Abstract

We present a titanium dioxide coated shifted Bragg grating in a silicon-on-insulator platform enabling optical add-drop functionality. The device works on the basis of mode conversion due to shifted sidewall structure followed by mode splitting based on an asymmetric Y-coupler. We experimentally demonstrate the working principle of the device. A reflection bandwidth of 2.2 nm with 14 dB extinction ratio is obtained with a 300 μm long shifted Bragg grating. The performance of the device is also compared without the titanium dioxide coating. A scope of spectral tunability with titanium dioxide re-coating (0.8 nm per 1 nm re-coating) by atomic layer deposition is experimentally verified.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Multi-wavelength add–drop filter with phase-modulated shifted Bragg grating

Somnath Paul, Markku Kuittinen, Matthieu Roussey, and Seppo Honkanen
Opt. Lett. 43(13) 3144-3147 (2018)

Slot waveguide ring resonators coated by an atomic layer deposited organic/inorganic nanolaminate

A. Autere, L. Karvonen, A. Säynätjoki, M. Roussey, E. Färm, M. Kemell, X. Tu, T.Y. Liow, G.Q. Lo, M. Ritala, M. Leskelä, S. Honkanen, H. Lipsanen, and Z. Sun
Opt. Express 23(21) 26940-26951 (2015)

Silicon band-rejection and band-pass filter based on asymmetric Bragg sidewall gratings in a multimode waveguide

Huiye Qiu, Jianfei Jiang, Ping Yu, Tingge Dai, Jianyi Yang, Hui Yu, and Xiaoqing Jiang
Opt. Lett. 41(11) 2450-2453 (2016)

References

  • View by:
  • |
  • |
  • |

  1. K. Vahala, Optical Microcavities (World Scientific, 2004).
    [Crossref]
  2. B. E. Litte, S. T. Chu, W. Pan, D. Ripin, T. Kokubun, and E. Ippen, “Vertically coupled glass microring resonator channel dropping filters,” IEEE Photon. Technol. Lett. 11(2), 215–217 (1999).
    [Crossref]
  3. Z. Qiang, W. Zhou, and R. A. Soref, “Optical add-drop filters based on photonic crystal ring resonators,” Opt. Express 15(4), 1823–1831 (2007).
    [Crossref]
  4. P. Dumon, W. Bogaerts, D. Van. Thourhout, D. Taillart, R. Baets, J. Wouters, S. Beckx, and P. Jaenen, “Compact wavelength router based on a silicon-on-insulator arrayed waveguide grating pigtailed to a fiber array,” Opt. Express 14(2), 664–669 (2006).
    [Crossref]
  5. V. Veerasubramanian, G. Beaudin, A. Giguere, B. L. Drogoff, V. Aimez, and A. G. Kirk, “Waveguide-coupled drop filters on SOI using quarter-wave shifted sidewalled grating resonators,” Opt. Express 20(14), 15983–15990 (2012).
    [Crossref]
  6. A. M. Prabhu, A. Tsay, Z. Han, and V. Van, “Extreme miniaturization of silicon add-drop microring filters for VLSI photonics applications,” IEEE Photon. J. 2(3), 436–444 (2010).
    [Crossref]
  7. A. S. Kewitsch, G. A. Rakuljic, P. A. Willems, and A. Yariv, “All-fiber zero-insertion-loss add-drop filter for wavelength-division multiplexing,” Opt. Lett. 23(2), 106–108 (1998).
    [Crossref]
  8. D. F. Geraghty, D. Provenzano, M. Morrell, S. Honkanen, A. Yariv, and N. Peyghambarian, “Ion-exchanged waveguide add-drop filter,” Electron. Lett. 37(13), 829–831 (2001).
    [Crossref]
  9. J. M. Castro, D. F. Geraghty, S. Honkanen, C. M. Greiner, D. Iazikov, and T. W. Mossberg, “Demonstration of mode conversion using anti-symmetric waveguide Bragg gratings,” Opt. Express 13(11),4180–4184 (2005).
    [Crossref]
  10. S. Tomljenovic-Hanic and J. D. Love, “Planer waveguide add/drop wavelength filters based on segmented gratings,” Microw. Opt. Technol. Lett. 37(3), 163–165 (2003).
    [Crossref]
  11. M. W. Pruessner, J. B. Khurgin, T. H. Stievater, W. S. Rabinovich, R. Bass, J. B. Boos, and V. J. Urick, “Demonstration of a mode-conversion cavity add-drop filter,” Opt. Lett. 36(12), 2230–2232 (2011).
    [Crossref]
  12. J. B. Khurgin, M. W. Pruessner, T. H. Stievater, and W. S. Rabinovich, “Add-drop filters based on mode-conversion cavities,” Opt. Lett. 32(10), 1253–1255 (2007).
    [Crossref]
  13. H. Qiu, J. Jiang, P. Yu, T. Dai, J. Yang, H. Yu, and X. Jiang, “Silicon band-rejection and band-pass filter based on asymmetric Bragg sidewall gratings in multimode waveguide,” Opt. Lett. 41(11), 2450–2453 (2016).
    [Crossref]
  14. M. Häyrinen, M. Roussey, A. Bera, M. Kuittinen, and S. Honkanen, “Atomic layer re-deposition for nanoscale devises,” in Encyclopedia of Plasma Technology, J. L. Shohet, ed. (Taylor & Francis, 2016), (in press).
  15. N. Riesen and J. D. Love, “Design of mode sorting asymmetric Y-junction,” Appl. Opt. 51(15), 2778–2783 (2012).
    [Crossref]
  16. W. Burns and A. F. Milton, “Mode conversion in planar-Dielectric separating waveguides,” IEEE J. Quant. Electron. QE-11(1), 32–39 (1975).
    [Crossref]
  17. L. Li, “Use of Fourier series in the analysis of discontinuous periodic structures,” J. Opt. Soc. Am. A 13, 1870–1876 (1996).
    [Crossref]
  18. L. Li, “New formulation of the Fourier modal method for crossed surface-relief gratings,” J. Opt. Soc. Am. A 14, 2758–2767 (1997).
    [Crossref]
  19. J. Tervo, M. Kuittinen, P. Vahimaa, J. Turunen, T. Aalto, P. Heimala, and M. Leppihalme, “Efficient Bragg waveguide-grating analysis by quasi-rigorous approach based on Redheffer’s star product,” Opt. Commun. 198, 265–272 (2001).
    [Crossref]
  20. J. P. Hugonin, P. Lalanne, I. Del. Villar, and I. R. Matias, “Fourier modal methods for modeling optical dielectric waveguides,” Opt. Quantum Electron. 37, 107–119 (2005).
    [Crossref]
  21. T. Alasaarela, D. Korn, L. Alloatti, A. Säynätjoki, A. Tervonen, R. Palmer, J. Leuthold, W. Freude, and S. Honkanen, “Reduced propagation loss in silicon strip and slot waveguides coated by atomic layer deposition,” Opt. Express 19, 11529–11538 (2011).
    [Crossref]
  22. P. Stenberg, M. Roussey, P. Ryczkowski, G. Genty, S. Honkanen, and M. Kuittinen, “A merged photonic crystal slot waveguide embedded in ALD-TiO2,” Opt. Express 21(20), 24154–24162 (2013).
    [Crossref]
  23. T. Alasaarela, T. Saastamoinen, J. Hiltunen, A. Säynätjoki, A. Tervonen, P. Stenberg, M. Kuittinen, and S. Honkanen, “Atomic layer deposited titanium dioxide and its application in resonant waveguide grating,” Appl. Opt. 49(22), 4321–4325 (2010).
    [Crossref]

2016 (1)

2013 (1)

2012 (2)

2011 (2)

2010 (2)

T. Alasaarela, T. Saastamoinen, J. Hiltunen, A. Säynätjoki, A. Tervonen, P. Stenberg, M. Kuittinen, and S. Honkanen, “Atomic layer deposited titanium dioxide and its application in resonant waveguide grating,” Appl. Opt. 49(22), 4321–4325 (2010).
[Crossref]

A. M. Prabhu, A. Tsay, Z. Han, and V. Van, “Extreme miniaturization of silicon add-drop microring filters for VLSI photonics applications,” IEEE Photon. J. 2(3), 436–444 (2010).
[Crossref]

2007 (2)

2006 (1)

2005 (2)

J. M. Castro, D. F. Geraghty, S. Honkanen, C. M. Greiner, D. Iazikov, and T. W. Mossberg, “Demonstration of mode conversion using anti-symmetric waveguide Bragg gratings,” Opt. Express 13(11),4180–4184 (2005).
[Crossref]

J. P. Hugonin, P. Lalanne, I. Del. Villar, and I. R. Matias, “Fourier modal methods for modeling optical dielectric waveguides,” Opt. Quantum Electron. 37, 107–119 (2005).
[Crossref]

2003 (1)

S. Tomljenovic-Hanic and J. D. Love, “Planer waveguide add/drop wavelength filters based on segmented gratings,” Microw. Opt. Technol. Lett. 37(3), 163–165 (2003).
[Crossref]

2001 (2)

D. F. Geraghty, D. Provenzano, M. Morrell, S. Honkanen, A. Yariv, and N. Peyghambarian, “Ion-exchanged waveguide add-drop filter,” Electron. Lett. 37(13), 829–831 (2001).
[Crossref]

J. Tervo, M. Kuittinen, P. Vahimaa, J. Turunen, T. Aalto, P. Heimala, and M. Leppihalme, “Efficient Bragg waveguide-grating analysis by quasi-rigorous approach based on Redheffer’s star product,” Opt. Commun. 198, 265–272 (2001).
[Crossref]

1999 (1)

B. E. Litte, S. T. Chu, W. Pan, D. Ripin, T. Kokubun, and E. Ippen, “Vertically coupled glass microring resonator channel dropping filters,” IEEE Photon. Technol. Lett. 11(2), 215–217 (1999).
[Crossref]

1998 (1)

1997 (1)

1996 (1)

1975 (1)

W. Burns and A. F. Milton, “Mode conversion in planar-Dielectric separating waveguides,” IEEE J. Quant. Electron. QE-11(1), 32–39 (1975).
[Crossref]

Aalto, T.

J. Tervo, M. Kuittinen, P. Vahimaa, J. Turunen, T. Aalto, P. Heimala, and M. Leppihalme, “Efficient Bragg waveguide-grating analysis by quasi-rigorous approach based on Redheffer’s star product,” Opt. Commun. 198, 265–272 (2001).
[Crossref]

Aimez, V.

Alasaarela, T.

Alloatti, L.

Baets, R.

Bass, R.

Beaudin, G.

Beckx, S.

Bera, A.

M. Häyrinen, M. Roussey, A. Bera, M. Kuittinen, and S. Honkanen, “Atomic layer re-deposition for nanoscale devises,” in Encyclopedia of Plasma Technology, J. L. Shohet, ed. (Taylor & Francis, 2016), (in press).

Bogaerts, W.

Boos, J. B.

Burns, W.

W. Burns and A. F. Milton, “Mode conversion in planar-Dielectric separating waveguides,” IEEE J. Quant. Electron. QE-11(1), 32–39 (1975).
[Crossref]

Castro, J. M.

Chu, S. T.

B. E. Litte, S. T. Chu, W. Pan, D. Ripin, T. Kokubun, and E. Ippen, “Vertically coupled glass microring resonator channel dropping filters,” IEEE Photon. Technol. Lett. 11(2), 215–217 (1999).
[Crossref]

Dai, T.

Del. Villar, I.

J. P. Hugonin, P. Lalanne, I. Del. Villar, and I. R. Matias, “Fourier modal methods for modeling optical dielectric waveguides,” Opt. Quantum Electron. 37, 107–119 (2005).
[Crossref]

Drogoff, B. L.

Dumon, P.

Freude, W.

Genty, G.

Geraghty, D. F.

J. M. Castro, D. F. Geraghty, S. Honkanen, C. M. Greiner, D. Iazikov, and T. W. Mossberg, “Demonstration of mode conversion using anti-symmetric waveguide Bragg gratings,” Opt. Express 13(11),4180–4184 (2005).
[Crossref]

D. F. Geraghty, D. Provenzano, M. Morrell, S. Honkanen, A. Yariv, and N. Peyghambarian, “Ion-exchanged waveguide add-drop filter,” Electron. Lett. 37(13), 829–831 (2001).
[Crossref]

Giguere, A.

Greiner, C. M.

Han, Z.

A. M. Prabhu, A. Tsay, Z. Han, and V. Van, “Extreme miniaturization of silicon add-drop microring filters for VLSI photonics applications,” IEEE Photon. J. 2(3), 436–444 (2010).
[Crossref]

Häyrinen, M.

M. Häyrinen, M. Roussey, A. Bera, M. Kuittinen, and S. Honkanen, “Atomic layer re-deposition for nanoscale devises,” in Encyclopedia of Plasma Technology, J. L. Shohet, ed. (Taylor & Francis, 2016), (in press).

Heimala, P.

J. Tervo, M. Kuittinen, P. Vahimaa, J. Turunen, T. Aalto, P. Heimala, and M. Leppihalme, “Efficient Bragg waveguide-grating analysis by quasi-rigorous approach based on Redheffer’s star product,” Opt. Commun. 198, 265–272 (2001).
[Crossref]

Hiltunen, J.

Honkanen, S.

Hugonin, J. P.

J. P. Hugonin, P. Lalanne, I. Del. Villar, and I. R. Matias, “Fourier modal methods for modeling optical dielectric waveguides,” Opt. Quantum Electron. 37, 107–119 (2005).
[Crossref]

Iazikov, D.

Ippen, E.

B. E. Litte, S. T. Chu, W. Pan, D. Ripin, T. Kokubun, and E. Ippen, “Vertically coupled glass microring resonator channel dropping filters,” IEEE Photon. Technol. Lett. 11(2), 215–217 (1999).
[Crossref]

Jaenen, P.

Jiang, J.

Jiang, X.

Kewitsch, A. S.

Khurgin, J. B.

Kirk, A. G.

Kokubun, T.

B. E. Litte, S. T. Chu, W. Pan, D. Ripin, T. Kokubun, and E. Ippen, “Vertically coupled glass microring resonator channel dropping filters,” IEEE Photon. Technol. Lett. 11(2), 215–217 (1999).
[Crossref]

Korn, D.

Kuittinen, M.

P. Stenberg, M. Roussey, P. Ryczkowski, G. Genty, S. Honkanen, and M. Kuittinen, “A merged photonic crystal slot waveguide embedded in ALD-TiO2,” Opt. Express 21(20), 24154–24162 (2013).
[Crossref]

T. Alasaarela, T. Saastamoinen, J. Hiltunen, A. Säynätjoki, A. Tervonen, P. Stenberg, M. Kuittinen, and S. Honkanen, “Atomic layer deposited titanium dioxide and its application in resonant waveguide grating,” Appl. Opt. 49(22), 4321–4325 (2010).
[Crossref]

J. Tervo, M. Kuittinen, P. Vahimaa, J. Turunen, T. Aalto, P. Heimala, and M. Leppihalme, “Efficient Bragg waveguide-grating analysis by quasi-rigorous approach based on Redheffer’s star product,” Opt. Commun. 198, 265–272 (2001).
[Crossref]

M. Häyrinen, M. Roussey, A. Bera, M. Kuittinen, and S. Honkanen, “Atomic layer re-deposition for nanoscale devises,” in Encyclopedia of Plasma Technology, J. L. Shohet, ed. (Taylor & Francis, 2016), (in press).

Lalanne, P.

J. P. Hugonin, P. Lalanne, I. Del. Villar, and I. R. Matias, “Fourier modal methods for modeling optical dielectric waveguides,” Opt. Quantum Electron. 37, 107–119 (2005).
[Crossref]

Leppihalme, M.

J. Tervo, M. Kuittinen, P. Vahimaa, J. Turunen, T. Aalto, P. Heimala, and M. Leppihalme, “Efficient Bragg waveguide-grating analysis by quasi-rigorous approach based on Redheffer’s star product,” Opt. Commun. 198, 265–272 (2001).
[Crossref]

Leuthold, J.

Li, L.

Litte, B. E.

B. E. Litte, S. T. Chu, W. Pan, D. Ripin, T. Kokubun, and E. Ippen, “Vertically coupled glass microring resonator channel dropping filters,” IEEE Photon. Technol. Lett. 11(2), 215–217 (1999).
[Crossref]

Love, J. D.

N. Riesen and J. D. Love, “Design of mode sorting asymmetric Y-junction,” Appl. Opt. 51(15), 2778–2783 (2012).
[Crossref]

S. Tomljenovic-Hanic and J. D. Love, “Planer waveguide add/drop wavelength filters based on segmented gratings,” Microw. Opt. Technol. Lett. 37(3), 163–165 (2003).
[Crossref]

Matias, I. R.

J. P. Hugonin, P. Lalanne, I. Del. Villar, and I. R. Matias, “Fourier modal methods for modeling optical dielectric waveguides,” Opt. Quantum Electron. 37, 107–119 (2005).
[Crossref]

Milton, A. F.

W. Burns and A. F. Milton, “Mode conversion in planar-Dielectric separating waveguides,” IEEE J. Quant. Electron. QE-11(1), 32–39 (1975).
[Crossref]

Morrell, M.

D. F. Geraghty, D. Provenzano, M. Morrell, S. Honkanen, A. Yariv, and N. Peyghambarian, “Ion-exchanged waveguide add-drop filter,” Electron. Lett. 37(13), 829–831 (2001).
[Crossref]

Mossberg, T. W.

Palmer, R.

Pan, W.

B. E. Litte, S. T. Chu, W. Pan, D. Ripin, T. Kokubun, and E. Ippen, “Vertically coupled glass microring resonator channel dropping filters,” IEEE Photon. Technol. Lett. 11(2), 215–217 (1999).
[Crossref]

Peyghambarian, N.

D. F. Geraghty, D. Provenzano, M. Morrell, S. Honkanen, A. Yariv, and N. Peyghambarian, “Ion-exchanged waveguide add-drop filter,” Electron. Lett. 37(13), 829–831 (2001).
[Crossref]

Prabhu, A. M.

A. M. Prabhu, A. Tsay, Z. Han, and V. Van, “Extreme miniaturization of silicon add-drop microring filters for VLSI photonics applications,” IEEE Photon. J. 2(3), 436–444 (2010).
[Crossref]

Provenzano, D.

D. F. Geraghty, D. Provenzano, M. Morrell, S. Honkanen, A. Yariv, and N. Peyghambarian, “Ion-exchanged waveguide add-drop filter,” Electron. Lett. 37(13), 829–831 (2001).
[Crossref]

Pruessner, M. W.

Qiang, Z.

Qiu, H.

Rabinovich, W. S.

Rakuljic, G. A.

Riesen, N.

Ripin, D.

B. E. Litte, S. T. Chu, W. Pan, D. Ripin, T. Kokubun, and E. Ippen, “Vertically coupled glass microring resonator channel dropping filters,” IEEE Photon. Technol. Lett. 11(2), 215–217 (1999).
[Crossref]

Roussey, M.

P. Stenberg, M. Roussey, P. Ryczkowski, G. Genty, S. Honkanen, and M. Kuittinen, “A merged photonic crystal slot waveguide embedded in ALD-TiO2,” Opt. Express 21(20), 24154–24162 (2013).
[Crossref]

M. Häyrinen, M. Roussey, A. Bera, M. Kuittinen, and S. Honkanen, “Atomic layer re-deposition for nanoscale devises,” in Encyclopedia of Plasma Technology, J. L. Shohet, ed. (Taylor & Francis, 2016), (in press).

Ryczkowski, P.

Saastamoinen, T.

Säynätjoki, A.

Soref, R. A.

Stenberg, P.

Stievater, T. H.

Taillart, D.

Tervo, J.

J. Tervo, M. Kuittinen, P. Vahimaa, J. Turunen, T. Aalto, P. Heimala, and M. Leppihalme, “Efficient Bragg waveguide-grating analysis by quasi-rigorous approach based on Redheffer’s star product,” Opt. Commun. 198, 265–272 (2001).
[Crossref]

Tervonen, A.

Tomljenovic-Hanic, S.

S. Tomljenovic-Hanic and J. D. Love, “Planer waveguide add/drop wavelength filters based on segmented gratings,” Microw. Opt. Technol. Lett. 37(3), 163–165 (2003).
[Crossref]

Tsay, A.

A. M. Prabhu, A. Tsay, Z. Han, and V. Van, “Extreme miniaturization of silicon add-drop microring filters for VLSI photonics applications,” IEEE Photon. J. 2(3), 436–444 (2010).
[Crossref]

Turunen, J.

J. Tervo, M. Kuittinen, P. Vahimaa, J. Turunen, T. Aalto, P. Heimala, and M. Leppihalme, “Efficient Bragg waveguide-grating analysis by quasi-rigorous approach based on Redheffer’s star product,” Opt. Commun. 198, 265–272 (2001).
[Crossref]

Urick, V. J.

Vahala, K.

K. Vahala, Optical Microcavities (World Scientific, 2004).
[Crossref]

Vahimaa, P.

J. Tervo, M. Kuittinen, P. Vahimaa, J. Turunen, T. Aalto, P. Heimala, and M. Leppihalme, “Efficient Bragg waveguide-grating analysis by quasi-rigorous approach based on Redheffer’s star product,” Opt. Commun. 198, 265–272 (2001).
[Crossref]

Van, V.

A. M. Prabhu, A. Tsay, Z. Han, and V. Van, “Extreme miniaturization of silicon add-drop microring filters for VLSI photonics applications,” IEEE Photon. J. 2(3), 436–444 (2010).
[Crossref]

Van. Thourhout, D.

Veerasubramanian, V.

Willems, P. A.

Wouters, J.

Yang, J.

Yariv, A.

D. F. Geraghty, D. Provenzano, M. Morrell, S. Honkanen, A. Yariv, and N. Peyghambarian, “Ion-exchanged waveguide add-drop filter,” Electron. Lett. 37(13), 829–831 (2001).
[Crossref]

A. S. Kewitsch, G. A. Rakuljic, P. A. Willems, and A. Yariv, “All-fiber zero-insertion-loss add-drop filter for wavelength-division multiplexing,” Opt. Lett. 23(2), 106–108 (1998).
[Crossref]

Yu, H.

Yu, P.

Zhou, W.

Appl. Opt. (2)

Electron. Lett. (1)

D. F. Geraghty, D. Provenzano, M. Morrell, S. Honkanen, A. Yariv, and N. Peyghambarian, “Ion-exchanged waveguide add-drop filter,” Electron. Lett. 37(13), 829–831 (2001).
[Crossref]

IEEE J. Quant. Electron. (1)

W. Burns and A. F. Milton, “Mode conversion in planar-Dielectric separating waveguides,” IEEE J. Quant. Electron. QE-11(1), 32–39 (1975).
[Crossref]

IEEE Photon. J. (1)

A. M. Prabhu, A. Tsay, Z. Han, and V. Van, “Extreme miniaturization of silicon add-drop microring filters for VLSI photonics applications,” IEEE Photon. J. 2(3), 436–444 (2010).
[Crossref]

IEEE Photon. Technol. Lett. (1)

B. E. Litte, S. T. Chu, W. Pan, D. Ripin, T. Kokubun, and E. Ippen, “Vertically coupled glass microring resonator channel dropping filters,” IEEE Photon. Technol. Lett. 11(2), 215–217 (1999).
[Crossref]

J. Opt. Soc. Am. A (2)

Microw. Opt. Technol. Lett. (1)

S. Tomljenovic-Hanic and J. D. Love, “Planer waveguide add/drop wavelength filters based on segmented gratings,” Microw. Opt. Technol. Lett. 37(3), 163–165 (2003).
[Crossref]

Opt. Commun. (1)

J. Tervo, M. Kuittinen, P. Vahimaa, J. Turunen, T. Aalto, P. Heimala, and M. Leppihalme, “Efficient Bragg waveguide-grating analysis by quasi-rigorous approach based on Redheffer’s star product,” Opt. Commun. 198, 265–272 (2001).
[Crossref]

Opt. Express (6)

Opt. Lett. (4)

Opt. Quantum Electron. (1)

J. P. Hugonin, P. Lalanne, I. Del. Villar, and I. R. Matias, “Fourier modal methods for modeling optical dielectric waveguides,” Opt. Quantum Electron. 37, 107–119 (2005).
[Crossref]

Other (2)

K. Vahala, Optical Microcavities (World Scientific, 2004).
[Crossref]

M. Häyrinen, M. Roussey, A. Bera, M. Kuittinen, and S. Honkanen, “Atomic layer re-deposition for nanoscale devises,” in Encyclopedia of Plasma Technology, J. L. Shohet, ed. (Taylor & Francis, 2016), (in press).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) 3D schematic of a four port shifted Bragg grating (SBG) with asymmetric Y-branches. (b) Working principle of a four port add-drop device in 2D and zoom in the SBG is given with arrow mark. Waveguide height = h, waveguide width = wg, grating amplitude = w, period of the grating = Λ, and the grating fill factor f = d/Λ.
Fig. 2
Fig. 2 Intensity of modal field distribution of a silicon waveguide (Wg = 800 nm, h = 220 nm) with 180 nm thick TiO2 coating and 2 μm BOX layer. (a) Fundamental mode (quasi-TE0). (b) First-order mode (quasi-TE1).
Fig. 3
Fig. 3 Normalized reflectivity of the TE1 mode as a function of the number of grating periods. For each grating length (Λ× number of periods) the reflected power of the TE1 mode is normalized with the power of incident TE0 mode.
Fig. 4
Fig. 4 (a) Schematic of the layout of the fabricated sample. (b) and (c) Scanning electron microscopic picture before the ALD coating of respectively the Y-junction and a part of the shifted Bragg grating.
Fig. 5
Fig. 5 (a) Simulated (FMM) spectral response of the SBG at the converted mode TE0 to TE1. (b) Measured reflection spectra at the DROP port. (c) Simulated transmission spectra at the THROUGH port at TE0 mode. (d) Measured transmission spectra at the THROUGH port.
Fig. 6
Fig. 6 (a) Filtered transmission spectra at the THROUGH port with (red curve) and without (black curve) SBG. The inset gives the raw data before filtering. (b) SEM image of the cross section of the waveguide with under etching. The waveguide is covered with 35 nm TiO2 coating. (c) Central wavelength (red curve) and the extinction ratio (black curve) of the transmission dip as a function of the TiO2 coating thickness.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Λ = λ c n TE 0 + n TE 1 ,

Metrics