Abstract

In this paper, a spectral model by incorporating SRS effect is proposed and established, which is feasible for analyzing the SRS effect both in high-power fiber oscillator and master oscillator power amplifier (MOPA) system. The theoretical results show that the SRS effect is tightly related to the bandwidths of the fiber Bragg gratings (FBGs) and it can be efficiently suppressed by optimizing the bandwidth of the FBGs. Besides, the established theoretical model is also feasible for analyzing the influence of seed power on the SRS effect. The theoretical predictions agree well with the previous experimental results.

© 2016 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High power fiber lasers: current status and future perspectives [Invited],” J. Opt. Soc. Am. B 27(11), B63–B92 (2010).
    [Crossref]
  2. J. W. Dawson, M. J. Messerly, R. J. Beach, M. Y. Shverdin, E. A. Stappaerts, A. K. Sridharan, P. H. Pax, J. E. Heebner, C. W. Siders, and C. P. J. Barty, “Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power,” Opt. Express 16(17), 13240–13266 (2008).
    [Crossref] [PubMed]
  3. J. Zhu, P. Zhou, Y. Ma, X. Xu, and Z. Liu, “Power scaling analysis of tandem-pumped Yb-doped fiber lasers and amplifiers,” Opt. Express 19(19), 18645–18654 (2011).
    [Crossref] [PubMed]
  4. R. G. Smith, “Optical power handling capacity of low loss optical fibers as determined by stimulated Raman and brillouin scattering,” Appl. Opt. 11(11), 2489–2494 (1972).
    [Crossref] [PubMed]
  5. Y. Wang, C. Xu, and H. Po, “Analysis of Raman and thermal effects in kilowatt fiber lasers,” Opt. Commun. 242(4–6), 487–502 (2004).
    [Crossref]
  6. C. Jauregui, J. Limpert, and A. Tünnermann, “Derivation of Raman treshold formulas for CW double-clad fiber amplifiers,” Opt. Express 17(10), 8476–8490 (2009).
    [Crossref] [PubMed]
  7. J. Kim, P. Dupriez, C. Codemard, J. Nilsson, and J. K. Sahu, “Suppression of stimulated Raman scattering in a high power Yb-doped fiber amplifier using a W-type core with fundamental mode cut-off,” Opt. Express 14(12), 5103–5113 (2006).
    [Crossref] [PubMed]
  8. A. E. Bednyakova, O. A. Gorbunov, M. O. Politko, S. I. Kablukov, S. V. Smirnov, D. V. Churkin, M. P. Fedoruk, and S. A. Babin, “Generation dynamics of the narrowband Yb-doped fiber laser,” Opt. Express 21(7), 8177–8182 (2013).
    [Crossref] [PubMed]
  9. T. Schreiber, A. Liem, E. Freier, C. Matzdorf, R. Eberhardt, C. Jauregui, J. Limpert, and A. Tünnermanna, “Analysis of stimulated Raman scattering in cw kW fiber oscillators,” Proc. SPIE 8961, 89611T (2014).
  10. J. Wang, D. Yan, S. Xiong, B. Huang, and C. Li, “High power all-fiber amplifier with different seed power injection,” Opt. Express 24(13), 14463–14469 (2016).
    [Crossref] [PubMed]
  11. W. Liu, P. Ma, H. Lv, J. Xu, P. Zhou, and Z. Jiang, “Investigation of stimulated Raman scattering effect in high-power fiber amplifiers seeded by narrow-band filtered superfluorescent source,” Opt. Express 24(8), 8708–8717 (2016).
    [Crossref] [PubMed]
  12. C. H. Henry, “Theory of spontaneous emission noise in open resonators and its application to lasers and optical amplifiers,” J. Lightwave Technol. 4(3), 288–297 (1986).
    [Crossref]
  13. J. Xu, W. Liu, J. Leng, H. Xiao, S. Guo, P. Zhou, and J. Chen, “Power scaling of narrowband high-power all-fiber superfluorescent fiber source to 1.87 kW,” Opt. Lett. 40(13), 2973–2976 (2015).
    [Crossref] [PubMed]
  14. P. Yan, J. Sun, D. Li, X. Wang, Y. Huang, M. Gong, and Q. Xiao, “933 W Yb-doped fiber ASE amplifier with 50.4 nm bandwidth,” Opt. Express 24(17), 19940–19948 (2016).
    [Crossref] [PubMed]
  15. X. Du, H. Zhang, P. Ma, H. Xiao, X. Wang, P. Zhou, and Z. Liu, “Kilowatt-level fiber amplifier with spectral-broadening-free property, seeded by a random fiber laser,” Opt. Lett. 40(22), 5311–5314 (2015).
    [Crossref] [PubMed]
  16. O. A. Gorbunov, S. Sugavanam, and D. V. Churkin, “Intensity dynamics and statistical properties of random distributed feedback fiber laser,” Opt. Lett. 40(8), 1783–1786 (2015).
    [Crossref] [PubMed]

2016 (3)

2015 (3)

2014 (1)

T. Schreiber, A. Liem, E. Freier, C. Matzdorf, R. Eberhardt, C. Jauregui, J. Limpert, and A. Tünnermanna, “Analysis of stimulated Raman scattering in cw kW fiber oscillators,” Proc. SPIE 8961, 89611T (2014).

2013 (1)

2011 (1)

2010 (1)

2009 (1)

2008 (1)

2006 (1)

2004 (1)

Y. Wang, C. Xu, and H. Po, “Analysis of Raman and thermal effects in kilowatt fiber lasers,” Opt. Commun. 242(4–6), 487–502 (2004).
[Crossref]

1986 (1)

C. H. Henry, “Theory of spontaneous emission noise in open resonators and its application to lasers and optical amplifiers,” J. Lightwave Technol. 4(3), 288–297 (1986).
[Crossref]

1972 (1)

Babin, S. A.

Barty, C. P. J.

Beach, R. J.

Bednyakova, A. E.

Chen, J.

Churkin, D. V.

Clarkson, W. A.

Codemard, C.

Dawson, J. W.

Du, X.

Dupriez, P.

Eberhardt, R.

T. Schreiber, A. Liem, E. Freier, C. Matzdorf, R. Eberhardt, C. Jauregui, J. Limpert, and A. Tünnermanna, “Analysis of stimulated Raman scattering in cw kW fiber oscillators,” Proc. SPIE 8961, 89611T (2014).

Fedoruk, M. P.

Freier, E.

T. Schreiber, A. Liem, E. Freier, C. Matzdorf, R. Eberhardt, C. Jauregui, J. Limpert, and A. Tünnermanna, “Analysis of stimulated Raman scattering in cw kW fiber oscillators,” Proc. SPIE 8961, 89611T (2014).

Gong, M.

Gorbunov, O. A.

Guo, S.

Heebner, J. E.

Henry, C. H.

C. H. Henry, “Theory of spontaneous emission noise in open resonators and its application to lasers and optical amplifiers,” J. Lightwave Technol. 4(3), 288–297 (1986).
[Crossref]

Huang, B.

Huang, Y.

Jauregui, C.

T. Schreiber, A. Liem, E. Freier, C. Matzdorf, R. Eberhardt, C. Jauregui, J. Limpert, and A. Tünnermanna, “Analysis of stimulated Raman scattering in cw kW fiber oscillators,” Proc. SPIE 8961, 89611T (2014).

C. Jauregui, J. Limpert, and A. Tünnermann, “Derivation of Raman treshold formulas for CW double-clad fiber amplifiers,” Opt. Express 17(10), 8476–8490 (2009).
[Crossref] [PubMed]

Jiang, Z.

Kablukov, S. I.

Kim, J.

Leng, J.

Li, C.

Li, D.

Liem, A.

T. Schreiber, A. Liem, E. Freier, C. Matzdorf, R. Eberhardt, C. Jauregui, J. Limpert, and A. Tünnermanna, “Analysis of stimulated Raman scattering in cw kW fiber oscillators,” Proc. SPIE 8961, 89611T (2014).

Limpert, J.

T. Schreiber, A. Liem, E. Freier, C. Matzdorf, R. Eberhardt, C. Jauregui, J. Limpert, and A. Tünnermanna, “Analysis of stimulated Raman scattering in cw kW fiber oscillators,” Proc. SPIE 8961, 89611T (2014).

C. Jauregui, J. Limpert, and A. Tünnermann, “Derivation of Raman treshold formulas for CW double-clad fiber amplifiers,” Opt. Express 17(10), 8476–8490 (2009).
[Crossref] [PubMed]

Liu, W.

Liu, Z.

Lv, H.

Ma, P.

Ma, Y.

Matzdorf, C.

T. Schreiber, A. Liem, E. Freier, C. Matzdorf, R. Eberhardt, C. Jauregui, J. Limpert, and A. Tünnermanna, “Analysis of stimulated Raman scattering in cw kW fiber oscillators,” Proc. SPIE 8961, 89611T (2014).

Messerly, M. J.

Nilsson, J.

Pax, P. H.

Po, H.

Y. Wang, C. Xu, and H. Po, “Analysis of Raman and thermal effects in kilowatt fiber lasers,” Opt. Commun. 242(4–6), 487–502 (2004).
[Crossref]

Politko, M. O.

Richardson, D. J.

Sahu, J. K.

Schreiber, T.

T. Schreiber, A. Liem, E. Freier, C. Matzdorf, R. Eberhardt, C. Jauregui, J. Limpert, and A. Tünnermanna, “Analysis of stimulated Raman scattering in cw kW fiber oscillators,” Proc. SPIE 8961, 89611T (2014).

Shverdin, M. Y.

Siders, C. W.

Smirnov, S. V.

Smith, R. G.

Sridharan, A. K.

Stappaerts, E. A.

Sugavanam, S.

Sun, J.

Tünnermann, A.

Tünnermanna, A.

T. Schreiber, A. Liem, E. Freier, C. Matzdorf, R. Eberhardt, C. Jauregui, J. Limpert, and A. Tünnermanna, “Analysis of stimulated Raman scattering in cw kW fiber oscillators,” Proc. SPIE 8961, 89611T (2014).

Wang, J.

Wang, X.

Wang, Y.

Y. Wang, C. Xu, and H. Po, “Analysis of Raman and thermal effects in kilowatt fiber lasers,” Opt. Commun. 242(4–6), 487–502 (2004).
[Crossref]

Xiao, H.

Xiao, Q.

Xiong, S.

Xu, C.

Y. Wang, C. Xu, and H. Po, “Analysis of Raman and thermal effects in kilowatt fiber lasers,” Opt. Commun. 242(4–6), 487–502 (2004).
[Crossref]

Xu, J.

Xu, X.

Yan, D.

Yan, P.

Zhang, H.

Zhou, P.

Zhu, J.

Appl. Opt. (1)

J. Lightwave Technol. (1)

C. H. Henry, “Theory of spontaneous emission noise in open resonators and its application to lasers and optical amplifiers,” J. Lightwave Technol. 4(3), 288–297 (1986).
[Crossref]

J. Opt. Soc. Am. B (1)

Opt. Commun. (1)

Y. Wang, C. Xu, and H. Po, “Analysis of Raman and thermal effects in kilowatt fiber lasers,” Opt. Commun. 242(4–6), 487–502 (2004).
[Crossref]

Opt. Express (8)

W. Liu, P. Ma, H. Lv, J. Xu, P. Zhou, and Z. Jiang, “Investigation of stimulated Raman scattering effect in high-power fiber amplifiers seeded by narrow-band filtered superfluorescent source,” Opt. Express 24(8), 8708–8717 (2016).
[Crossref] [PubMed]

J. Wang, D. Yan, S. Xiong, B. Huang, and C. Li, “High power all-fiber amplifier with different seed power injection,” Opt. Express 24(13), 14463–14469 (2016).
[Crossref] [PubMed]

P. Yan, J. Sun, D. Li, X. Wang, Y. Huang, M. Gong, and Q. Xiao, “933 W Yb-doped fiber ASE amplifier with 50.4 nm bandwidth,” Opt. Express 24(17), 19940–19948 (2016).
[Crossref] [PubMed]

J. Zhu, P. Zhou, Y. Ma, X. Xu, and Z. Liu, “Power scaling analysis of tandem-pumped Yb-doped fiber lasers and amplifiers,” Opt. Express 19(19), 18645–18654 (2011).
[Crossref] [PubMed]

A. E. Bednyakova, O. A. Gorbunov, M. O. Politko, S. I. Kablukov, S. V. Smirnov, D. V. Churkin, M. P. Fedoruk, and S. A. Babin, “Generation dynamics of the narrowband Yb-doped fiber laser,” Opt. Express 21(7), 8177–8182 (2013).
[Crossref] [PubMed]

J. Kim, P. Dupriez, C. Codemard, J. Nilsson, and J. K. Sahu, “Suppression of stimulated Raman scattering in a high power Yb-doped fiber amplifier using a W-type core with fundamental mode cut-off,” Opt. Express 14(12), 5103–5113 (2006).
[Crossref] [PubMed]

J. W. Dawson, M. J. Messerly, R. J. Beach, M. Y. Shverdin, E. A. Stappaerts, A. K. Sridharan, P. H. Pax, J. E. Heebner, C. W. Siders, and C. P. J. Barty, “Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power,” Opt. Express 16(17), 13240–13266 (2008).
[Crossref] [PubMed]

C. Jauregui, J. Limpert, and A. Tünnermann, “Derivation of Raman treshold formulas for CW double-clad fiber amplifiers,” Opt. Express 17(10), 8476–8490 (2009).
[Crossref] [PubMed]

Opt. Lett. (3)

Proc. SPIE (1)

T. Schreiber, A. Liem, E. Freier, C. Matzdorf, R. Eberhardt, C. Jauregui, J. Limpert, and A. Tünnermanna, “Analysis of stimulated Raman scattering in cw kW fiber oscillators,” Proc. SPIE 8961, 89611T (2014).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 The comparisons between the OC FBGs with the different bandwidths: (a) the temporal evolution of oscillators; (b) the corresponding optical spectra.
Fig. 2
Fig. 2 The simulated optical spectra and output powers for the fiber oscillator verse the bandwidth of the OC FBG: (a) the simulated spectra; (b) the output powers.
Fig. 3
Fig. 3 The simulated optical spectra for the amplifier stage and the Raman ratios verse the bandwidth of the OC FBG: (a) the simulated spectra; (b) the Raman ratios.
Fig. 4
Fig. 4 The simulated optical spectra for the amplifier stage and the Raman ratios verse the bandwidth of the HR FBG: (a) the simulated spectra; (b) the Raman ratios.
Fig. 5
Fig. 5 The simulated optical spectra for the amplifier stage and the Raman ratios verse the bandwidths of the two FBGs: (a) the simulated spectra; (b) the Raman ratios.
Fig. 6
Fig. 6 The simulated optical spectra for the amplifier stage and the Raman ratios verse the seed power: (a) the simulated spectra; (b) the Raman ratios.

Tables (2)

Tables Icon

Table 1 Simulation Parameters for the High-power Fiber Oscillator

Tables Icon

Table 2 Simulation Parameters for the Medium-power Seed

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

± A ˜ ± (z,ω) z = 1 2 ( g(ω)α(ω) ) A ˜ ± (z,ω)+i n=1 3 β n n! ω n A ˜ ± (z,ω) +iγ( 1+ ω ω 0 )F{ A ± (z,t)R(t) | A ± (z,t) | 2 }+ f SE ± (z,ω)
± d P p ± (z) dz = Γ p { σ a ( ω p ) N 0 ( σ a ( ω p )+ σ e ( ω p ) ) N 2 } P p ± (z) α p P p ± (z)
N 2 N 0 = Γ p ω p A σ a ( ω p )( P p + + P p )+ 1 2π T m A Γ s (ω) ω σ a (ω)( | A ˜ + (z,ω) | 2 + | A ˜ (z,ω) | 2 )dω Γ p ω p A ( σ a ( ω p )+ σ e ( ω p ) )( P p + + P p )+ 1 τ + 1 2π T m A Γ s (ω) ω ( σ a (ω)+ σ e (ω) )( | A ˜ + (z,ω) | 2 + | A ˜ (z,ω) | 2 )dω
{ f SE ± ( z,ω ) f SE ± ( z , ω ) =2 D FF ( z,ω )δ( z z )δ( ω ω ) f SE ± (z,ω) =0 2 D FF (z,ω)= ω 3 π c 2 n(ω)g(z,ω) n sp
{ A + ( 0,ω )= R 1 ( ω ) A ( 0,ω ) A ( L,ω )= R 2 ( ω ) A + ( L,ω )
A out ( ω )= A + ( L,ω ) 1 R 2 ( ω ) P out ( ω )= | A out ( ω ) | 2

Metrics