossref] [PubMed]

Lee, H.

R. R. Brau, J. M. Ferrer, H. Lee, C. E. Castro, B. K. Tam, P. B. Tarsa, P. Matsudaira, M. C. Boyce, R. D. Kamm, and M. J. Lang, “Passive and active microrheology with optical tweezers,” J. Opt. A 9, S103–S112 (2007).
[Crossref]

Lee, S. H.

Lee, T.

Linnenberger, A.

G. M. Gibson, R. W. Bowman, A. Linnenberger, M. Dienerowitz, D. B. Phillips, D. M. Carberry, M. J. Miles, and M. J. Padgett, “A compact holographic optical tweezers instrument,” Rev. Sci. Instrum. 83, 113107 (2012).
[Crossref] [PubMed]

Loubeyre, P.

A. Dewaele, J. H. Eggert, P. Loubeyre, and R. Le Toullec, “Measurement of refractive index and equation of state in dense He, H2, H2O, and Ne under high pressure in a diamond anvil cell,” Phys. Rev. B 67, 094112 (2003).
[Crossref]

Love, G.

S. Keen, A. Yao, J. Leach, R. Di Leonardo, C. Saunter, G. Love, J. Cooperd, and M. Padgett, “Multipoint viscosity measurements in microfluidic channels using optical tweezers,” Lab Chip 9, 2059–2062 (2009).
[Crossref] [PubMed]

Mao, H. K.

J. R. Hemley, P. M. Bell, and H. K. Mao, “Laser techniques in high-pressure geophysics,” Science 237, 605–612 (1987).
[Crossref] [PubMed]

Martínez Boza, F. J.

F. J. Martínez Boza and C. Gallegos, Rheology-Volume I (EOLSS Publications, 2010).

Matsudaira, P.

R. R. Brau, J. M. Ferrer, H. Lee, C. E. Castro, B. K. Tam, P. B. Tarsa, P. Matsudaira, M. C. Boyce, R. D. Kamm, and M. J. Lang, “Passive and active microrheology with optical tweezers,” J. Opt. A 9, S103–S112 (2007).
[Crossref]

Miles, M. J.

G. M. Gibson, R. W. Bowman, A. Linnenberger, M. Dienerowitz, D. B. Phillips, D. M. Carberry, M. J. Miles, and M. J. Padgett, “A compact holographic optical tweezers instrument,” Rev. Sci. Instrum. 83, 113107 (2012).
[Crossref] [PubMed]

Miyamoto, Y.

S. Zwick, T. Haist, Y. Miyamoto, L. He, M. Warber, A. Hermerschmidt, and W. Osten, “Holographic twin traps,” J. Opt. A 11, 03011 (2009).
[Crossref]

Mott, P. H.

P. H. Mott, J. R. Dorgan, and C. M. Roland, “The bulk modulus and Poisson’s ratio of “incompressible” materials,” J. Sound. Vib. 312, 572–575 (2008).
[Crossref]

Moyses, H. W.

Nellis, W. J.

A. D. Chijioke, W. J. Nellis, A. Soldatov, and I. F. Silvera, “The ruby pressure standard to 150 GPa,” J. Appl. Phys. 98, 114905 (2005).

Osten, W.

S. Zwick, T. Haist, Y. Miyamoto, L. He, M. Warber, A. Hermerschmidt, and W. Osten, “Holographic twin traps,” J. Opt. A 11, 03011 (2009).
[Crossref]

Padgett, M.

S. Keen, A. Yao, J. Leach, R. Di Leonardo, C. Saunter, G. Love, J. Cooperd, and M. Padgett, “Multipoint viscosity measurements in microfluidic channels using optical tweezers,” Lab Chip 9, 2059–2062 (2009).
[Crossref] [PubMed]

Padgett, M. J.

R. W. Bowman, G. M. Gibson, M. J. Padgett, F. Saglimbeni, and R. Di Leonardo, “Optical trapping at gigapascal pressures,” Phys. Rev. Lett. 110, 095902 (2013).
[Crossref] [PubMed]

G. M. Gibson, R. W. Bowman, A. Linnenberger, M. Dienerowitz, D. B. Phillips, D. M. Carberry, M. J. Miles, and M. J. Padgett, “A compact holographic optical tweezers instrument,” Rev. Sci. Instrum. 83, 113107 (2012).
[Crossref] [PubMed]

R. W. Bowman, F. Saglimbeni, G. M. Gibson, R. Di Leonardo, and M. J. Padgett, “Optical tweezing at extremes,” in Optical Trapping and Optical Micromanipulation X, Proc. SPIE8810, 881009, K. Dholakia and G. C. Spalding, eds. (SPIE, 2013).
[Crossref]

Paradossi, G.

F. Saglimbeni, S. Bianchi, G. Bolognesi, G. Paradossi, and R. Di Leonardo, “Optical characterization of an individual polymer-shelled microbubble structure via digital holography,” Soft Matter 8, 8822–8825 (2012).
[Crossref]

Pesce, G.

Peterman, E. J. G.

E. J. G. Peterman, F. Gittes, and C. F. Schmidt, “Laser-induced heating in optical traps,” Biophys J. 84, 1308–1316 (2003).
[Crossref] [PubMed]

Phillips, D. B.

G. M. Gibson, R. W. Bowman, A. Linnenberger, M. Dienerowitz, D. B. Phillips, D. M. Carberry, M. J. Miles, and M. J. Padgett, “A compact holographic optical tweezers instrument,” Rev. Sci. Instrum. 83, 113107 (2012).
[Crossref] [PubMed]

Piermarini, G. J.

R. A. Forman, G. J. Piermarini, J. D. Barnett, and S. Block, “Pressure measurement made by the utilization of ruby sharp-line luminescence,” Science 176, 284–285 (1972).
[Crossref] [PubMed]

Pitzek, M.

Ritsch-Marte, M.

Roichman, Y.

Roland, C. M.

P. H. Mott, J. R. Dorgan, and C. M. Roland, “The bulk modulus and Poisson’s ratio of “incompressible” materials,” J. Sound. Vib. 312, 572–575 (2008).
[Crossref]

Rubinsztein-Dunlop, H.

Rusciano, G.

Saglimbeni, F.

R. W. Bowman, G. M. Gibson, M. J. Padgett, F. Saglimbeni, and R. Di Leonardo, “Optical trapping at gigapascal pressures,” Phys. Rev. Lett. 110, 095902 (2013).
[Crossref] [PubMed]

F. Saglimbeni, S. Bianchi, G. Bolognesi, G. Paradossi, and R. Di Leonardo, “Optical characterization of an individual polymer-shelled microbubble structure via digital holography,” Soft Matter 8, 8822–8825 (2012).
[Crossref]

R. W. Bowman, F. Saglimbeni, G. M. Gibson, R. Di Leonardo, and M. J. Padgett, “Optical tweezing at extremes,” in Optical Trapping and Optical Micromanipulation X, Proc. SPIE8810, 881009, K. Dholakia and G. C. Spalding, eds. (SPIE, 2013).
[Crossref]

Sasso, A.

Saunter, C.

S. Keen, A. Yao, J. Leach, R. Di Leonardo, C. Saunter, G. Love, J. Cooperd, and M. Padgett, “Multipoint viscosity measurements in microfluidic channels using optical tweezers,” Lab Chip 9, 2059–2062 (2009).
[Crossref] [PubMed]

Schmidt, C. F.

E. J. G. Peterman, F. Gittes, and C. F. Schmidt, “Laser-induced heating in optical traps,” Biophys J. 84, 1308–1316 (2003).
[Crossref] [PubMed]

Sedat, J. W.

B. M. Hanser, M. G. L. Gustafsson, D. A. Agard, and J. W. Sedat, “Phase-retrieved pupil functions in wide-field fluorescence microscopy,” J. Microsc. 216, 32–48 (2004).
[Crossref] [PubMed]

Silvera, I. F.

A. D. Chijioke, W. J. Nellis, A. Soldatov, and I. F. Silvera, “The ruby pressure standard to 150 GPa,” J. Appl. Phys. 98, 114905 (2005).

Smalyukh, I. I.

Soldatov, A.

A. D. Chijioke, W. J. Nellis, A. Soldatov, and I. F. Silvera, “The ruby pressure standard to 150 GPa,” J. Appl. Phys. 98, 114905 (2005).

Stieger, R.

Tam, B. K.

R. R. Brau, J. M. Ferrer, H. Lee, C. E. Castro, B. K. Tam, P. B. Tarsa, P. Matsudaira, M. C. Boyce, R. D. Kamm, and M. J. Lang, “Passive and active microrheology with optical tweezers,” J. Opt. A 9, S103–S112 (2007).
[Crossref]

Tarsa, P. B.

R. R. Brau, J. M. Ferrer, H. Lee, C. E. Castro, B. K. Tam, P. B. Tarsa, P. Matsudaira, M. C. Boyce, R. D. Kamm, and M. J. Lang, “Passive and active microrheology with optical tweezers,” J. Opt. A 9, S103–S112 (2007).
[Crossref]

Thalhammer, G.

van Blaaderen, A.

van Oostrum, P.

Warber, M.

S. Zwick, T. Haist, Y. Miyamoto, L. He, M. Warber, A. Hermerschmidt, and W. Osten, “Holographic twin traps,” J. Opt. A 11, 03011 (2009).
[Crossref]

Yang, S. M.

Yao, A.

S. Keen, A. Yao, J. Leach, R. Di Leonardo, C. Saunter, G. Love, J. Cooperd, and M. Padgett, “Multipoint viscosity measurements in microfluidic channels using optical tweezers,” Lab Chip 9, 2059–2062 (2009).
[Crossref] [PubMed]

Yi, G. R.

Zwick, S.

S. Zwick, T. Haist, Y. Miyamoto, L. He, M. Warber, A. Hermerschmidt, and W. Osten, “Holographic twin traps,” J. Opt. A 11, 03011 (2009).
[Crossref]

Biophys J. (1)

E. J. G. Peterman, F. Gittes, and C. F. Schmidt, “Laser-induced heating in optical traps,” Biophys J. 84, 1308–1316 (2003).
[Crossref] [PubMed]

Comp. Phys. Comm. (1)

S. Bianchi and R. Di Leonardo, “Real-time optical micro-manipulation using optimized holograms generated on the GPU,” Comp. Phys. Comm. 181, 1444–1448 (2010).
[Crossref]

J. Appl. Phys. (1)

A. D. Chijioke, W. J. Nellis, A. Soldatov, and I. F. Silvera, “The ruby pressure standard to 150 GPa,” J. Appl. Phys. 98, 114905 (2005).

J. Microsc. (1)

B. M. Hanser, M. G. L. Gustafsson, D. A. Agard, and J. W. Sedat, “Phase-retrieved pupil functions in wide-field fluorescence microscopy,” J. Microsc. 216, 32–48 (2004).
[Crossref] [PubMed]

J. Opt. A (2)

S. Zwick, T. Haist, Y. Miyamoto, L. He, M. Warber, A. Hermerschmidt, and W. Osten, “Holographic twin traps,” J. Opt. A 11, 03011 (2009).
[Crossref]

R. R. Brau, J. M. Ferrer, H. Lee, C. E. Castro, B. K. Tam, P. B. Tarsa, P. Matsudaira, M. C. Boyce, R. D. Kamm, and M. J. Lang, “Passive and active microrheology with optical tweezers,” J. Opt. A 9, S103–S112 (2007).
[Crossref]

J. Phys. Soc. Jpn. (1)

R. Kono, “The dynamic bulk viscosity of polystyrene and polymethyl methacrylate,” J. Phys. Soc. Jpn. 15, 718–725 (1960).
[Crossref]

J. Sound. Vib. (1)

P. H. Mott, J. R. Dorgan, and C. M. Roland, “The bulk modulus and Poisson’s ratio of “incompressible” materials,” J. Sound. Vib. 312, 572–575 (2008).
[Crossref]

Lab Chip (1)

S. Keen, A. Yao, J. Leach, R. Di Leonardo, C. Saunter, G. Love, J. Cooperd, and M. Padgett, “Multipoint viscosity measurements in microfluidic channels using optical tweezers,” Lab Chip 9, 2059–2062 (2009).
[Crossref] [PubMed]

Nature (1)

K. E. Bett and J. B. Cappi, “Effect of pressure on the viscosity of water,” Nature 207, 620–621 (1965).
[Crossref]

Opt. Commun. (1)

J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207, 1–6 (2002).
[Crossref]

Opt. Express (6)

Opt. Lett. (1)

Phys. Rev. B (2)

T. Kenichi, “Bulk modulus of osmium: high-pressure powder x-ray diffraction experiments under quasihydrostatic conditions,” Phys. Rev. B 70, 012101 (2004).
[Crossref]

A. Dewaele, J. H. Eggert, P. Loubeyre, and R. Le Toullec, “Measurement of refractive index and equation of state in dense He, H2, H2O, and Ne under high pressure in a diamond anvil cell,” Phys. Rev. B 67, 094112 (2003).
[Crossref]

Phys. Rev. E (1)

E. H. Abramson, “Viscosity of water measured to pressures of 6 GPa and temperatures of 300°,” Phys. Rev. E 76, 051203 (2007).
[Crossref]

Phys. Rev. Lett. (1)

R. W. Bowman, G. M. Gibson, M. J. Padgett, F. Saglimbeni, and R. Di Leonardo, “Optical trapping at gigapascal pressures,” Phys. Rev. Lett. 110, 095902 (2013).
[Crossref] [PubMed]

Rev. Mod. Phys. (1)

A. Jayaraman, “Diamond anvil cell and high-pressure physical investigations,” Rev. Mod. Phys. 55, 65–108 (1983).
[Crossref]

Rev. Sci. Instrum. (2)

G. M. Gibson, R. W. Bowman, A. Linnenberger, M. Dienerowitz, D. B. Phillips, D. M. Carberry, M. J. Miles, and M. J. Padgett, “A compact holographic optical tweezers instrument,” Rev. Sci. Instrum. 83, 113107 (2012).
[Crossref] [PubMed]

K. Berg-Sørensen and H. Flyvbjerg, “Power spectrum analysis for optical tweezers,” Rev. Sci. Instrum. 75, 594 (2004).
[Crossref]

Science (2)

R. A. Forman, G. J. Piermarini, J. D. Barnett, and S. Block, “Pressure measurement made by the utilization of ruby sharp-line luminescence,” Science 176, 284–285 (1972).
[Crossref] [PubMed]

J. R. Hemley, P. M. Bell, and H. K. Mao, “Laser techniques in high-pressure geophysics,” Science 237, 605–612 (1987).
[Crossref] [PubMed]

Soft Matter (1)

F. Saglimbeni, S. Bianchi, G. Bolognesi, G. Paradossi, and R. Di Leonardo, “Optical characterization of an individual polymer-shelled microbubble structure via digital holography,” Soft Matter 8, 8822–8825 (2012).
[Crossref]

Other (5)

P. de Groot and X. Colonna de Lega, “Interpreting interferometric height measurements using the instrument transfer function,” in Fringe 2005: the 5th International Workshop on Automatic Processing of Fringe Patterns, W. Osten, ed. (Springer, 2006), pp. 30–37.
[Crossref]

C. Bohren and D. Huffman, Absorption and Scattering of Light by Small Particles (Wiley Interscience, 1983).

http://webbook.nist.gov/chemistry/fluid/

R. W. Bowman, F. Saglimbeni, G. M. Gibson, R. Di Leonardo, and M. J. Padgett, “Optical tweezing at extremes,” in Optical Trapping and Optical Micromanipulation X, Proc. SPIE8810, 881009, K. Dholakia and G. C. Spalding, eds. (SPIE, 2013).
[Crossref]

F. J. Martínez Boza and C. Gallegos, Rheology-Volume I (EOLSS Publications, 2010).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1 (a) Schematic view of the optical setup. L1, L2, L3, L4, L5, L6, lenses; IRM infrared mirror; DM1, DM2, DM3 dichroic mirrors; M mirror. (b) Radial histogram (black line) of the experimentally recorded hologram (shown in the inset) with fit (red line). The red dashed line is obtained without taking into account the limited NA and the aberration due to the diamond window (see text). Black dashed line in the inset delimits the region where the hologram is fitted.
Fig. 2
Fig. 2 (a) Radial averages of experimental holograms at low (gray dots) and high (red dots) pressures. The corresponding fitting curves are plotted respectively by gray and red lines. (b) Water refractive index as function of pressure. Gray dots plot the values obtained from the holograms leaving nw as a fit parameter. The red line plots previously reported data [18].
Fig. 3
Fig. 3 (a) Water viscosity as a function of pressure. Open circles are obtained using DHM full fits of position and size (solid line is a guide to the eye). Gray circles are obtained using a constant bead size in fits. Squares are Abramson’s data [26], triangles are Bett and Cappi’s data [27], dotted lines are polynomial fits to Abramson’s data. (b) Polystyrene bead radius and bulk modulus (shown in the inset) as functions of pressure. Gray dots are obtained by leaving the water refractive index nw as a fitting parameter.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

I = | 1 + f ( r r p , a , n p , n w ) | 2 | E i | 2
exp [ i ( ( 2 π n dia λ ) 2 k x 2 k y 2 ( 2 π n air λ ) 2 k x 2 k y 2 ) L dia ]
PSD ( ω ) = μ k B T π 1 ω 2 + ( μ k ) 2
a ( P ) = a * + Δ a e C ( P P 0 ) / 3
K T ( P ) = V ( P V ) T = a ( P ) 3 ( a ( P ) P ) 1 = 1 C ( 1 + a * Δ a e ( P P 0 ) C / 3 )

Metrics