Abstract

Trapping broadband electromagnetic radiation over a subwavelength grating, provides new opportunities for hyperspectral light-matter interaction on a nanometer scale. Previous efforts have shown rainbow-trapping is possible on functionally graded structures. Here, we propose groove width as a new gradient parameter for designing rainbow-trapping gratings and define the range of its validity. We articulate the correlation between the width of narrow grooves and the overlap or the coupling of the evanescent surface plasmon fields within the grooves. In the suitable range (≲150 nm), this width parameter becomes as important as other known parameters such as groove depth and materials composition, but tailoring groove widths is remarkably more feasible in practice. Using groove width as a design parameter, we investigate rainbow-trapping gratings and derive an analytical formula by treating each nano-groove as a plasmonic waveguide resonator. These results closely agree with numerical simulations.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
In-line rainbow trapping based on plasmonic gratings in optical microfibers

Chunying Guan, Jinhui Shi, Ming Ding, Pengfei Wang, Ping Hua, Libo Yuan, and Gilberto Brambilla
Opt. Express 21(14) 16552-16560 (2013)

Plasmonic rainbow trapping by a graphene monolayer on a dielectric layer with a silicon grating substrate

Lin Chen, Tian Zhang, Xun Li, and Guoping Wang
Opt. Express 21(23) 28628-28637 (2013)

Rainbow trapping and releasing in InSb graded subwavelength grooves by thermal tuning at the terahertz range

Ruoying Kanyang, Fan Zhang, Genquan Han, Yan Liu, Yao Shao, Jincheng Zhang, and Yue Hao
Opt. Mater. Express 8(9) 2954-2966 (2018)

References

  • View by:
  • |
  • |
  • |

  1. M. Soljačić, S. G. Johnson, S. Fan, M. Ibanescu, E. Ippen, and J. D. Joannopoulos, “Photonic-crystal slow-light enhancement of nonlinear phase sensitivity,” J. Opt. Soc. Am. B 19, 2052 (2002).
    [Crossref]
  2. Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband Light Absorption by a Sawtooth Anisotropic Metamaterial Slab,” Nano Lett. 12, 1443–1447 (2012).
    [Crossref] [PubMed]
  3. C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490–493 (2001).
    [Crossref] [PubMed]
  4. Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438, 65–69 (2005).
    [Crossref] [PubMed]
  5. Y.-J. Tsai, S. Larouche, T. Tyler, G. Lipworth, N. M. Jokerst, and D. R. Smith, “Design and fabrication of a metamaterial gradient index diffraction grating at infrared wavelengths,” Opt. Express 19, 24411 (2011).
    [Crossref] [PubMed]
  6. L. L. Ma, Y. C. Zhou, N. Jiang, X. Lu, J. Shao, W. Lu, J. Ge, X. M. Ding, and X. Y. Hou, “Wide-band “black silicon” based on porous silicon,” App. Phys. Lett. 88, 171907 (2006).
    [Crossref]
  7. M. Stockman, “Nanofocusing of Optical Energy in Tapered Plasmonic Waveguides,” Phys. Rev. Lett. 93, 137404 (2004).
    [Crossref] [PubMed]
  8. Q. Gan and F. J. Bartoli, “Graded Metallic Gratings for Ultrawideband Surface Wave Trapping at THz Frequencies,” IEEE. J. Sel. Top. Quantum Electron. 17, 102–109 (2011).
    [Crossref]
  9. K. L. Tsakmakidis, A. D. Boardman, and O. Hess, ““Trapped rainbow” storage of light in metamaterials,” Nature 450, 397–401 (2007).
    [Crossref] [PubMed]
  10. M. S. Jang and H. Atwater, “Plasmonic Rainbow Trapping Structures for Light Localization and Spectrum Splitting,” Phys. Rev. Lett. 107, 207401 (2011).
    [Crossref] [PubMed]
  11. Q. Gan, Y. Gao, K. Wagner, D. Vezenov, Y. J. Ding, and F. J. Bartoli, “Experimental verification of the rainbow trapping effect in adiabatic plasmonic gratings,” PNAS 108, 5169–5173 (2011).
    [Crossref] [PubMed]
  12. A. Polyakov, M. Zolotorev, P. J. Schuck, and H. A. Padmore, “Collective behavior of impedance matched plasmonic nanocavities,” Opt. Express 20, 7685 (2012).
    [Crossref] [PubMed]
  13. J. Le Perchec, P. Quèmerais, A. Barbara, and T. López-Ríos, “Why Metallic Surfaces with Grooves a Few Nanometers Deep and Wide May Strongly Absorb Visible Light,” Phys. Rev. Lett. 100, 066408 (2008).
    [Crossref] [PubMed]
  14. J. B. Pendry, “Mimicking Surface Plasmons with Structured Surfaces,” Science 305, 847–848 (2004).
    [Crossref] [PubMed]
  15. Q. Gan, Y. Ding, and F. Bartoli, “Rainbow Trapping and Releasing at Telecommunication Wavelengths,” Phys. Rev. Lett. 102, 056801 (2009).
    [Crossref]
  16. J. G. Rivas, M. Kuttge, P. H. Bolivar, H. Kurz, and J. A. Sánchez-Gil, “Propagation of Surface Plasmon Polaritons on Semiconductor Gratings,” Phys. Rev. Lett. 93, 256804 (2004).
    [Crossref]
  17. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  18. H. Miyazaki and Y. Kurokawa, “Squeezing Visible Light Waves into a 3-nm-Thick and 55-nm-Long Plasmon Cavity,” Phys. Rev. Lett. 96, 097401 (2006).
    [Crossref] [PubMed]
  19. S. A. Maier, “Plasmonic field enhancement and SERS in the effective mode volume picture,” Opt. Express 14, 1957 (2006).
    [Crossref] [PubMed]
  20. J. J. Wood, L. A. Tomlinson, O. Hess, S. A. Maier, and A. I. Fernández-Domínguez, “Spoof plasmon polaritons in slanted geometries,” Phys. Rev. B 85, 075441 (2012).
    [Crossref]
  21. S. I. Bozhevolnyi, “Effective-index modeling of channel plasmon polaritons,” Opt. Express 14, 9467 (2006).
    [Crossref] [PubMed]
  22. P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6, 4370–4379 (1972).
    [Crossref]
  23. A. D. Rakic, A. B. Djurišic, J. M. Elazar, and M. L. Majewski, “Optical Properties of Metallic Films for Vertical-Cavity Optoelectronic Devices,” App. Opt. 37, 5271 (1998).
    [Crossref]
  24. A. Polyakov, H. A. Padmore, X. Liang, S. Dhuey, B. Harteneck, J. P. Schuck, and S. Cabrini, “Light trapping in plasmonic nanocavities on metal surfaces,”J. of Vac. Sci. Tech. B: Microelec. and Nano. Struct. 29, 06FF01 (2011).
    [Crossref]

2012 (3)

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband Light Absorption by a Sawtooth Anisotropic Metamaterial Slab,” Nano Lett. 12, 1443–1447 (2012).
[Crossref] [PubMed]

A. Polyakov, M. Zolotorev, P. J. Schuck, and H. A. Padmore, “Collective behavior of impedance matched plasmonic nanocavities,” Opt. Express 20, 7685 (2012).
[Crossref] [PubMed]

J. J. Wood, L. A. Tomlinson, O. Hess, S. A. Maier, and A. I. Fernández-Domínguez, “Spoof plasmon polaritons in slanted geometries,” Phys. Rev. B 85, 075441 (2012).
[Crossref]

2011 (5)

A. Polyakov, H. A. Padmore, X. Liang, S. Dhuey, B. Harteneck, J. P. Schuck, and S. Cabrini, “Light trapping in plasmonic nanocavities on metal surfaces,”J. of Vac. Sci. Tech. B: Microelec. and Nano. Struct. 29, 06FF01 (2011).
[Crossref]

M. S. Jang and H. Atwater, “Plasmonic Rainbow Trapping Structures for Light Localization and Spectrum Splitting,” Phys. Rev. Lett. 107, 207401 (2011).
[Crossref] [PubMed]

Q. Gan, Y. Gao, K. Wagner, D. Vezenov, Y. J. Ding, and F. J. Bartoli, “Experimental verification of the rainbow trapping effect in adiabatic plasmonic gratings,” PNAS 108, 5169–5173 (2011).
[Crossref] [PubMed]

Y.-J. Tsai, S. Larouche, T. Tyler, G. Lipworth, N. M. Jokerst, and D. R. Smith, “Design and fabrication of a metamaterial gradient index diffraction grating at infrared wavelengths,” Opt. Express 19, 24411 (2011).
[Crossref] [PubMed]

Q. Gan and F. J. Bartoli, “Graded Metallic Gratings for Ultrawideband Surface Wave Trapping at THz Frequencies,” IEEE. J. Sel. Top. Quantum Electron. 17, 102–109 (2011).
[Crossref]

2009 (1)

Q. Gan, Y. Ding, and F. Bartoli, “Rainbow Trapping and Releasing at Telecommunication Wavelengths,” Phys. Rev. Lett. 102, 056801 (2009).
[Crossref]

2008 (1)

J. Le Perchec, P. Quèmerais, A. Barbara, and T. López-Ríos, “Why Metallic Surfaces with Grooves a Few Nanometers Deep and Wide May Strongly Absorb Visible Light,” Phys. Rev. Lett. 100, 066408 (2008).
[Crossref] [PubMed]

2007 (1)

K. L. Tsakmakidis, A. D. Boardman, and O. Hess, ““Trapped rainbow” storage of light in metamaterials,” Nature 450, 397–401 (2007).
[Crossref] [PubMed]

2006 (4)

L. L. Ma, Y. C. Zhou, N. Jiang, X. Lu, J. Shao, W. Lu, J. Ge, X. M. Ding, and X. Y. Hou, “Wide-band “black silicon” based on porous silicon,” App. Phys. Lett. 88, 171907 (2006).
[Crossref]

H. Miyazaki and Y. Kurokawa, “Squeezing Visible Light Waves into a 3-nm-Thick and 55-nm-Long Plasmon Cavity,” Phys. Rev. Lett. 96, 097401 (2006).
[Crossref] [PubMed]

S. A. Maier, “Plasmonic field enhancement and SERS in the effective mode volume picture,” Opt. Express 14, 1957 (2006).
[Crossref] [PubMed]

S. I. Bozhevolnyi, “Effective-index modeling of channel plasmon polaritons,” Opt. Express 14, 9467 (2006).
[Crossref] [PubMed]

2005 (1)

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438, 65–69 (2005).
[Crossref] [PubMed]

2004 (3)

M. Stockman, “Nanofocusing of Optical Energy in Tapered Plasmonic Waveguides,” Phys. Rev. Lett. 93, 137404 (2004).
[Crossref] [PubMed]

J. G. Rivas, M. Kuttge, P. H. Bolivar, H. Kurz, and J. A. Sánchez-Gil, “Propagation of Surface Plasmon Polaritons on Semiconductor Gratings,” Phys. Rev. Lett. 93, 256804 (2004).
[Crossref]

J. B. Pendry, “Mimicking Surface Plasmons with Structured Surfaces,” Science 305, 847–848 (2004).
[Crossref] [PubMed]

2002 (1)

2001 (1)

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490–493 (2001).
[Crossref] [PubMed]

1998 (1)

A. D. Rakic, A. B. Djurišic, J. M. Elazar, and M. L. Majewski, “Optical Properties of Metallic Films for Vertical-Cavity Optoelectronic Devices,” App. Opt. 37, 5271 (1998).
[Crossref]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

Atwater, H.

M. S. Jang and H. Atwater, “Plasmonic Rainbow Trapping Structures for Light Localization and Spectrum Splitting,” Phys. Rev. Lett. 107, 207401 (2011).
[Crossref] [PubMed]

Barbara, A.

J. Le Perchec, P. Quèmerais, A. Barbara, and T. López-Ríos, “Why Metallic Surfaces with Grooves a Few Nanometers Deep and Wide May Strongly Absorb Visible Light,” Phys. Rev. Lett. 100, 066408 (2008).
[Crossref] [PubMed]

Bartoli, F.

Q. Gan, Y. Ding, and F. Bartoli, “Rainbow Trapping and Releasing at Telecommunication Wavelengths,” Phys. Rev. Lett. 102, 056801 (2009).
[Crossref]

Bartoli, F. J.

Q. Gan and F. J. Bartoli, “Graded Metallic Gratings for Ultrawideband Surface Wave Trapping at THz Frequencies,” IEEE. J. Sel. Top. Quantum Electron. 17, 102–109 (2011).
[Crossref]

Q. Gan, Y. Gao, K. Wagner, D. Vezenov, Y. J. Ding, and F. J. Bartoli, “Experimental verification of the rainbow trapping effect in adiabatic plasmonic gratings,” PNAS 108, 5169–5173 (2011).
[Crossref] [PubMed]

Behroozi, C. H.

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490–493 (2001).
[Crossref] [PubMed]

Boardman, A. D.

K. L. Tsakmakidis, A. D. Boardman, and O. Hess, ““Trapped rainbow” storage of light in metamaterials,” Nature 450, 397–401 (2007).
[Crossref] [PubMed]

Bolivar, P. H.

J. G. Rivas, M. Kuttge, P. H. Bolivar, H. Kurz, and J. A. Sánchez-Gil, “Propagation of Surface Plasmon Polaritons on Semiconductor Gratings,” Phys. Rev. Lett. 93, 256804 (2004).
[Crossref]

Bozhevolnyi, S. I.

Cabrini, S.

A. Polyakov, H. A. Padmore, X. Liang, S. Dhuey, B. Harteneck, J. P. Schuck, and S. Cabrini, “Light trapping in plasmonic nanocavities on metal surfaces,”J. of Vac. Sci. Tech. B: Microelec. and Nano. Struct. 29, 06FF01 (2011).
[Crossref]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

Cui, Y.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband Light Absorption by a Sawtooth Anisotropic Metamaterial Slab,” Nano Lett. 12, 1443–1447 (2012).
[Crossref] [PubMed]

Dhuey, S.

A. Polyakov, H. A. Padmore, X. Liang, S. Dhuey, B. Harteneck, J. P. Schuck, and S. Cabrini, “Light trapping in plasmonic nanocavities on metal surfaces,”J. of Vac. Sci. Tech. B: Microelec. and Nano. Struct. 29, 06FF01 (2011).
[Crossref]

Ding, X. M.

L. L. Ma, Y. C. Zhou, N. Jiang, X. Lu, J. Shao, W. Lu, J. Ge, X. M. Ding, and X. Y. Hou, “Wide-band “black silicon” based on porous silicon,” App. Phys. Lett. 88, 171907 (2006).
[Crossref]

Ding, Y.

Q. Gan, Y. Ding, and F. Bartoli, “Rainbow Trapping and Releasing at Telecommunication Wavelengths,” Phys. Rev. Lett. 102, 056801 (2009).
[Crossref]

Ding, Y. J.

Q. Gan, Y. Gao, K. Wagner, D. Vezenov, Y. J. Ding, and F. J. Bartoli, “Experimental verification of the rainbow trapping effect in adiabatic plasmonic gratings,” PNAS 108, 5169–5173 (2011).
[Crossref] [PubMed]

Djurišic, A. B.

A. D. Rakic, A. B. Djurišic, J. M. Elazar, and M. L. Majewski, “Optical Properties of Metallic Films for Vertical-Cavity Optoelectronic Devices,” App. Opt. 37, 5271 (1998).
[Crossref]

Dutton, Z.

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490–493 (2001).
[Crossref] [PubMed]

Elazar, J. M.

A. D. Rakic, A. B. Djurišic, J. M. Elazar, and M. L. Majewski, “Optical Properties of Metallic Films for Vertical-Cavity Optoelectronic Devices,” App. Opt. 37, 5271 (1998).
[Crossref]

Fan, S.

Fang, N. X.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband Light Absorption by a Sawtooth Anisotropic Metamaterial Slab,” Nano Lett. 12, 1443–1447 (2012).
[Crossref] [PubMed]

Fernández-Domínguez, A. I.

J. J. Wood, L. A. Tomlinson, O. Hess, S. A. Maier, and A. I. Fernández-Domínguez, “Spoof plasmon polaritons in slanted geometries,” Phys. Rev. B 85, 075441 (2012).
[Crossref]

Fung, K. H.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband Light Absorption by a Sawtooth Anisotropic Metamaterial Slab,” Nano Lett. 12, 1443–1447 (2012).
[Crossref] [PubMed]

Gan, Q.

Q. Gan and F. J. Bartoli, “Graded Metallic Gratings for Ultrawideband Surface Wave Trapping at THz Frequencies,” IEEE. J. Sel. Top. Quantum Electron. 17, 102–109 (2011).
[Crossref]

Q. Gan, Y. Gao, K. Wagner, D. Vezenov, Y. J. Ding, and F. J. Bartoli, “Experimental verification of the rainbow trapping effect in adiabatic plasmonic gratings,” PNAS 108, 5169–5173 (2011).
[Crossref] [PubMed]

Q. Gan, Y. Ding, and F. Bartoli, “Rainbow Trapping and Releasing at Telecommunication Wavelengths,” Phys. Rev. Lett. 102, 056801 (2009).
[Crossref]

Gao, Y.

Q. Gan, Y. Gao, K. Wagner, D. Vezenov, Y. J. Ding, and F. J. Bartoli, “Experimental verification of the rainbow trapping effect in adiabatic plasmonic gratings,” PNAS 108, 5169–5173 (2011).
[Crossref] [PubMed]

Ge, J.

L. L. Ma, Y. C. Zhou, N. Jiang, X. Lu, J. Shao, W. Lu, J. Ge, X. M. Ding, and X. Y. Hou, “Wide-band “black silicon” based on porous silicon,” App. Phys. Lett. 88, 171907 (2006).
[Crossref]

Hamann, H. F.

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438, 65–69 (2005).
[Crossref] [PubMed]

Harteneck, B.

A. Polyakov, H. A. Padmore, X. Liang, S. Dhuey, B. Harteneck, J. P. Schuck, and S. Cabrini, “Light trapping in plasmonic nanocavities on metal surfaces,”J. of Vac. Sci. Tech. B: Microelec. and Nano. Struct. 29, 06FF01 (2011).
[Crossref]

Hau, L. V.

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490–493 (2001).
[Crossref] [PubMed]

He, S.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband Light Absorption by a Sawtooth Anisotropic Metamaterial Slab,” Nano Lett. 12, 1443–1447 (2012).
[Crossref] [PubMed]

Hess, O.

J. J. Wood, L. A. Tomlinson, O. Hess, S. A. Maier, and A. I. Fernández-Domínguez, “Spoof plasmon polaritons in slanted geometries,” Phys. Rev. B 85, 075441 (2012).
[Crossref]

K. L. Tsakmakidis, A. D. Boardman, and O. Hess, ““Trapped rainbow” storage of light in metamaterials,” Nature 450, 397–401 (2007).
[Crossref] [PubMed]

Hou, X. Y.

L. L. Ma, Y. C. Zhou, N. Jiang, X. Lu, J. Shao, W. Lu, J. Ge, X. M. Ding, and X. Y. Hou, “Wide-band “black silicon” based on porous silicon,” App. Phys. Lett. 88, 171907 (2006).
[Crossref]

Ibanescu, M.

Ippen, E.

Jang, M. S.

M. S. Jang and H. Atwater, “Plasmonic Rainbow Trapping Structures for Light Localization and Spectrum Splitting,” Phys. Rev. Lett. 107, 207401 (2011).
[Crossref] [PubMed]

Jiang, N.

L. L. Ma, Y. C. Zhou, N. Jiang, X. Lu, J. Shao, W. Lu, J. Ge, X. M. Ding, and X. Y. Hou, “Wide-band “black silicon” based on porous silicon,” App. Phys. Lett. 88, 171907 (2006).
[Crossref]

Jin, Y.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband Light Absorption by a Sawtooth Anisotropic Metamaterial Slab,” Nano Lett. 12, 1443–1447 (2012).
[Crossref] [PubMed]

Joannopoulos, J. D.

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

Johnson, S. G.

Jokerst, N. M.

Kurokawa, Y.

H. Miyazaki and Y. Kurokawa, “Squeezing Visible Light Waves into a 3-nm-Thick and 55-nm-Long Plasmon Cavity,” Phys. Rev. Lett. 96, 097401 (2006).
[Crossref] [PubMed]

Kurz, H.

J. G. Rivas, M. Kuttge, P. H. Bolivar, H. Kurz, and J. A. Sánchez-Gil, “Propagation of Surface Plasmon Polaritons on Semiconductor Gratings,” Phys. Rev. Lett. 93, 256804 (2004).
[Crossref]

Kuttge, M.

J. G. Rivas, M. Kuttge, P. H. Bolivar, H. Kurz, and J. A. Sánchez-Gil, “Propagation of Surface Plasmon Polaritons on Semiconductor Gratings,” Phys. Rev. Lett. 93, 256804 (2004).
[Crossref]

Larouche, S.

Le Perchec, J.

J. Le Perchec, P. Quèmerais, A. Barbara, and T. López-Ríos, “Why Metallic Surfaces with Grooves a Few Nanometers Deep and Wide May Strongly Absorb Visible Light,” Phys. Rev. Lett. 100, 066408 (2008).
[Crossref] [PubMed]

Liang, X.

A. Polyakov, H. A. Padmore, X. Liang, S. Dhuey, B. Harteneck, J. P. Schuck, and S. Cabrini, “Light trapping in plasmonic nanocavities on metal surfaces,”J. of Vac. Sci. Tech. B: Microelec. and Nano. Struct. 29, 06FF01 (2011).
[Crossref]

Lipworth, G.

Liu, C.

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490–493 (2001).
[Crossref] [PubMed]

López-Ríos, T.

J. Le Perchec, P. Quèmerais, A. Barbara, and T. López-Ríos, “Why Metallic Surfaces with Grooves a Few Nanometers Deep and Wide May Strongly Absorb Visible Light,” Phys. Rev. Lett. 100, 066408 (2008).
[Crossref] [PubMed]

Lu, W.

L. L. Ma, Y. C. Zhou, N. Jiang, X. Lu, J. Shao, W. Lu, J. Ge, X. M. Ding, and X. Y. Hou, “Wide-band “black silicon” based on porous silicon,” App. Phys. Lett. 88, 171907 (2006).
[Crossref]

Lu, X.

L. L. Ma, Y. C. Zhou, N. Jiang, X. Lu, J. Shao, W. Lu, J. Ge, X. M. Ding, and X. Y. Hou, “Wide-band “black silicon” based on porous silicon,” App. Phys. Lett. 88, 171907 (2006).
[Crossref]

Ma, H.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband Light Absorption by a Sawtooth Anisotropic Metamaterial Slab,” Nano Lett. 12, 1443–1447 (2012).
[Crossref] [PubMed]

Ma, L. L.

L. L. Ma, Y. C. Zhou, N. Jiang, X. Lu, J. Shao, W. Lu, J. Ge, X. M. Ding, and X. Y. Hou, “Wide-band “black silicon” based on porous silicon,” App. Phys. Lett. 88, 171907 (2006).
[Crossref]

Maier, S. A.

J. J. Wood, L. A. Tomlinson, O. Hess, S. A. Maier, and A. I. Fernández-Domínguez, “Spoof plasmon polaritons in slanted geometries,” Phys. Rev. B 85, 075441 (2012).
[Crossref]

S. A. Maier, “Plasmonic field enhancement and SERS in the effective mode volume picture,” Opt. Express 14, 1957 (2006).
[Crossref] [PubMed]

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

Majewski, M. L.

A. D. Rakic, A. B. Djurišic, J. M. Elazar, and M. L. Majewski, “Optical Properties of Metallic Films for Vertical-Cavity Optoelectronic Devices,” App. Opt. 37, 5271 (1998).
[Crossref]

McNab, S. J.

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438, 65–69 (2005).
[Crossref] [PubMed]

Miyazaki, H.

H. Miyazaki and Y. Kurokawa, “Squeezing Visible Light Waves into a 3-nm-Thick and 55-nm-Long Plasmon Cavity,” Phys. Rev. Lett. 96, 097401 (2006).
[Crossref] [PubMed]

O’Boyle, M.

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438, 65–69 (2005).
[Crossref] [PubMed]

Padmore, H. A.

A. Polyakov, M. Zolotorev, P. J. Schuck, and H. A. Padmore, “Collective behavior of impedance matched plasmonic nanocavities,” Opt. Express 20, 7685 (2012).
[Crossref] [PubMed]

A. Polyakov, H. A. Padmore, X. Liang, S. Dhuey, B. Harteneck, J. P. Schuck, and S. Cabrini, “Light trapping in plasmonic nanocavities on metal surfaces,”J. of Vac. Sci. Tech. B: Microelec. and Nano. Struct. 29, 06FF01 (2011).
[Crossref]

Pendry, J. B.

J. B. Pendry, “Mimicking Surface Plasmons with Structured Surfaces,” Science 305, 847–848 (2004).
[Crossref] [PubMed]

Polyakov, A.

A. Polyakov, M. Zolotorev, P. J. Schuck, and H. A. Padmore, “Collective behavior of impedance matched plasmonic nanocavities,” Opt. Express 20, 7685 (2012).
[Crossref] [PubMed]

A. Polyakov, H. A. Padmore, X. Liang, S. Dhuey, B. Harteneck, J. P. Schuck, and S. Cabrini, “Light trapping in plasmonic nanocavities on metal surfaces,”J. of Vac. Sci. Tech. B: Microelec. and Nano. Struct. 29, 06FF01 (2011).
[Crossref]

Quèmerais, P.

J. Le Perchec, P. Quèmerais, A. Barbara, and T. López-Ríos, “Why Metallic Surfaces with Grooves a Few Nanometers Deep and Wide May Strongly Absorb Visible Light,” Phys. Rev. Lett. 100, 066408 (2008).
[Crossref] [PubMed]

Rakic, A. D.

A. D. Rakic, A. B. Djurišic, J. M. Elazar, and M. L. Majewski, “Optical Properties of Metallic Films for Vertical-Cavity Optoelectronic Devices,” App. Opt. 37, 5271 (1998).
[Crossref]

Rivas, J. G.

J. G. Rivas, M. Kuttge, P. H. Bolivar, H. Kurz, and J. A. Sánchez-Gil, “Propagation of Surface Plasmon Polaritons on Semiconductor Gratings,” Phys. Rev. Lett. 93, 256804 (2004).
[Crossref]

Sánchez-Gil, J. A.

J. G. Rivas, M. Kuttge, P. H. Bolivar, H. Kurz, and J. A. Sánchez-Gil, “Propagation of Surface Plasmon Polaritons on Semiconductor Gratings,” Phys. Rev. Lett. 93, 256804 (2004).
[Crossref]

Schuck, J. P.

A. Polyakov, H. A. Padmore, X. Liang, S. Dhuey, B. Harteneck, J. P. Schuck, and S. Cabrini, “Light trapping in plasmonic nanocavities on metal surfaces,”J. of Vac. Sci. Tech. B: Microelec. and Nano. Struct. 29, 06FF01 (2011).
[Crossref]

Schuck, P. J.

Shao, J.

L. L. Ma, Y. C. Zhou, N. Jiang, X. Lu, J. Shao, W. Lu, J. Ge, X. M. Ding, and X. Y. Hou, “Wide-band “black silicon” based on porous silicon,” App. Phys. Lett. 88, 171907 (2006).
[Crossref]

Smith, D. R.

Soljacic, M.

Stockman, M.

M. Stockman, “Nanofocusing of Optical Energy in Tapered Plasmonic Waveguides,” Phys. Rev. Lett. 93, 137404 (2004).
[Crossref] [PubMed]

Tomlinson, L. A.

J. J. Wood, L. A. Tomlinson, O. Hess, S. A. Maier, and A. I. Fernández-Domínguez, “Spoof plasmon polaritons in slanted geometries,” Phys. Rev. B 85, 075441 (2012).
[Crossref]

Tsai, Y.-J.

Tsakmakidis, K. L.

K. L. Tsakmakidis, A. D. Boardman, and O. Hess, ““Trapped rainbow” storage of light in metamaterials,” Nature 450, 397–401 (2007).
[Crossref] [PubMed]

Tyler, T.

Vezenov, D.

Q. Gan, Y. Gao, K. Wagner, D. Vezenov, Y. J. Ding, and F. J. Bartoli, “Experimental verification of the rainbow trapping effect in adiabatic plasmonic gratings,” PNAS 108, 5169–5173 (2011).
[Crossref] [PubMed]

Vlasov, Y. A.

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438, 65–69 (2005).
[Crossref] [PubMed]

Wagner, K.

Q. Gan, Y. Gao, K. Wagner, D. Vezenov, Y. J. Ding, and F. J. Bartoli, “Experimental verification of the rainbow trapping effect in adiabatic plasmonic gratings,” PNAS 108, 5169–5173 (2011).
[Crossref] [PubMed]

Wood, J. J.

J. J. Wood, L. A. Tomlinson, O. Hess, S. A. Maier, and A. I. Fernández-Domínguez, “Spoof plasmon polaritons in slanted geometries,” Phys. Rev. B 85, 075441 (2012).
[Crossref]

Xu, J.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband Light Absorption by a Sawtooth Anisotropic Metamaterial Slab,” Nano Lett. 12, 1443–1447 (2012).
[Crossref] [PubMed]

Zhou, Y. C.

L. L. Ma, Y. C. Zhou, N. Jiang, X. Lu, J. Shao, W. Lu, J. Ge, X. M. Ding, and X. Y. Hou, “Wide-band “black silicon” based on porous silicon,” App. Phys. Lett. 88, 171907 (2006).
[Crossref]

Zolotorev, M.

App. Opt. (1)

A. D. Rakic, A. B. Djurišic, J. M. Elazar, and M. L. Majewski, “Optical Properties of Metallic Films for Vertical-Cavity Optoelectronic Devices,” App. Opt. 37, 5271 (1998).
[Crossref]

App. Phys. Lett. (1)

L. L. Ma, Y. C. Zhou, N. Jiang, X. Lu, J. Shao, W. Lu, J. Ge, X. M. Ding, and X. Y. Hou, “Wide-band “black silicon” based on porous silicon,” App. Phys. Lett. 88, 171907 (2006).
[Crossref]

IEEE. J. Sel. Top. Quantum Electron. (1)

Q. Gan and F. J. Bartoli, “Graded Metallic Gratings for Ultrawideband Surface Wave Trapping at THz Frequencies,” IEEE. J. Sel. Top. Quantum Electron. 17, 102–109 (2011).
[Crossref]

J. of Vac. Sci. Tech. B: Microelec. and Nano. Struct. (1)

A. Polyakov, H. A. Padmore, X. Liang, S. Dhuey, B. Harteneck, J. P. Schuck, and S. Cabrini, “Light trapping in plasmonic nanocavities on metal surfaces,”J. of Vac. Sci. Tech. B: Microelec. and Nano. Struct. 29, 06FF01 (2011).
[Crossref]

J. Opt. Soc. Am. B (1)

Nano Lett. (1)

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband Light Absorption by a Sawtooth Anisotropic Metamaterial Slab,” Nano Lett. 12, 1443–1447 (2012).
[Crossref] [PubMed]

Nature (3)

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490–493 (2001).
[Crossref] [PubMed]

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438, 65–69 (2005).
[Crossref] [PubMed]

K. L. Tsakmakidis, A. D. Boardman, and O. Hess, ““Trapped rainbow” storage of light in metamaterials,” Nature 450, 397–401 (2007).
[Crossref] [PubMed]

Opt. Express (4)

Phys. Rev. B (2)

J. J. Wood, L. A. Tomlinson, O. Hess, S. A. Maier, and A. I. Fernández-Domínguez, “Spoof plasmon polaritons in slanted geometries,” Phys. Rev. B 85, 075441 (2012).
[Crossref]

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

Phys. Rev. Lett. (6)

H. Miyazaki and Y. Kurokawa, “Squeezing Visible Light Waves into a 3-nm-Thick and 55-nm-Long Plasmon Cavity,” Phys. Rev. Lett. 96, 097401 (2006).
[Crossref] [PubMed]

J. Le Perchec, P. Quèmerais, A. Barbara, and T. López-Ríos, “Why Metallic Surfaces with Grooves a Few Nanometers Deep and Wide May Strongly Absorb Visible Light,” Phys. Rev. Lett. 100, 066408 (2008).
[Crossref] [PubMed]

Q. Gan, Y. Ding, and F. Bartoli, “Rainbow Trapping and Releasing at Telecommunication Wavelengths,” Phys. Rev. Lett. 102, 056801 (2009).
[Crossref]

J. G. Rivas, M. Kuttge, P. H. Bolivar, H. Kurz, and J. A. Sánchez-Gil, “Propagation of Surface Plasmon Polaritons on Semiconductor Gratings,” Phys. Rev. Lett. 93, 256804 (2004).
[Crossref]

M. S. Jang and H. Atwater, “Plasmonic Rainbow Trapping Structures for Light Localization and Spectrum Splitting,” Phys. Rev. Lett. 107, 207401 (2011).
[Crossref] [PubMed]

M. Stockman, “Nanofocusing of Optical Energy in Tapered Plasmonic Waveguides,” Phys. Rev. Lett. 93, 137404 (2004).
[Crossref] [PubMed]

PNAS (1)

Q. Gan, Y. Gao, K. Wagner, D. Vezenov, Y. J. Ding, and F. J. Bartoli, “Experimental verification of the rainbow trapping effect in adiabatic plasmonic gratings,” PNAS 108, 5169–5173 (2011).
[Crossref] [PubMed]

Science (1)

J. B. Pendry, “Mimicking Surface Plasmons with Structured Surfaces,” Science 305, 847–848 (2004).
[Crossref] [PubMed]

Other (1)

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

Supplementary Material (1)

NameDescription
» Visualization 1: AVI (11247 KB)      A series of simulations for a range of frequencies

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 p-polarized radiation (E-field in the z-direction) can launch SPPs traveling in the x-direction into the grooves, as well as SPPs traveling in the z-direction on the top surface between grooves. In narrow grooves when w ≲ 150 nm, SPP fields within the grooves overlap, resulting in coupling of SPPs on the sidewalls (shown as a squiggly line between two down-traveling SPPs facing each other on the opposite walls of the groove). Likewise, SPPs can become coupled through the metal when d is comparable in size, to the skin depth of SPPs in the metal. However, coupling through the metal requires still smaller d values ∼ 25 nm, approximately the skin depth of SPPs in the metals in the visible and near infrared range.
Fig. 2
Fig. 2 This plot shows λsp as a function of dielectric core thickness w with permittivity 1, and a metal cladding with permittivity of 2. The MIM waveguide is unbounded in both x and y directions defined in Fig. 1. At point (c) corresponding to inset (c) shown under the curve, the waveguide is almost outside the regime of influence of plasmonic coupling (w > 200 nm), where it can be treated as a decoupled MIM waveguide with a wavelength of λcλdecoupled = 9 μm. At point (b), λsp is compressed to about 75% of λdecoupled due to the intragroove coupling effect, and at point (a) this compression is a further 50% of λdecoupled. Inset shows the fundamental and higher order modes of a plasmonic cavity given by Eqs. (4) and (5) together. The MIM waveguide is now bounded in both x and z directions and only assumed to be infinite along y axis. The effect shown in the main plot equally applies to the bounded case depicted in the inset.
Fig. 3
Fig. 3 Plot of the fundamental cavity mode (n=0) as a function L and w for a single frequency. Dotted cut-lines (a) and (b) outline the discrete nature of the grating possessing linear gradients in L and w, respectively, with each point corresponding to a nano-groove of particular dimensions (wng, Lng). Inset (a): a grating with a linear gradient in depth variation corresponding to the vertical dotted line (a). Inset (b): a grating corresponding to the horizontal dotted line (b), where the gradient is strictly based on groove width. Inset (c) plots the resonant dispersion curve for several frequencies in the visible range. Each spectral component intersects at a different location with the horizontal dotted line pictorially representing the grating. The result is the formation of a rainbow trapping effect over the grating. In order to compare the E-field profiles of light trapping based on depth variation shown in inset (A), to that based on width variation of inset (B), COMSOL simulations for two structures of comparable dimensions are shown. Structures (A) and (B) correspond to the COMSOL simulation of the E-field and correspond to cut-lines (a) and (b), respectively. The simulation frequency for both structures is at 30 THz. It can be seen that the profile of the light localization is more symmetric in the width-based structures compared to a depth-based grating.
Fig. 4
Fig. 4 Ten simulation frames are overlaid to produce this compound image. The width-gradient profile is constant across all frames (w changing from 3 nm to 35 nm). That is, the structures in each frame utilize only groove width as the gradient parameter. In each successive frame the structure gets deeper; that is, the length (L) of the structure increases from left to right. Points (a) and (b) show the loci of light-trapping for two such frames. For example, point (a) in the figure shows a structure with a depth (L) of 1.1 μm, and the location of the trap at a groove with a width of 11 nm, corresponding to the grating shown in inset (a); the same logic applies for inset (b). The solid curve on the main plot shows the exact analytical solution of λsp as a function of L and w (groove dimensions). Insets (a) and (b) show the field distribution of the trap over the structures that corresponds to points (a) and (b) on the main graph. The locations of the trap determined from the simulation, closely agree with the analytical solution.
Fig. 5
Fig. 5 Simulation of light trapping by a graded grating where the groove depths are fixed at 60 nm with groove widths varying between 20 nm to 50 nm. The direction of energy flow is overlaid on the plot of the E-field. The excitation is through a current-source at 500 THz (600 nm), as seen to the left of grating. The dielectric function of gold is taken from Johnson & Christy [22]. This illustration depicts realistic dimensions for a rainbow-trapping grating operating in the visible range such as the one shown in the inset of Fig. 3. (A series of simulations for a range of frequencies is shown in Visualization 1.)

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

H y = C e i β x e k 1 z + D e i β x e k 1 z ,
E x = i C 2 ω 0 1 k e i β x e k 1 z + i D 1 ω 0 1 k e i β x e k 1 z ,
E z = C β ω 0 1 e i β x e k 1 z + D β ω 0 1 e i β x e k 1 z ,
tanh ( k 1 w 2 ) = k 1 1 k 2 2 .
( 1 4 + n 2 ) λ sp = L ,
n eff = α 2 1 2 2 1 2 2 α 2 2 2 1 2 ,

Metrics