Abstract

We demonstrate a high power dual-frequency linear-polarization fiber laser that carries radio frequency signal. Such fiber laser is based on an all-fiber master oscillator power amplifier configuration that consists of a dual-frequency seed laser and three-stage amplifiers. The dual-frequency seed laser is constructed by recombining two beams that are split from a single-frequency linearly-polarized laser. One beam has initial frequency and the other beam is modulated by an acoustic-optical modulator to have a frequency shift of 150 MHz. Then the radio frequency signal of 150 MHz is carried on the laser due to the beat frequency of these two beams. In the main amplifier, a piece of polarization maintaining large-mode-area fiber with short length is used to combine the SBS suppression with high power amplification. As a result, the dual-frequency laser is amplified to 434 W without the occurrence of SBS. The slope efficiency is 81.3%. The polarization degree of the laser and the modulation depth of the optically carried radio frequency signal are both well maintained during the amplification process. Besides, a high signal-noise-ratio of above 75 dB is realized, which demonstrates the low-noise property of the optically carried radio frequency signal. To the best of our knowledge, this is the highest reported output power of the optically carried radio frequency signal.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High brightness, high SNR radio-frequency signal generated by an all-fibered linear-polarization single-mode dual-frequency fiber laser

Xiang Zhao, Hui Shen, Gang Bai, Jingpu Zhang, Xiaolong Chen, Yifeng Yang, Yunfeng Qi, Bing He, and Jun Zhou
Opt. Express 25(22) 27051-27059 (2017)

50 W low noise dual-frequency laser fiber power amplifier

Ying Kang, Lijun Cheng, Suhui Yang, Changming Zhao, Haiyang Zhang, and Tao He
Opt. Express 24(9) 9202-9208 (2016)

560  W all fiber and polarization-maintaining amplifier with narrow linewidth and near-diffraction-limited beam quality

Yang Ran, Rumao Tao, Pengfei Ma, Xiaolin Wang, Rongtao Su, Pu Zhou, and Lei Si
Appl. Opt. 54(24) 7258-7263 (2015)

References

  • View by:
  • |
  • |
  • |

  1. M. Matsuura, H. Furugori, and J. Sato, “60 W power-over-fiber feed using double-clad fibers for radio-over-fiber systems with optically powered remote antenna units,” Opt. Lett. 40(23), 5598–5601 (2015).
    [Crossref] [PubMed]
  2. J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
    [Crossref]
  3. L. Maleki, “Radiofrequency antenna: In the service of national security,” Nat. Photonics 1(9), 493–494 (2007).
    [Crossref]
  4. D. Wake, M. Webster, G. Wimpenny, K. Beacham, and L. Crawford, “Radio over fiber for mobile communications,” in Microwave Photonics (2004), pp. 157–160.
  5. G. A. Blackburn, “Remote sensing of forest pigments using airborne imaging spectrometer and LIDAR imagery,” Remote Sens. Environ. 82(2), 311–321 (2002).
    [Crossref]
  6. M. R. K. Soltanian, I. Sadegh Amiri, S. E. Alavi, and H. Ahmad, “Dual-wavelength Erbium-doped fiber laser to generate terahertz radiation using photonic crystal fiber,” J. Lightwave Technol. 33(24), 5038–5046 (2015).
    [Crossref]
  7. G. Qi, J. Yao, J. Seregelyi, and S. Paquet, “Optical generation and distribution of continuously tunable millimeter-wave signals using an optical phase modulator,” J. Lightwave Technol. 23(9), 2687–2695 (2005).
    [Crossref]
  8. T. He, S. Yang, C. Zhao, H. Zhang, Y. Liang, and Y. Kang, “High power amplification of tunable optically carried RF signals by a diode pumped Yb3+ doped LMA silicon fiber,” Laser Phys. Lett. 12(3), 035101 (2015).
    [Crossref]
  9. Y. Kang, L. Cheng, S. Yang, C. Zhao, H. Zhang, and T. He, “50 W low noise dual-frequency laser fiber power amplifier,” Opt. Express 24(9), 9202–9208 (2016).
    [Crossref] [PubMed]
  10. T. Chen, J. Wu, W. Xu, Z. He, L. Qian, and R. Shu, “Linearly polarized, dual wavelength frequency-modulated continuous-wave fiber laser for simultaneous coherent distance and speed measurements,” Laser Phys. Lett. 13(7), 075105 (2016).
    [Crossref]
  11. A. Rolland, L. Frein, M. Vallet, M. Brunel, F. Bondu, and T. Merlet, “40 GHz photonic synthesizer using a dual-polarization microlaser,” IEEE Photonics Technol. Lett. 22(23), 1738–1740 (2010).
    [Crossref]
  12. Y. S. Juan and F. Y. Lin, “Photonic generation of broadly tunable microwave signals utilizing a Dual-Beam optically injected semiconductor laser,” IEEE Photonics J. 3(4), 644–650 (2011).
    [Crossref]
  13. L. Huang, P. Ma, R. Tao, C. Shi, X. Wang, and P. Zhou, “1.5 kW ytterbium-doped single-transverse-mode, linearly polarized monolithic fiber master oscillator power amplifier,” Appl. Opt. 54(10), 2880–2884 (2015).
    [Crossref] [PubMed]
  14. P. Ma, R. Tao, R. Su, X. Wang, P. Zhou, and Z. Liu, “1.89 kW all-fiberized and polarization-maintained amplifiers with narrow linewidth and near-diffraction-limited beam quality,” Opt. Express 24(4), 4187–4195 (2016).
    [Crossref] [PubMed]
  15. D. A. Grukh, A. S. Kurkov, V. M. Paramonov, and E. M. Dianov, “Effect of heating on the optical properties of Yb3+ -doped fibres and fiber lasers,” Quantum Electron. 34(6), 579–582 (2004).
    [Crossref]
  16. S. Xu, Z. Yang, W. Zhang, X. Wei, Q. Qian, D. Chen, Q. Zhang, S. Shen, M. Peng, and J. Qiu, “400 mW ultrashort cavity low-noise single-frequency Yb3+-doped phosphate fiber laser,” Opt. Lett. 36(18), 3708–3710 (2011).
    [Crossref] [PubMed]
  17. P. Ma, P. Zhou, Y. Ma, R. Su, X. Xu, and Z. Liu, “Single-frequency 332 W, linearly polarized Yb-doped all-fiber amplifier with near diffraction-limited beam quality,” Appl. Opt. 52(20), 4854–4857 (2013).
    [Crossref] [PubMed]
  18. G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic Press, 2007).
  19. J. E. Rothenberg, P. A. Thielen, M. Wickham, and C. P. Asman, “Suppression of stimulated Brillouin scattering in single-frequency multi-kilowatt fiber amplifiers,” (International Society for Optics and Photonics, 2008), p. 68730O.
  20. I. Dajani, C. Zeringue, T. J. Bronder, T. Shay, A. Gavrielides, and C. Robin, “A theoretical treatment of two approaches to SBS mitigation with two-tone amplification,” Opt. Express 16(18), 14233–14247 (2008).
    [Crossref] [PubMed]
  21. J. Y. Leng, X. L. Wang, H. Xiao, P. Zhou, Y. X. Ma, S. F. Guo, and X. J. Xu, “Suppressing the stimulated Brillouin scattering in high power fiber amplifiers by dual-single-frequency amplification,” Laser Phys. Lett. 9(7), 532–536 (2012).
    [Crossref]
  22. L. Huang, H. Zhang, X. Wang, and P. Zhou, “Diode-pumped 1178-nm high-power Yb-doped fiber laser operating at 125 °C,” IEEE Photonics J. 8(3), 1–7 (2016).
  23. A. V. Smith and J. J. Smith, “Mode instability in high power fiber amplifiers,” Opt. Express 19(11), 10180–10192 (2011).
    [Crossref] [PubMed]
  24. H. J. Otto, F. Stutzki, F. Jansen, T. Eidam, C. Jauregui, J. Limpert, and A. Tünnermann, “Temporal dynamics of mode instabilities in high-power fiber lasers and amplifiers,” Opt. Express 20(14), 15710–15722 (2012).
    [Crossref] [PubMed]
  25. R. Tao, P. Ma, X. Wang, P. Zhou, and Z. Liu, “1.3 kW monolithic linearly polarized single-mode master oscillator power amplifier and strategies for mitigating mode instabilities,” Photonics Research 3(3), 86–93 (2015).
    [Crossref]

2016 (4)

Y. Kang, L. Cheng, S. Yang, C. Zhao, H. Zhang, and T. He, “50 W low noise dual-frequency laser fiber power amplifier,” Opt. Express 24(9), 9202–9208 (2016).
[Crossref] [PubMed]

T. Chen, J. Wu, W. Xu, Z. He, L. Qian, and R. Shu, “Linearly polarized, dual wavelength frequency-modulated continuous-wave fiber laser for simultaneous coherent distance and speed measurements,” Laser Phys. Lett. 13(7), 075105 (2016).
[Crossref]

P. Ma, R. Tao, R. Su, X. Wang, P. Zhou, and Z. Liu, “1.89 kW all-fiberized and polarization-maintained amplifiers with narrow linewidth and near-diffraction-limited beam quality,” Opt. Express 24(4), 4187–4195 (2016).
[Crossref] [PubMed]

L. Huang, H. Zhang, X. Wang, and P. Zhou, “Diode-pumped 1178-nm high-power Yb-doped fiber laser operating at 125 °C,” IEEE Photonics J. 8(3), 1–7 (2016).

2015 (5)

2013 (1)

2012 (2)

J. Y. Leng, X. L. Wang, H. Xiao, P. Zhou, Y. X. Ma, S. F. Guo, and X. J. Xu, “Suppressing the stimulated Brillouin scattering in high power fiber amplifiers by dual-single-frequency amplification,” Laser Phys. Lett. 9(7), 532–536 (2012).
[Crossref]

H. J. Otto, F. Stutzki, F. Jansen, T. Eidam, C. Jauregui, J. Limpert, and A. Tünnermann, “Temporal dynamics of mode instabilities in high-power fiber lasers and amplifiers,” Opt. Express 20(14), 15710–15722 (2012).
[Crossref] [PubMed]

2011 (3)

2010 (1)

A. Rolland, L. Frein, M. Vallet, M. Brunel, F. Bondu, and T. Merlet, “40 GHz photonic synthesizer using a dual-polarization microlaser,” IEEE Photonics Technol. Lett. 22(23), 1738–1740 (2010).
[Crossref]

2008 (1)

2007 (2)

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

L. Maleki, “Radiofrequency antenna: In the service of national security,” Nat. Photonics 1(9), 493–494 (2007).
[Crossref]

2005 (1)

2004 (1)

D. A. Grukh, A. S. Kurkov, V. M. Paramonov, and E. M. Dianov, “Effect of heating on the optical properties of Yb3+ -doped fibres and fiber lasers,” Quantum Electron. 34(6), 579–582 (2004).
[Crossref]

2002 (1)

G. A. Blackburn, “Remote sensing of forest pigments using airborne imaging spectrometer and LIDAR imagery,” Remote Sens. Environ. 82(2), 311–321 (2002).
[Crossref]

Ahmad, H.

Alavi, S. E.

Blackburn, G. A.

G. A. Blackburn, “Remote sensing of forest pigments using airborne imaging spectrometer and LIDAR imagery,” Remote Sens. Environ. 82(2), 311–321 (2002).
[Crossref]

Bondu, F.

A. Rolland, L. Frein, M. Vallet, M. Brunel, F. Bondu, and T. Merlet, “40 GHz photonic synthesizer using a dual-polarization microlaser,” IEEE Photonics Technol. Lett. 22(23), 1738–1740 (2010).
[Crossref]

Bronder, T. J.

Brunel, M.

A. Rolland, L. Frein, M. Vallet, M. Brunel, F. Bondu, and T. Merlet, “40 GHz photonic synthesizer using a dual-polarization microlaser,” IEEE Photonics Technol. Lett. 22(23), 1738–1740 (2010).
[Crossref]

Capmany, J.

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

Chen, D.

Chen, T.

T. Chen, J. Wu, W. Xu, Z. He, L. Qian, and R. Shu, “Linearly polarized, dual wavelength frequency-modulated continuous-wave fiber laser for simultaneous coherent distance and speed measurements,” Laser Phys. Lett. 13(7), 075105 (2016).
[Crossref]

Cheng, L.

Dajani, I.

Dianov, E. M.

D. A. Grukh, A. S. Kurkov, V. M. Paramonov, and E. M. Dianov, “Effect of heating on the optical properties of Yb3+ -doped fibres and fiber lasers,” Quantum Electron. 34(6), 579–582 (2004).
[Crossref]

Eidam, T.

Frein, L.

A. Rolland, L. Frein, M. Vallet, M. Brunel, F. Bondu, and T. Merlet, “40 GHz photonic synthesizer using a dual-polarization microlaser,” IEEE Photonics Technol. Lett. 22(23), 1738–1740 (2010).
[Crossref]

Furugori, H.

Gavrielides, A.

Grukh, D. A.

D. A. Grukh, A. S. Kurkov, V. M. Paramonov, and E. M. Dianov, “Effect of heating on the optical properties of Yb3+ -doped fibres and fiber lasers,” Quantum Electron. 34(6), 579–582 (2004).
[Crossref]

Guo, S. F.

J. Y. Leng, X. L. Wang, H. Xiao, P. Zhou, Y. X. Ma, S. F. Guo, and X. J. Xu, “Suppressing the stimulated Brillouin scattering in high power fiber amplifiers by dual-single-frequency amplification,” Laser Phys. Lett. 9(7), 532–536 (2012).
[Crossref]

He, T.

Y. Kang, L. Cheng, S. Yang, C. Zhao, H. Zhang, and T. He, “50 W low noise dual-frequency laser fiber power amplifier,” Opt. Express 24(9), 9202–9208 (2016).
[Crossref] [PubMed]

T. He, S. Yang, C. Zhao, H. Zhang, Y. Liang, and Y. Kang, “High power amplification of tunable optically carried RF signals by a diode pumped Yb3+ doped LMA silicon fiber,” Laser Phys. Lett. 12(3), 035101 (2015).
[Crossref]

He, Z.

T. Chen, J. Wu, W. Xu, Z. He, L. Qian, and R. Shu, “Linearly polarized, dual wavelength frequency-modulated continuous-wave fiber laser for simultaneous coherent distance and speed measurements,” Laser Phys. Lett. 13(7), 075105 (2016).
[Crossref]

Huang, L.

L. Huang, H. Zhang, X. Wang, and P. Zhou, “Diode-pumped 1178-nm high-power Yb-doped fiber laser operating at 125 °C,” IEEE Photonics J. 8(3), 1–7 (2016).

L. Huang, P. Ma, R. Tao, C. Shi, X. Wang, and P. Zhou, “1.5 kW ytterbium-doped single-transverse-mode, linearly polarized monolithic fiber master oscillator power amplifier,” Appl. Opt. 54(10), 2880–2884 (2015).
[Crossref] [PubMed]

Jansen, F.

Jauregui, C.

Juan, Y. S.

Y. S. Juan and F. Y. Lin, “Photonic generation of broadly tunable microwave signals utilizing a Dual-Beam optically injected semiconductor laser,” IEEE Photonics J. 3(4), 644–650 (2011).
[Crossref]

Kang, Y.

Y. Kang, L. Cheng, S. Yang, C. Zhao, H. Zhang, and T. He, “50 W low noise dual-frequency laser fiber power amplifier,” Opt. Express 24(9), 9202–9208 (2016).
[Crossref] [PubMed]

T. He, S. Yang, C. Zhao, H. Zhang, Y. Liang, and Y. Kang, “High power amplification of tunable optically carried RF signals by a diode pumped Yb3+ doped LMA silicon fiber,” Laser Phys. Lett. 12(3), 035101 (2015).
[Crossref]

Kurkov, A. S.

D. A. Grukh, A. S. Kurkov, V. M. Paramonov, and E. M. Dianov, “Effect of heating on the optical properties of Yb3+ -doped fibres and fiber lasers,” Quantum Electron. 34(6), 579–582 (2004).
[Crossref]

Leng, J. Y.

J. Y. Leng, X. L. Wang, H. Xiao, P. Zhou, Y. X. Ma, S. F. Guo, and X. J. Xu, “Suppressing the stimulated Brillouin scattering in high power fiber amplifiers by dual-single-frequency amplification,” Laser Phys. Lett. 9(7), 532–536 (2012).
[Crossref]

Liang, Y.

T. He, S. Yang, C. Zhao, H. Zhang, Y. Liang, and Y. Kang, “High power amplification of tunable optically carried RF signals by a diode pumped Yb3+ doped LMA silicon fiber,” Laser Phys. Lett. 12(3), 035101 (2015).
[Crossref]

Limpert, J.

Lin, F. Y.

Y. S. Juan and F. Y. Lin, “Photonic generation of broadly tunable microwave signals utilizing a Dual-Beam optically injected semiconductor laser,” IEEE Photonics J. 3(4), 644–650 (2011).
[Crossref]

Liu, Z.

Ma, P.

Ma, Y.

Ma, Y. X.

J. Y. Leng, X. L. Wang, H. Xiao, P. Zhou, Y. X. Ma, S. F. Guo, and X. J. Xu, “Suppressing the stimulated Brillouin scattering in high power fiber amplifiers by dual-single-frequency amplification,” Laser Phys. Lett. 9(7), 532–536 (2012).
[Crossref]

Maleki, L.

L. Maleki, “Radiofrequency antenna: In the service of national security,” Nat. Photonics 1(9), 493–494 (2007).
[Crossref]

Matsuura, M.

Merlet, T.

A. Rolland, L. Frein, M. Vallet, M. Brunel, F. Bondu, and T. Merlet, “40 GHz photonic synthesizer using a dual-polarization microlaser,” IEEE Photonics Technol. Lett. 22(23), 1738–1740 (2010).
[Crossref]

Novak, D.

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

Otto, H. J.

Paquet, S.

Paramonov, V. M.

D. A. Grukh, A. S. Kurkov, V. M. Paramonov, and E. M. Dianov, “Effect of heating on the optical properties of Yb3+ -doped fibres and fiber lasers,” Quantum Electron. 34(6), 579–582 (2004).
[Crossref]

Peng, M.

Qi, G.

Qian, L.

T. Chen, J. Wu, W. Xu, Z. He, L. Qian, and R. Shu, “Linearly polarized, dual wavelength frequency-modulated continuous-wave fiber laser for simultaneous coherent distance and speed measurements,” Laser Phys. Lett. 13(7), 075105 (2016).
[Crossref]

Qian, Q.

Qiu, J.

Robin, C.

Rolland, A.

A. Rolland, L. Frein, M. Vallet, M. Brunel, F. Bondu, and T. Merlet, “40 GHz photonic synthesizer using a dual-polarization microlaser,” IEEE Photonics Technol. Lett. 22(23), 1738–1740 (2010).
[Crossref]

Sadegh Amiri, I.

Sato, J.

Seregelyi, J.

Shay, T.

Shen, S.

Shi, C.

Shu, R.

T. Chen, J. Wu, W. Xu, Z. He, L. Qian, and R. Shu, “Linearly polarized, dual wavelength frequency-modulated continuous-wave fiber laser for simultaneous coherent distance and speed measurements,” Laser Phys. Lett. 13(7), 075105 (2016).
[Crossref]

Smith, A. V.

Smith, J. J.

Soltanian, M. R. K.

Stutzki, F.

Su, R.

Tao, R.

Tünnermann, A.

Vallet, M.

A. Rolland, L. Frein, M. Vallet, M. Brunel, F. Bondu, and T. Merlet, “40 GHz photonic synthesizer using a dual-polarization microlaser,” IEEE Photonics Technol. Lett. 22(23), 1738–1740 (2010).
[Crossref]

Wang, X.

L. Huang, H. Zhang, X. Wang, and P. Zhou, “Diode-pumped 1178-nm high-power Yb-doped fiber laser operating at 125 °C,” IEEE Photonics J. 8(3), 1–7 (2016).

P. Ma, R. Tao, R. Su, X. Wang, P. Zhou, and Z. Liu, “1.89 kW all-fiberized and polarization-maintained amplifiers with narrow linewidth and near-diffraction-limited beam quality,” Opt. Express 24(4), 4187–4195 (2016).
[Crossref] [PubMed]

R. Tao, P. Ma, X. Wang, P. Zhou, and Z. Liu, “1.3 kW monolithic linearly polarized single-mode master oscillator power amplifier and strategies for mitigating mode instabilities,” Photonics Research 3(3), 86–93 (2015).
[Crossref]

L. Huang, P. Ma, R. Tao, C. Shi, X. Wang, and P. Zhou, “1.5 kW ytterbium-doped single-transverse-mode, linearly polarized monolithic fiber master oscillator power amplifier,” Appl. Opt. 54(10), 2880–2884 (2015).
[Crossref] [PubMed]

Wang, X. L.

J. Y. Leng, X. L. Wang, H. Xiao, P. Zhou, Y. X. Ma, S. F. Guo, and X. J. Xu, “Suppressing the stimulated Brillouin scattering in high power fiber amplifiers by dual-single-frequency amplification,” Laser Phys. Lett. 9(7), 532–536 (2012).
[Crossref]

Wei, X.

Wu, J.

T. Chen, J. Wu, W. Xu, Z. He, L. Qian, and R. Shu, “Linearly polarized, dual wavelength frequency-modulated continuous-wave fiber laser for simultaneous coherent distance and speed measurements,” Laser Phys. Lett. 13(7), 075105 (2016).
[Crossref]

Xiao, H.

J. Y. Leng, X. L. Wang, H. Xiao, P. Zhou, Y. X. Ma, S. F. Guo, and X. J. Xu, “Suppressing the stimulated Brillouin scattering in high power fiber amplifiers by dual-single-frequency amplification,” Laser Phys. Lett. 9(7), 532–536 (2012).
[Crossref]

Xu, S.

Xu, W.

T. Chen, J. Wu, W. Xu, Z. He, L. Qian, and R. Shu, “Linearly polarized, dual wavelength frequency-modulated continuous-wave fiber laser for simultaneous coherent distance and speed measurements,” Laser Phys. Lett. 13(7), 075105 (2016).
[Crossref]

Xu, X.

Xu, X. J.

J. Y. Leng, X. L. Wang, H. Xiao, P. Zhou, Y. X. Ma, S. F. Guo, and X. J. Xu, “Suppressing the stimulated Brillouin scattering in high power fiber amplifiers by dual-single-frequency amplification,” Laser Phys. Lett. 9(7), 532–536 (2012).
[Crossref]

Yang, S.

Y. Kang, L. Cheng, S. Yang, C. Zhao, H. Zhang, and T. He, “50 W low noise dual-frequency laser fiber power amplifier,” Opt. Express 24(9), 9202–9208 (2016).
[Crossref] [PubMed]

T. He, S. Yang, C. Zhao, H. Zhang, Y. Liang, and Y. Kang, “High power amplification of tunable optically carried RF signals by a diode pumped Yb3+ doped LMA silicon fiber,” Laser Phys. Lett. 12(3), 035101 (2015).
[Crossref]

Yang, Z.

Yao, J.

Zeringue, C.

Zhang, H.

L. Huang, H. Zhang, X. Wang, and P. Zhou, “Diode-pumped 1178-nm high-power Yb-doped fiber laser operating at 125 °C,” IEEE Photonics J. 8(3), 1–7 (2016).

Y. Kang, L. Cheng, S. Yang, C. Zhao, H. Zhang, and T. He, “50 W low noise dual-frequency laser fiber power amplifier,” Opt. Express 24(9), 9202–9208 (2016).
[Crossref] [PubMed]

T. He, S. Yang, C. Zhao, H. Zhang, Y. Liang, and Y. Kang, “High power amplification of tunable optically carried RF signals by a diode pumped Yb3+ doped LMA silicon fiber,” Laser Phys. Lett. 12(3), 035101 (2015).
[Crossref]

Zhang, Q.

Zhang, W.

Zhao, C.

Y. Kang, L. Cheng, S. Yang, C. Zhao, H. Zhang, and T. He, “50 W low noise dual-frequency laser fiber power amplifier,” Opt. Express 24(9), 9202–9208 (2016).
[Crossref] [PubMed]

T. He, S. Yang, C. Zhao, H. Zhang, Y. Liang, and Y. Kang, “High power amplification of tunable optically carried RF signals by a diode pumped Yb3+ doped LMA silicon fiber,” Laser Phys. Lett. 12(3), 035101 (2015).
[Crossref]

Zhou, P.

L. Huang, H. Zhang, X. Wang, and P. Zhou, “Diode-pumped 1178-nm high-power Yb-doped fiber laser operating at 125 °C,” IEEE Photonics J. 8(3), 1–7 (2016).

P. Ma, R. Tao, R. Su, X. Wang, P. Zhou, and Z. Liu, “1.89 kW all-fiberized and polarization-maintained amplifiers with narrow linewidth and near-diffraction-limited beam quality,” Opt. Express 24(4), 4187–4195 (2016).
[Crossref] [PubMed]

R. Tao, P. Ma, X. Wang, P. Zhou, and Z. Liu, “1.3 kW monolithic linearly polarized single-mode master oscillator power amplifier and strategies for mitigating mode instabilities,” Photonics Research 3(3), 86–93 (2015).
[Crossref]

L. Huang, P. Ma, R. Tao, C. Shi, X. Wang, and P. Zhou, “1.5 kW ytterbium-doped single-transverse-mode, linearly polarized monolithic fiber master oscillator power amplifier,” Appl. Opt. 54(10), 2880–2884 (2015).
[Crossref] [PubMed]

P. Ma, P. Zhou, Y. Ma, R. Su, X. Xu, and Z. Liu, “Single-frequency 332 W, linearly polarized Yb-doped all-fiber amplifier with near diffraction-limited beam quality,” Appl. Opt. 52(20), 4854–4857 (2013).
[Crossref] [PubMed]

J. Y. Leng, X. L. Wang, H. Xiao, P. Zhou, Y. X. Ma, S. F. Guo, and X. J. Xu, “Suppressing the stimulated Brillouin scattering in high power fiber amplifiers by dual-single-frequency amplification,” Laser Phys. Lett. 9(7), 532–536 (2012).
[Crossref]

Appl. Opt. (2)

IEEE Photonics J. (2)

Y. S. Juan and F. Y. Lin, “Photonic generation of broadly tunable microwave signals utilizing a Dual-Beam optically injected semiconductor laser,” IEEE Photonics J. 3(4), 644–650 (2011).
[Crossref]

L. Huang, H. Zhang, X. Wang, and P. Zhou, “Diode-pumped 1178-nm high-power Yb-doped fiber laser operating at 125 °C,” IEEE Photonics J. 8(3), 1–7 (2016).

IEEE Photonics Technol. Lett. (1)

A. Rolland, L. Frein, M. Vallet, M. Brunel, F. Bondu, and T. Merlet, “40 GHz photonic synthesizer using a dual-polarization microlaser,” IEEE Photonics Technol. Lett. 22(23), 1738–1740 (2010).
[Crossref]

J. Lightwave Technol. (2)

Laser Phys. Lett. (3)

J. Y. Leng, X. L. Wang, H. Xiao, P. Zhou, Y. X. Ma, S. F. Guo, and X. J. Xu, “Suppressing the stimulated Brillouin scattering in high power fiber amplifiers by dual-single-frequency amplification,” Laser Phys. Lett. 9(7), 532–536 (2012).
[Crossref]

T. He, S. Yang, C. Zhao, H. Zhang, Y. Liang, and Y. Kang, “High power amplification of tunable optically carried RF signals by a diode pumped Yb3+ doped LMA silicon fiber,” Laser Phys. Lett. 12(3), 035101 (2015).
[Crossref]

T. Chen, J. Wu, W. Xu, Z. He, L. Qian, and R. Shu, “Linearly polarized, dual wavelength frequency-modulated continuous-wave fiber laser for simultaneous coherent distance and speed measurements,” Laser Phys. Lett. 13(7), 075105 (2016).
[Crossref]

Nat. Photonics (2)

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

L. Maleki, “Radiofrequency antenna: In the service of national security,” Nat. Photonics 1(9), 493–494 (2007).
[Crossref]

Opt. Express (5)

Opt. Lett. (2)

Photonics Research (1)

R. Tao, P. Ma, X. Wang, P. Zhou, and Z. Liu, “1.3 kW monolithic linearly polarized single-mode master oscillator power amplifier and strategies for mitigating mode instabilities,” Photonics Research 3(3), 86–93 (2015).
[Crossref]

Quantum Electron. (1)

D. A. Grukh, A. S. Kurkov, V. M. Paramonov, and E. M. Dianov, “Effect of heating on the optical properties of Yb3+ -doped fibres and fiber lasers,” Quantum Electron. 34(6), 579–582 (2004).
[Crossref]

Remote Sens. Environ. (1)

G. A. Blackburn, “Remote sensing of forest pigments using airborne imaging spectrometer and LIDAR imagery,” Remote Sens. Environ. 82(2), 311–321 (2002).
[Crossref]

Other (3)

G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic Press, 2007).

J. E. Rothenberg, P. A. Thielen, M. Wickham, and C. P. Asman, “Suppression of stimulated Brillouin scattering in single-frequency multi-kilowatt fiber amplifiers,” (International Society for Optics and Photonics, 2008), p. 68730O.

D. Wake, M. Webster, G. Wimpenny, K. Beacham, and L. Crawford, “Radio over fiber for mobile communications,” in Microwave Photonics (2004), pp. 157–160.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 The experimental configuration of the dual-frequency seed laser.
Fig. 2
Fig. 2 (a) the scanning spectrum of the dual-frequency seed laser; (b) the oscillogram of the light intensity carrying RF signal; (c) the Fourier frequency spectrum of the light intensity.
Fig. 3
Fig. 3 The experimental configuration for the amplification of the optically carried RF signal.
Fig. 4
Fig. 4 (a) the dependence of the output power and backward power on the pump power; (b) the output spectrum at the maximal output power.
Fig. 5
Fig. 5 The polarization degree of the main amplifier during the power scaling.
Fig. 6
Fig. 6 At the maximal output power: (a) the scanning spectrum of the main amplifier, (b) the oscillogram of the light intensity carrying RF signal and (c) the Fourier frequency spectrum of the light intensity; (d) the modulation depths of the RF signal at the different output powers.
Fig. 7
Fig. 7 The Fourier frequency spectra details of the dual-frequency laser (a) before and (b) after amplification.
Fig. 8
Fig. 8 (a) the time traces before and after the onset of MI and (b) corresponding Fourier transform spectra.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

E 1 = A 1 exp[j( k 1 z ω 1 t+ φ 1 )]
E 2 = A 2 exp[j( k 2 z ω 2 t+ φ 2 )]
I=( E 1 + E 2 ) ( E 1 + E 2 ) * = I 1 + I 2 +2 A 1 A 2 cos(ΔkzΔωt+Δφ)
P th = 21 A eff g B,eff L eff

Metrics