Abstract

In this paper, on-chip spherical-cap-shaped microresonators made from self-assembled UV-curable adhesive are proposed and demonstrated for high sensitivity temperature sensing. We observe the whispering-gallery mode resonances in these spherical-cap-shaped microresonators, and investigate the wavelength shifts of the resonance peaks as a function of both input power and temperature. The resulting devices with various diameters offer a high sensitivity of 0.14-0.22 nm/°C for temperature sensing.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Fabrication of ultraviolet-curable adhesive bottle-like microresonators by wetting and photocuring

Guoqiang Gu, Changlei Guo, Zhiping Cai, Huiying Xu, Lujian Chen, Hongyan Fu, Kaijun Che, Minghui Hong, Shufeng Sun, and Fengping Li
Appl. Opt. 53(32) 7819-7824 (2014)

On-chip high-sensitivity temperature sensor based on gain–loss coupled microresonators

Wenxiu Li, Hao Zhang, Jiaming Liu, Jian Lin, Xia Xue, Xiaofu Zhang, Xianfan Xu, Anping Huang, and Zhisong Xiao
J. Opt. Soc. Am. B 34(8) 1765-1770 (2017)

Dome-shaped whispering gallery mode laser for remote wall temperature sensing

Tindaro Ioppolo and Maurizio Manzo
Appl. Opt. 53(22) 5065-5069 (2014)

References

  • View by:
  • |
  • |
  • |

  1. J. Ward and O. Benson, “WGM microresonators: sensing, lasing and fundamental optics with microspheres,” Laser Photonics Rev. 5(4), 553–570 (2011).
    [Crossref]
  2. H. K. Hunt and A. M. Armani, “Label-free biological and chemical sensors,” Nanoscale 2(9), 1544–1559 (2010).
    [Crossref] [PubMed]
  3. K. H. Kim, G. Bahl, W. Lee, J. Liu, M. Tomes, X. D. Fan, and T. Carmon, “Cavity optomechanics on a microfluidic resonator with water and viscous liquids,” Light Sci. Appl. 2(11), e110 (2013).
    [Crossref]
  4. G. C. Righini, Y. Dumeige, P. Féron, M. Ferrari, G. Nunzi Conti, D. Ristic, and S. Soria, “Whispering gallery mode microresonators: fundamentals and applications,” Riv. Nuovo Cim. 34(7), 435–488 (2011).
  5. B. B. Li, Q. Y. Wang, Y. F. Xiao, X. F. Jiang, Y. Li, L. X. Xiao, and Q. H. Gong, “On chip, high-sensitivity thermal sensor based on high-Q polydimethylsiloxane-coated microresonator,” Appl. Phys. Lett. 96(25), 251109 (2010).
    [Crossref]
  6. B. B. Li, W. R. Clements, X. C. Yu, K. Shi, Q. Gong, and Y. F. Xiao, “Single nanoparticle detection using split-mode microcavity Raman lasers,” Proc. Natl. Acad. Sci. U.S.A. 111(41), 14657–14662 (2014).
    [Crossref] [PubMed]
  7. M. S. Nawrocka, T. Liu, X. Wang, and R. R. Panepucci, “Tunable silicon microring resonator with wide free spectral range,” Appl. Phys. Lett. 89(7), 071110 (2006).
    [Crossref]
  8. Y. Z. Yan, C. L. Zou, S. B. Yan, F. W. Sun, Z. Ji, J. Liu, Y. G. Zhang, L. Wang, C. Y. Xue, W. D. Zhang, Z. F. Han, and J. J. Xiong, “Packaged silica microsphere-taper coupling system for robust thermal sensing application,” Opt. Express 19(7), 5753–5759 (2011).
    [Crossref] [PubMed]
  9. Q. L. Ma, T. Rossmann, and Z. X. Guo, “Whispering-gallery mode silica microsensors for cryogenic to room temperature measurement,” Meas. Sci. Technol. 21(2), 025310 (2010).
    [Crossref]
  10. L. He, Y. F. Xiao, J. Zhu, S. K. Ozdemir, and L. Yang, “Oscillatory thermal dynamics in high-Q PDMS-coated silica toroidal microresonators,” Opt. Express 17(12), 9571–9581 (2009).
    [Crossref] [PubMed]
  11. C. H. Dong, L. He, Y. F. Xiao, V. R. Gaddam, S. K. Ozdemir, Z. F. Han, G. C. Guo, and L. Yang, “Fabrication of high-Q polydimethylsiloxane optical microspheres for thermal sensing,” Appl. Phys. Lett. 94(23), 231119 (2009).
    [Crossref]
  12. G. Gu, C. Guo, Z. Cai, H. Xu, L. Chen, H. Fu, K. Che, M. Hong, S. Sun, and F. Li, “Fabrication of ultraviolet-curable adhesive bottle-like microresonators by wetting and photocuring,” Appl. Opt. 53(32), 7819–7824 (2014).
    [Crossref] [PubMed]
  13. G. Q. Gu, L. J. Chen, H. Y. Fu, K. J. Che, Z. P. Cai, and H. Y. Xu, “UV-curable adhesive microsphere whispering gallery mode resonators,” Chin. Opt. Lett. 11(10), 101401 (2013).
    [Crossref]
  14. Norland Products Inc, https://www.norlandprod.com/adhesives/NOA%2061.html .
  15. A. Kiraz, M. A. Dundar, A. L. Demirel, S. Doganay, A. Kurt, A. Sennaroglu, and M. Y. Yuce, “Single glycerol/water microdroplets standing on a superhydrophobic surface: Optical microcavities promising original applications,” J. Nanophotonics 1(1), 011655 (2007).
    [Crossref]
  16. H. B. Lin, A. L. Huston, B. L. Justus, and A. J. Campillo, “Some characteristics of a droplet whispering-gallery-mode laser,” Opt. Lett. 11(10), 614–616 (1986).
    [Crossref] [PubMed]
  17. V. D. Ta, R. Chen, D. M. Nguyen, and H. D. Sun, “Application of self-assembled hemispherical microlasers as gas sensors,” Appl. Phys. Lett. 102(3), 031107 (2013).
    [Crossref]
  18. R. Chen and H. D. Sun, “Single mode lasing from hybrid hemispherical microresonators,” Sci. Rep. 2, 244 (2012).
    [Crossref] [PubMed]
  19. S. U. S. Choi and J. A. Eastman, “Enhancing thermal conductivity of fluids with nanoparticles,” ASME FED 231, 99–105 (1995).
  20. Thorlabs Inc., http://www.thorlabschina.cn/NewGroupPage9.cfm?ObjectGroup_ID=196 .
  21. M. Frenkel and Z. X. Guo, “On-chip, dynamic, and cryogenic temperature monitoring via PDMS micro-bead coatings,” Polym. Phys. 54(12), 1118–1124 (2016).
    [Crossref]
  22. M. Frenkel, M. Avellan, and Z. X. Guo, “Whispering-gallery mode composite sensors for on-chip dynamic temperature monitoring,” Meas. Sci. Technol. 24(7), 075103(2013).
    [Crossref]
  23. R. R. Tummala and A. L. Friedberg, “Thermal expansion of composite materials,” J. Appl. Phys. 41(13), 5104–5107 (1970).
    [Crossref]
  24. A. Noorjahan, On the Atomistic Simulation Approach Towards the Estimation of the Polymer/Solvent Mutual Diffusion Coefficient (University of Alberta., 2014)
  25. M. K. Chin and S. T. Ho, “Design and modeling of waveguide-coupled single-mode microring resonators,” J. Lightwave Technol. 16(8), 1433–1446 (1998).
    [Crossref]

2016 (1)

M. Frenkel and Z. X. Guo, “On-chip, dynamic, and cryogenic temperature monitoring via PDMS micro-bead coatings,” Polym. Phys. 54(12), 1118–1124 (2016).
[Crossref]

2014 (2)

G. Gu, C. Guo, Z. Cai, H. Xu, L. Chen, H. Fu, K. Che, M. Hong, S. Sun, and F. Li, “Fabrication of ultraviolet-curable adhesive bottle-like microresonators by wetting and photocuring,” Appl. Opt. 53(32), 7819–7824 (2014).
[Crossref] [PubMed]

B. B. Li, W. R. Clements, X. C. Yu, K. Shi, Q. Gong, and Y. F. Xiao, “Single nanoparticle detection using split-mode microcavity Raman lasers,” Proc. Natl. Acad. Sci. U.S.A. 111(41), 14657–14662 (2014).
[Crossref] [PubMed]

2013 (4)

V. D. Ta, R. Chen, D. M. Nguyen, and H. D. Sun, “Application of self-assembled hemispherical microlasers as gas sensors,” Appl. Phys. Lett. 102(3), 031107 (2013).
[Crossref]

G. Q. Gu, L. J. Chen, H. Y. Fu, K. J. Che, Z. P. Cai, and H. Y. Xu, “UV-curable adhesive microsphere whispering gallery mode resonators,” Chin. Opt. Lett. 11(10), 101401 (2013).
[Crossref]

K. H. Kim, G. Bahl, W. Lee, J. Liu, M. Tomes, X. D. Fan, and T. Carmon, “Cavity optomechanics on a microfluidic resonator with water and viscous liquids,” Light Sci. Appl. 2(11), e110 (2013).
[Crossref]

M. Frenkel, M. Avellan, and Z. X. Guo, “Whispering-gallery mode composite sensors for on-chip dynamic temperature monitoring,” Meas. Sci. Technol. 24(7), 075103(2013).
[Crossref]

2012 (1)

R. Chen and H. D. Sun, “Single mode lasing from hybrid hemispherical microresonators,” Sci. Rep. 2, 244 (2012).
[Crossref] [PubMed]

2011 (3)

G. C. Righini, Y. Dumeige, P. Féron, M. Ferrari, G. Nunzi Conti, D. Ristic, and S. Soria, “Whispering gallery mode microresonators: fundamentals and applications,” Riv. Nuovo Cim. 34(7), 435–488 (2011).

J. Ward and O. Benson, “WGM microresonators: sensing, lasing and fundamental optics with microspheres,” Laser Photonics Rev. 5(4), 553–570 (2011).
[Crossref]

Y. Z. Yan, C. L. Zou, S. B. Yan, F. W. Sun, Z. Ji, J. Liu, Y. G. Zhang, L. Wang, C. Y. Xue, W. D. Zhang, Z. F. Han, and J. J. Xiong, “Packaged silica microsphere-taper coupling system for robust thermal sensing application,” Opt. Express 19(7), 5753–5759 (2011).
[Crossref] [PubMed]

2010 (3)

Q. L. Ma, T. Rossmann, and Z. X. Guo, “Whispering-gallery mode silica microsensors for cryogenic to room temperature measurement,” Meas. Sci. Technol. 21(2), 025310 (2010).
[Crossref]

H. K. Hunt and A. M. Armani, “Label-free biological and chemical sensors,” Nanoscale 2(9), 1544–1559 (2010).
[Crossref] [PubMed]

B. B. Li, Q. Y. Wang, Y. F. Xiao, X. F. Jiang, Y. Li, L. X. Xiao, and Q. H. Gong, “On chip, high-sensitivity thermal sensor based on high-Q polydimethylsiloxane-coated microresonator,” Appl. Phys. Lett. 96(25), 251109 (2010).
[Crossref]

2009 (2)

L. He, Y. F. Xiao, J. Zhu, S. K. Ozdemir, and L. Yang, “Oscillatory thermal dynamics in high-Q PDMS-coated silica toroidal microresonators,” Opt. Express 17(12), 9571–9581 (2009).
[Crossref] [PubMed]

C. H. Dong, L. He, Y. F. Xiao, V. R. Gaddam, S. K. Ozdemir, Z. F. Han, G. C. Guo, and L. Yang, “Fabrication of high-Q polydimethylsiloxane optical microspheres for thermal sensing,” Appl. Phys. Lett. 94(23), 231119 (2009).
[Crossref]

2007 (1)

A. Kiraz, M. A. Dundar, A. L. Demirel, S. Doganay, A. Kurt, A. Sennaroglu, and M. Y. Yuce, “Single glycerol/water microdroplets standing on a superhydrophobic surface: Optical microcavities promising original applications,” J. Nanophotonics 1(1), 011655 (2007).
[Crossref]

2006 (1)

M. S. Nawrocka, T. Liu, X. Wang, and R. R. Panepucci, “Tunable silicon microring resonator with wide free spectral range,” Appl. Phys. Lett. 89(7), 071110 (2006).
[Crossref]

1998 (1)

1995 (1)

S. U. S. Choi and J. A. Eastman, “Enhancing thermal conductivity of fluids with nanoparticles,” ASME FED 231, 99–105 (1995).

1986 (1)

1970 (1)

R. R. Tummala and A. L. Friedberg, “Thermal expansion of composite materials,” J. Appl. Phys. 41(13), 5104–5107 (1970).
[Crossref]

Armani, A. M.

H. K. Hunt and A. M. Armani, “Label-free biological and chemical sensors,” Nanoscale 2(9), 1544–1559 (2010).
[Crossref] [PubMed]

Avellan, M.

M. Frenkel, M. Avellan, and Z. X. Guo, “Whispering-gallery mode composite sensors for on-chip dynamic temperature monitoring,” Meas. Sci. Technol. 24(7), 075103(2013).
[Crossref]

Bahl, G.

K. H. Kim, G. Bahl, W. Lee, J. Liu, M. Tomes, X. D. Fan, and T. Carmon, “Cavity optomechanics on a microfluidic resonator with water and viscous liquids,” Light Sci. Appl. 2(11), e110 (2013).
[Crossref]

Benson, O.

J. Ward and O. Benson, “WGM microresonators: sensing, lasing and fundamental optics with microspheres,” Laser Photonics Rev. 5(4), 553–570 (2011).
[Crossref]

Cai, Z.

Cai, Z. P.

Campillo, A. J.

Carmon, T.

K. H. Kim, G. Bahl, W. Lee, J. Liu, M. Tomes, X. D. Fan, and T. Carmon, “Cavity optomechanics on a microfluidic resonator with water and viscous liquids,” Light Sci. Appl. 2(11), e110 (2013).
[Crossref]

Che, K.

Che, K. J.

Chen, L.

Chen, L. J.

Chen, R.

V. D. Ta, R. Chen, D. M. Nguyen, and H. D. Sun, “Application of self-assembled hemispherical microlasers as gas sensors,” Appl. Phys. Lett. 102(3), 031107 (2013).
[Crossref]

R. Chen and H. D. Sun, “Single mode lasing from hybrid hemispherical microresonators,” Sci. Rep. 2, 244 (2012).
[Crossref] [PubMed]

Chin, M. K.

Choi, S. U. S.

S. U. S. Choi and J. A. Eastman, “Enhancing thermal conductivity of fluids with nanoparticles,” ASME FED 231, 99–105 (1995).

Clements, W. R.

B. B. Li, W. R. Clements, X. C. Yu, K. Shi, Q. Gong, and Y. F. Xiao, “Single nanoparticle detection using split-mode microcavity Raman lasers,” Proc. Natl. Acad. Sci. U.S.A. 111(41), 14657–14662 (2014).
[Crossref] [PubMed]

Demirel, A. L.

A. Kiraz, M. A. Dundar, A. L. Demirel, S. Doganay, A. Kurt, A. Sennaroglu, and M. Y. Yuce, “Single glycerol/water microdroplets standing on a superhydrophobic surface: Optical microcavities promising original applications,” J. Nanophotonics 1(1), 011655 (2007).
[Crossref]

Doganay, S.

A. Kiraz, M. A. Dundar, A. L. Demirel, S. Doganay, A. Kurt, A. Sennaroglu, and M. Y. Yuce, “Single glycerol/water microdroplets standing on a superhydrophobic surface: Optical microcavities promising original applications,” J. Nanophotonics 1(1), 011655 (2007).
[Crossref]

Dong, C. H.

C. H. Dong, L. He, Y. F. Xiao, V. R. Gaddam, S. K. Ozdemir, Z. F. Han, G. C. Guo, and L. Yang, “Fabrication of high-Q polydimethylsiloxane optical microspheres for thermal sensing,” Appl. Phys. Lett. 94(23), 231119 (2009).
[Crossref]

Dumeige, Y.

G. C. Righini, Y. Dumeige, P. Féron, M. Ferrari, G. Nunzi Conti, D. Ristic, and S. Soria, “Whispering gallery mode microresonators: fundamentals and applications,” Riv. Nuovo Cim. 34(7), 435–488 (2011).

Dundar, M. A.

A. Kiraz, M. A. Dundar, A. L. Demirel, S. Doganay, A. Kurt, A. Sennaroglu, and M. Y. Yuce, “Single glycerol/water microdroplets standing on a superhydrophobic surface: Optical microcavities promising original applications,” J. Nanophotonics 1(1), 011655 (2007).
[Crossref]

Eastman, J. A.

S. U. S. Choi and J. A. Eastman, “Enhancing thermal conductivity of fluids with nanoparticles,” ASME FED 231, 99–105 (1995).

Fan, X. D.

K. H. Kim, G. Bahl, W. Lee, J. Liu, M. Tomes, X. D. Fan, and T. Carmon, “Cavity optomechanics on a microfluidic resonator with water and viscous liquids,” Light Sci. Appl. 2(11), e110 (2013).
[Crossref]

Féron, P.

G. C. Righini, Y. Dumeige, P. Féron, M. Ferrari, G. Nunzi Conti, D. Ristic, and S. Soria, “Whispering gallery mode microresonators: fundamentals and applications,” Riv. Nuovo Cim. 34(7), 435–488 (2011).

Ferrari, M.

G. C. Righini, Y. Dumeige, P. Féron, M. Ferrari, G. Nunzi Conti, D. Ristic, and S. Soria, “Whispering gallery mode microresonators: fundamentals and applications,” Riv. Nuovo Cim. 34(7), 435–488 (2011).

Frenkel, M.

M. Frenkel and Z. X. Guo, “On-chip, dynamic, and cryogenic temperature monitoring via PDMS micro-bead coatings,” Polym. Phys. 54(12), 1118–1124 (2016).
[Crossref]

M. Frenkel, M. Avellan, and Z. X. Guo, “Whispering-gallery mode composite sensors for on-chip dynamic temperature monitoring,” Meas. Sci. Technol. 24(7), 075103(2013).
[Crossref]

Friedberg, A. L.

R. R. Tummala and A. L. Friedberg, “Thermal expansion of composite materials,” J. Appl. Phys. 41(13), 5104–5107 (1970).
[Crossref]

Fu, H.

Fu, H. Y.

Gaddam, V. R.

C. H. Dong, L. He, Y. F. Xiao, V. R. Gaddam, S. K. Ozdemir, Z. F. Han, G. C. Guo, and L. Yang, “Fabrication of high-Q polydimethylsiloxane optical microspheres for thermal sensing,” Appl. Phys. Lett. 94(23), 231119 (2009).
[Crossref]

Gong, Q.

B. B. Li, W. R. Clements, X. C. Yu, K. Shi, Q. Gong, and Y. F. Xiao, “Single nanoparticle detection using split-mode microcavity Raman lasers,” Proc. Natl. Acad. Sci. U.S.A. 111(41), 14657–14662 (2014).
[Crossref] [PubMed]

Gong, Q. H.

B. B. Li, Q. Y. Wang, Y. F. Xiao, X. F. Jiang, Y. Li, L. X. Xiao, and Q. H. Gong, “On chip, high-sensitivity thermal sensor based on high-Q polydimethylsiloxane-coated microresonator,” Appl. Phys. Lett. 96(25), 251109 (2010).
[Crossref]

Gu, G.

Gu, G. Q.

Guo, C.

Guo, G. C.

C. H. Dong, L. He, Y. F. Xiao, V. R. Gaddam, S. K. Ozdemir, Z. F. Han, G. C. Guo, and L. Yang, “Fabrication of high-Q polydimethylsiloxane optical microspheres for thermal sensing,” Appl. Phys. Lett. 94(23), 231119 (2009).
[Crossref]

Guo, Z. X.

M. Frenkel and Z. X. Guo, “On-chip, dynamic, and cryogenic temperature monitoring via PDMS micro-bead coatings,” Polym. Phys. 54(12), 1118–1124 (2016).
[Crossref]

M. Frenkel, M. Avellan, and Z. X. Guo, “Whispering-gallery mode composite sensors for on-chip dynamic temperature monitoring,” Meas. Sci. Technol. 24(7), 075103(2013).
[Crossref]

Q. L. Ma, T. Rossmann, and Z. X. Guo, “Whispering-gallery mode silica microsensors for cryogenic to room temperature measurement,” Meas. Sci. Technol. 21(2), 025310 (2010).
[Crossref]

Han, Z. F.

Y. Z. Yan, C. L. Zou, S. B. Yan, F. W. Sun, Z. Ji, J. Liu, Y. G. Zhang, L. Wang, C. Y. Xue, W. D. Zhang, Z. F. Han, and J. J. Xiong, “Packaged silica microsphere-taper coupling system for robust thermal sensing application,” Opt. Express 19(7), 5753–5759 (2011).
[Crossref] [PubMed]

C. H. Dong, L. He, Y. F. Xiao, V. R. Gaddam, S. K. Ozdemir, Z. F. Han, G. C. Guo, and L. Yang, “Fabrication of high-Q polydimethylsiloxane optical microspheres for thermal sensing,” Appl. Phys. Lett. 94(23), 231119 (2009).
[Crossref]

He, L.

C. H. Dong, L. He, Y. F. Xiao, V. R. Gaddam, S. K. Ozdemir, Z. F. Han, G. C. Guo, and L. Yang, “Fabrication of high-Q polydimethylsiloxane optical microspheres for thermal sensing,” Appl. Phys. Lett. 94(23), 231119 (2009).
[Crossref]

L. He, Y. F. Xiao, J. Zhu, S. K. Ozdemir, and L. Yang, “Oscillatory thermal dynamics in high-Q PDMS-coated silica toroidal microresonators,” Opt. Express 17(12), 9571–9581 (2009).
[Crossref] [PubMed]

Ho, S. T.

Hong, M.

Hunt, H. K.

H. K. Hunt and A. M. Armani, “Label-free biological and chemical sensors,” Nanoscale 2(9), 1544–1559 (2010).
[Crossref] [PubMed]

Huston, A. L.

Ji, Z.

Jiang, X. F.

B. B. Li, Q. Y. Wang, Y. F. Xiao, X. F. Jiang, Y. Li, L. X. Xiao, and Q. H. Gong, “On chip, high-sensitivity thermal sensor based on high-Q polydimethylsiloxane-coated microresonator,” Appl. Phys. Lett. 96(25), 251109 (2010).
[Crossref]

Justus, B. L.

Kim, K. H.

K. H. Kim, G. Bahl, W. Lee, J. Liu, M. Tomes, X. D. Fan, and T. Carmon, “Cavity optomechanics on a microfluidic resonator with water and viscous liquids,” Light Sci. Appl. 2(11), e110 (2013).
[Crossref]

Kiraz, A.

A. Kiraz, M. A. Dundar, A. L. Demirel, S. Doganay, A. Kurt, A. Sennaroglu, and M. Y. Yuce, “Single glycerol/water microdroplets standing on a superhydrophobic surface: Optical microcavities promising original applications,” J. Nanophotonics 1(1), 011655 (2007).
[Crossref]

Kurt, A.

A. Kiraz, M. A. Dundar, A. L. Demirel, S. Doganay, A. Kurt, A. Sennaroglu, and M. Y. Yuce, “Single glycerol/water microdroplets standing on a superhydrophobic surface: Optical microcavities promising original applications,” J. Nanophotonics 1(1), 011655 (2007).
[Crossref]

Lee, W.

K. H. Kim, G. Bahl, W. Lee, J. Liu, M. Tomes, X. D. Fan, and T. Carmon, “Cavity optomechanics on a microfluidic resonator with water and viscous liquids,” Light Sci. Appl. 2(11), e110 (2013).
[Crossref]

Li, B. B.

B. B. Li, W. R. Clements, X. C. Yu, K. Shi, Q. Gong, and Y. F. Xiao, “Single nanoparticle detection using split-mode microcavity Raman lasers,” Proc. Natl. Acad. Sci. U.S.A. 111(41), 14657–14662 (2014).
[Crossref] [PubMed]

B. B. Li, Q. Y. Wang, Y. F. Xiao, X. F. Jiang, Y. Li, L. X. Xiao, and Q. H. Gong, “On chip, high-sensitivity thermal sensor based on high-Q polydimethylsiloxane-coated microresonator,” Appl. Phys. Lett. 96(25), 251109 (2010).
[Crossref]

Li, F.

Li, Y.

B. B. Li, Q. Y. Wang, Y. F. Xiao, X. F. Jiang, Y. Li, L. X. Xiao, and Q. H. Gong, “On chip, high-sensitivity thermal sensor based on high-Q polydimethylsiloxane-coated microresonator,” Appl. Phys. Lett. 96(25), 251109 (2010).
[Crossref]

Lin, H. B.

Liu, J.

Liu, T.

M. S. Nawrocka, T. Liu, X. Wang, and R. R. Panepucci, “Tunable silicon microring resonator with wide free spectral range,” Appl. Phys. Lett. 89(7), 071110 (2006).
[Crossref]

Ma, Q. L.

Q. L. Ma, T. Rossmann, and Z. X. Guo, “Whispering-gallery mode silica microsensors for cryogenic to room temperature measurement,” Meas. Sci. Technol. 21(2), 025310 (2010).
[Crossref]

Nawrocka, M. S.

M. S. Nawrocka, T. Liu, X. Wang, and R. R. Panepucci, “Tunable silicon microring resonator with wide free spectral range,” Appl. Phys. Lett. 89(7), 071110 (2006).
[Crossref]

Nguyen, D. M.

V. D. Ta, R. Chen, D. M. Nguyen, and H. D. Sun, “Application of self-assembled hemispherical microlasers as gas sensors,” Appl. Phys. Lett. 102(3), 031107 (2013).
[Crossref]

Nunzi Conti, G.

G. C. Righini, Y. Dumeige, P. Féron, M. Ferrari, G. Nunzi Conti, D. Ristic, and S. Soria, “Whispering gallery mode microresonators: fundamentals and applications,” Riv. Nuovo Cim. 34(7), 435–488 (2011).

Ozdemir, S. K.

L. He, Y. F. Xiao, J. Zhu, S. K. Ozdemir, and L. Yang, “Oscillatory thermal dynamics in high-Q PDMS-coated silica toroidal microresonators,” Opt. Express 17(12), 9571–9581 (2009).
[Crossref] [PubMed]

C. H. Dong, L. He, Y. F. Xiao, V. R. Gaddam, S. K. Ozdemir, Z. F. Han, G. C. Guo, and L. Yang, “Fabrication of high-Q polydimethylsiloxane optical microspheres for thermal sensing,” Appl. Phys. Lett. 94(23), 231119 (2009).
[Crossref]

Panepucci, R. R.

M. S. Nawrocka, T. Liu, X. Wang, and R. R. Panepucci, “Tunable silicon microring resonator with wide free spectral range,” Appl. Phys. Lett. 89(7), 071110 (2006).
[Crossref]

Righini, G. C.

G. C. Righini, Y. Dumeige, P. Féron, M. Ferrari, G. Nunzi Conti, D. Ristic, and S. Soria, “Whispering gallery mode microresonators: fundamentals and applications,” Riv. Nuovo Cim. 34(7), 435–488 (2011).

Ristic, D.

G. C. Righini, Y. Dumeige, P. Féron, M. Ferrari, G. Nunzi Conti, D. Ristic, and S. Soria, “Whispering gallery mode microresonators: fundamentals and applications,” Riv. Nuovo Cim. 34(7), 435–488 (2011).

Rossmann, T.

Q. L. Ma, T. Rossmann, and Z. X. Guo, “Whispering-gallery mode silica microsensors for cryogenic to room temperature measurement,” Meas. Sci. Technol. 21(2), 025310 (2010).
[Crossref]

Sennaroglu, A.

A. Kiraz, M. A. Dundar, A. L. Demirel, S. Doganay, A. Kurt, A. Sennaroglu, and M. Y. Yuce, “Single glycerol/water microdroplets standing on a superhydrophobic surface: Optical microcavities promising original applications,” J. Nanophotonics 1(1), 011655 (2007).
[Crossref]

Shi, K.

B. B. Li, W. R. Clements, X. C. Yu, K. Shi, Q. Gong, and Y. F. Xiao, “Single nanoparticle detection using split-mode microcavity Raman lasers,” Proc. Natl. Acad. Sci. U.S.A. 111(41), 14657–14662 (2014).
[Crossref] [PubMed]

Soria, S.

G. C. Righini, Y. Dumeige, P. Féron, M. Ferrari, G. Nunzi Conti, D. Ristic, and S. Soria, “Whispering gallery mode microresonators: fundamentals and applications,” Riv. Nuovo Cim. 34(7), 435–488 (2011).

Sun, F. W.

Sun, H. D.

V. D. Ta, R. Chen, D. M. Nguyen, and H. D. Sun, “Application of self-assembled hemispherical microlasers as gas sensors,” Appl. Phys. Lett. 102(3), 031107 (2013).
[Crossref]

R. Chen and H. D. Sun, “Single mode lasing from hybrid hemispherical microresonators,” Sci. Rep. 2, 244 (2012).
[Crossref] [PubMed]

Sun, S.

Ta, V. D.

V. D. Ta, R. Chen, D. M. Nguyen, and H. D. Sun, “Application of self-assembled hemispherical microlasers as gas sensors,” Appl. Phys. Lett. 102(3), 031107 (2013).
[Crossref]

Tomes, M.

K. H. Kim, G. Bahl, W. Lee, J. Liu, M. Tomes, X. D. Fan, and T. Carmon, “Cavity optomechanics on a microfluidic resonator with water and viscous liquids,” Light Sci. Appl. 2(11), e110 (2013).
[Crossref]

Tummala, R. R.

R. R. Tummala and A. L. Friedberg, “Thermal expansion of composite materials,” J. Appl. Phys. 41(13), 5104–5107 (1970).
[Crossref]

Wang, L.

Wang, Q. Y.

B. B. Li, Q. Y. Wang, Y. F. Xiao, X. F. Jiang, Y. Li, L. X. Xiao, and Q. H. Gong, “On chip, high-sensitivity thermal sensor based on high-Q polydimethylsiloxane-coated microresonator,” Appl. Phys. Lett. 96(25), 251109 (2010).
[Crossref]

Wang, X.

M. S. Nawrocka, T. Liu, X. Wang, and R. R. Panepucci, “Tunable silicon microring resonator with wide free spectral range,” Appl. Phys. Lett. 89(7), 071110 (2006).
[Crossref]

Ward, J.

J. Ward and O. Benson, “WGM microresonators: sensing, lasing and fundamental optics with microspheres,” Laser Photonics Rev. 5(4), 553–570 (2011).
[Crossref]

Xiao, L. X.

B. B. Li, Q. Y. Wang, Y. F. Xiao, X. F. Jiang, Y. Li, L. X. Xiao, and Q. H. Gong, “On chip, high-sensitivity thermal sensor based on high-Q polydimethylsiloxane-coated microresonator,” Appl. Phys. Lett. 96(25), 251109 (2010).
[Crossref]

Xiao, Y. F.

B. B. Li, W. R. Clements, X. C. Yu, K. Shi, Q. Gong, and Y. F. Xiao, “Single nanoparticle detection using split-mode microcavity Raman lasers,” Proc. Natl. Acad. Sci. U.S.A. 111(41), 14657–14662 (2014).
[Crossref] [PubMed]

B. B. Li, Q. Y. Wang, Y. F. Xiao, X. F. Jiang, Y. Li, L. X. Xiao, and Q. H. Gong, “On chip, high-sensitivity thermal sensor based on high-Q polydimethylsiloxane-coated microresonator,” Appl. Phys. Lett. 96(25), 251109 (2010).
[Crossref]

L. He, Y. F. Xiao, J. Zhu, S. K. Ozdemir, and L. Yang, “Oscillatory thermal dynamics in high-Q PDMS-coated silica toroidal microresonators,” Opt. Express 17(12), 9571–9581 (2009).
[Crossref] [PubMed]

C. H. Dong, L. He, Y. F. Xiao, V. R. Gaddam, S. K. Ozdemir, Z. F. Han, G. C. Guo, and L. Yang, “Fabrication of high-Q polydimethylsiloxane optical microspheres for thermal sensing,” Appl. Phys. Lett. 94(23), 231119 (2009).
[Crossref]

Xiong, J. J.

Xu, H.

Xu, H. Y.

Xue, C. Y.

Yan, S. B.

Yan, Y. Z.

Yang, L.

L. He, Y. F. Xiao, J. Zhu, S. K. Ozdemir, and L. Yang, “Oscillatory thermal dynamics in high-Q PDMS-coated silica toroidal microresonators,” Opt. Express 17(12), 9571–9581 (2009).
[Crossref] [PubMed]

C. H. Dong, L. He, Y. F. Xiao, V. R. Gaddam, S. K. Ozdemir, Z. F. Han, G. C. Guo, and L. Yang, “Fabrication of high-Q polydimethylsiloxane optical microspheres for thermal sensing,” Appl. Phys. Lett. 94(23), 231119 (2009).
[Crossref]

Yu, X. C.

B. B. Li, W. R. Clements, X. C. Yu, K. Shi, Q. Gong, and Y. F. Xiao, “Single nanoparticle detection using split-mode microcavity Raman lasers,” Proc. Natl. Acad. Sci. U.S.A. 111(41), 14657–14662 (2014).
[Crossref] [PubMed]

Yuce, M. Y.

A. Kiraz, M. A. Dundar, A. L. Demirel, S. Doganay, A. Kurt, A. Sennaroglu, and M. Y. Yuce, “Single glycerol/water microdroplets standing on a superhydrophobic surface: Optical microcavities promising original applications,” J. Nanophotonics 1(1), 011655 (2007).
[Crossref]

Zhang, W. D.

Zhang, Y. G.

Zhu, J.

Zou, C. L.

Appl. Opt. (1)

Appl. Phys. Lett. (4)

B. B. Li, Q. Y. Wang, Y. F. Xiao, X. F. Jiang, Y. Li, L. X. Xiao, and Q. H. Gong, “On chip, high-sensitivity thermal sensor based on high-Q polydimethylsiloxane-coated microresonator,” Appl. Phys. Lett. 96(25), 251109 (2010).
[Crossref]

M. S. Nawrocka, T. Liu, X. Wang, and R. R. Panepucci, “Tunable silicon microring resonator with wide free spectral range,” Appl. Phys. Lett. 89(7), 071110 (2006).
[Crossref]

C. H. Dong, L. He, Y. F. Xiao, V. R. Gaddam, S. K. Ozdemir, Z. F. Han, G. C. Guo, and L. Yang, “Fabrication of high-Q polydimethylsiloxane optical microspheres for thermal sensing,” Appl. Phys. Lett. 94(23), 231119 (2009).
[Crossref]

V. D. Ta, R. Chen, D. M. Nguyen, and H. D. Sun, “Application of self-assembled hemispherical microlasers as gas sensors,” Appl. Phys. Lett. 102(3), 031107 (2013).
[Crossref]

ASME FED (1)

S. U. S. Choi and J. A. Eastman, “Enhancing thermal conductivity of fluids with nanoparticles,” ASME FED 231, 99–105 (1995).

Chin. Opt. Lett. (1)

J. Appl. Phys. (1)

R. R. Tummala and A. L. Friedberg, “Thermal expansion of composite materials,” J. Appl. Phys. 41(13), 5104–5107 (1970).
[Crossref]

J. Lightwave Technol. (1)

J. Nanophotonics (1)

A. Kiraz, M. A. Dundar, A. L. Demirel, S. Doganay, A. Kurt, A. Sennaroglu, and M. Y. Yuce, “Single glycerol/water microdroplets standing on a superhydrophobic surface: Optical microcavities promising original applications,” J. Nanophotonics 1(1), 011655 (2007).
[Crossref]

Laser Photonics Rev. (1)

J. Ward and O. Benson, “WGM microresonators: sensing, lasing and fundamental optics with microspheres,” Laser Photonics Rev. 5(4), 553–570 (2011).
[Crossref]

Light Sci. Appl. (1)

K. H. Kim, G. Bahl, W. Lee, J. Liu, M. Tomes, X. D. Fan, and T. Carmon, “Cavity optomechanics on a microfluidic resonator with water and viscous liquids,” Light Sci. Appl. 2(11), e110 (2013).
[Crossref]

Meas. Sci. Technol. (2)

Q. L. Ma, T. Rossmann, and Z. X. Guo, “Whispering-gallery mode silica microsensors for cryogenic to room temperature measurement,” Meas. Sci. Technol. 21(2), 025310 (2010).
[Crossref]

M. Frenkel, M. Avellan, and Z. X. Guo, “Whispering-gallery mode composite sensors for on-chip dynamic temperature monitoring,” Meas. Sci. Technol. 24(7), 075103(2013).
[Crossref]

Nanoscale (1)

H. K. Hunt and A. M. Armani, “Label-free biological and chemical sensors,” Nanoscale 2(9), 1544–1559 (2010).
[Crossref] [PubMed]

Opt. Express (2)

Opt. Lett. (1)

Polym. Phys. (1)

M. Frenkel and Z. X. Guo, “On-chip, dynamic, and cryogenic temperature monitoring via PDMS micro-bead coatings,” Polym. Phys. 54(12), 1118–1124 (2016).
[Crossref]

Proc. Natl. Acad. Sci. U.S.A. (1)

B. B. Li, W. R. Clements, X. C. Yu, K. Shi, Q. Gong, and Y. F. Xiao, “Single nanoparticle detection using split-mode microcavity Raman lasers,” Proc. Natl. Acad. Sci. U.S.A. 111(41), 14657–14662 (2014).
[Crossref] [PubMed]

Riv. Nuovo Cim. (1)

G. C. Righini, Y. Dumeige, P. Féron, M. Ferrari, G. Nunzi Conti, D. Ristic, and S. Soria, “Whispering gallery mode microresonators: fundamentals and applications,” Riv. Nuovo Cim. 34(7), 435–488 (2011).

Sci. Rep. (1)

R. Chen and H. D. Sun, “Single mode lasing from hybrid hemispherical microresonators,” Sci. Rep. 2, 244 (2012).
[Crossref] [PubMed]

Other (3)

Norland Products Inc, https://www.norlandprod.com/adhesives/NOA%2061.html .

Thorlabs Inc., http://www.thorlabschina.cn/NewGroupPage9.cfm?ObjectGroup_ID=196 .

A. Noorjahan, On the Atomistic Simulation Approach Towards the Estimation of the Polymer/Solvent Mutual Diffusion Coefficient (University of Alberta., 2014)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a)-(c) Schematically diagram illustrates the fabrication process of the UV-curable adhesive spherical-cap-shaped microresonators. (d)-(f) Self-assembling process of spherical-cap-shaped microresonators on PVA surface as a function of time. (g) A front view of the spherical-cap-shaped structure on PVA surface.
Fig. 2
Fig. 2 Experimental setup for the characterization of the spherical-cap-shaped microresonators.
Fig. 3
Fig. 3 A typical transmission spectrum of a spherical-cap-shaped microresonator with the diameter of 262 µm. The resonance curves marked with the same color represent the modes of the same order.
Fig. 4
Fig. 4 (a) Power and (b) temperature dependent WGM resonances in a spherical-cap-shaped microresonator with the diameter of 262 µm. (c) Schematic diagram of the interaction between cured-NOA61 and PVA. (d) Calculated results of resonant wavelength shift vs effective thermal expansion coefficient.
Fig. 5
Fig. 5 Resonant wavelength shift vs temperature change in spherical-cap-shaped microresonators with different diameters. (a) Temperature increase, (b) Temperature decrease. The solid lines are the linear fit. Transmission spectrum of a spherical-cap-shaped microresonator with the diameter of 108 µm. (c) Temperature increase, (d) Temperature decrease.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Δλ=λ( 1 n 0 α+β)ΔT
β eff = β 2 V (1+ υ 2 )/2 E 2 [(1+ υ 2 )/2 E 2 ]+[(12 υ 1 )/ E 1 ] ( β 2 β 1 )
V= V 1 V 1 + V 2 = π ( D 2 ) 2 h 1 π ( D 2 ) 2 h 1 + π h 2 6 [3 ( D 2 ) 2 + h 2 2 )]
V= h 1 h 1 + D(1cosθ) 12sinθ [3+ ( 1cosθ sinθ ) 2 ]

Metrics