Abstract

We compare the performance of sub-symbol-rate sampling for polarization-division-multiplexed quadrature-phase-shift-keying (PDM-QPSK) signals in super-Nyquist wavelength division multiplexing (WDM) system by using quadrature duo-binary (QDB) and quadrature four-level poly-binary (4PB) shaping together with maximum likelihood sequence estimation (MLSE). PDM-16QAM is adopted in the simulation to be compared with PDM-QPSK. The numerical simulations show that, for a software defined communication system, the level number of quadrature poly-binary modulation should be adjusted to achieve the optimal performance according to channel spacing, required OSNR and sampling rate restrictions of optics. In the experiment, we demonstrate 3-channel 12-Gbaud PDM-QPSK transmission with 10-GHz channel spacing and only 8.4-GSa/s ADC sampling rate at lowest. By using QDB or 4PB shaping with 3tap-MLSE, the sampling rate can be reduced to the signal baud rate (1 samples per symbol) without penalty.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Adaptive quadrature-polybinary detection in super-Nyquist WDM systems

Sai Chen, Chongjin Xie, and Jie Zhang
Opt. Express 23(6) 7933-7939 (2015)

WDM transmission of 108.4-Gbaud PDM-QPSK signals (40 × 433.6-Gb/s) over 2800-km SMF-28 with EDFA-only

Xinying Li, Jianjun Yu, Ze Dong, Hung-Chang Chien, Zhensheng Jia, and Nan Chi
Opt. Express 20(26) B217-B222 (2012)

Performance comparison of spectrum-narrowing equalizations with maximum likelihood sequence estimation and soft-decision output

Zhensheng Jia, Yi Cai, Hung-Chang Chien, and Jianjun Yu
Opt. Express 22(5) 6047-6059 (2014)

References

  • View by:
  • |
  • |
  • |

  1. X. Chen, S. Chandrasekhar, S. Randel, G. Raybon, A. Adamiecki, P. Pupalaikis, and P. Winzer, “All-electronic 100-GHz Bandwidth Digital-to-Analog Converter Generating PAM Signals up to 190-GBaud.” in Proceedings of OFC’16, paper. Th5C.5.
    [Crossref]
  2. C. Yang, R. Hu, M. Luo, Q. Yang, C. Li, H. B. Li, and S. H. Yu, “IM/DD-Based 112-Gb/s/lambda PAM-4 Transmission Using 18-Gbps DML,” IEEE Photon. J. 8(3), 1–7 (2016).
  3. K. P. Zhong, W. Chen, Q. Sui, J. W. Man, A. P. T. Lau, C. Lu, and L. Zeng, “Experimental demonstration of 500Gbit/s short reach transmission employing PAM4 signal and direct detection with 25Gbps device.” in Proceedings of OFC’15, paper. TH3A.3.
    [Crossref]
  4. L. F. Suhr, J. J. V. Olmos, B. Mao, X. Xu, G. N. Liu, and I. T. Monroy, “Direct modulation of 56 Gbps duobinary-4-PAM.” in Proc. OFC’15, paper. TH1E.7.
    [Crossref]
  5. J. Li, E. Tipsuwannakul, T. Eriksson, M. Karlsson, and P. A. Andrekson, “Approaching Nyquist limit in WDM systems by low-complexity receiver-side duobinary shaping,” J. Lightwave Technol. 30(11), 1664–1676 (2012).
    [Crossref]
  6. S. Chen, C. Xie, and J. Zhang, “Adaptive quadrature-polybinary detection in super-Nyquist WDM systems,” Opt. Express 23(6), 7933–7939 (2015).
    [Crossref] [PubMed]
  7. C. Zhu, B. Corcoran, M. Morshed, L. Zhuang, and A. Lowery, “Faster-than-Nyquist DFT-S-OFDM using overlapping sub-bands and duobinary filtering,” in Proceedings of OFC’15, paper. TH3G.5.
    [Crossref]
  8. K. Yonenaga and S. Kuwano, “Dispersion-tolerant optical transmission system using duobinary transmitter and binary receiver,” J. Lightwave Technol. 15(8), 1530–1537 (1997).
    [Crossref]
  9. Y. Yano, T. Ono, K. Fukuchi, T. Ito, H. Yamazaki, M. Yamaguchi, and K. Emura, 2.6 Terabit/s WDM transmission experiment using optical duobinary coding,” in Proceedings of OEOC’1996, PDP ThB.3.1.
  10. T. Ono, Y. Yano, K. Fukuchi, T. Ito, H. Yamazaki, M. Yamaguchi, and K. Emura, “Characteristics of optical duobinary signals in terabit/s capacity, high-spectral efficiency WDM systems,” J. Lightwave Technol. 16(5), 788–797 (1998).
    [Crossref]
  11. H. Kim and C. X. Yu, “Optical duobinary transmission system featuring improved receiver sensitivity and reduced optical bandwidth,” IEEE Photon. Technol. Lett. 14(8), 1205–1207 (2002).
    [Crossref]
  12. J. Li, Z. Tao, H. Zhang, W. Yan, T. Hoshida, and J. C. Rasmussen, “Spectrally efficient quadrature duobinary coherent systems with symbol-rate digital signal processing,” J. Lightwave Technol. 29(8), 1098–1104 (2011).
    [Crossref]
  13. G. Gui, W. Peng, and F. Adachi, “Sub-Nyquist rate ADC sampling‐based compressive channel estimation,” Wirel. Commun. Mob. Comput. 15(4), 639–648 (2015).
    [Crossref]
  14. C. Xu, G. Gao, J. Zhang, S. Chen, M. Luo, and R. Hu, “Sub-Symbol-Rate Sampling of Super-Nyquist Signals,” in Proceedings of ECOC’2016. Th.2.P2.SC3.28.
  15. S. Chen, C. Xie, and J. Zhang, “Comparison of advanced detection techniques for QPSK signals in super-Nyquist WDM systems,” IEEE Photonics Technol. Lett. 27(1), 105–108 (2015).
    [Crossref]
  16. J. J. V. Olmos, L. F. Suhr, B. Li, and I. T. Monroy, “Five-level polybinary signaling for 10 Gbps data transmission systems,” Opt. Express 21(17), 20417–20422 (2013).
    [Crossref] [PubMed]
  17. S. Walklin and J. Conradi, “Multilevel signaling for increasing the reach of 10 Gb/s lightwave systems,” J. Lightwave Technol. 17(11), 2235–2248 (1999).
    [Crossref]
  18. A. Lender, “Correlative digital communication techniques,” IEEE Trans. Commun. Technol. 12(4), 128–135 (1964).
    [Crossref]
  19. G. Forney, “Maximum-likelihood sequence estimation of digital sequences in the presence of intersymbol interference,” IEEE Trans. Inf. Theory 18(3), 363–378 (1972).
    [Crossref]
  20. I. Barhumi and M. Moonen, “MLSE and MAP equalization for transmission over doubly selective channels,” IEEE Trans. Vehicular Technol. 58(8), 4120–4128 (2009).
    [Crossref]
  21. C. Fludger, “Digital Signal Processing in Optical Communications,” in Proceedings of OFC’16, paper W3G.4.
  22. A. Lender, “The duobinary technique for high-speed data transmission,” Trans. Am. Inst. Elec. Eng. 82(2), 214–218 (1963).

2016 (1)

C. Yang, R. Hu, M. Luo, Q. Yang, C. Li, H. B. Li, and S. H. Yu, “IM/DD-Based 112-Gb/s/lambda PAM-4 Transmission Using 18-Gbps DML,” IEEE Photon. J. 8(3), 1–7 (2016).

2015 (3)

S. Chen, C. Xie, and J. Zhang, “Adaptive quadrature-polybinary detection in super-Nyquist WDM systems,” Opt. Express 23(6), 7933–7939 (2015).
[Crossref] [PubMed]

G. Gui, W. Peng, and F. Adachi, “Sub-Nyquist rate ADC sampling‐based compressive channel estimation,” Wirel. Commun. Mob. Comput. 15(4), 639–648 (2015).
[Crossref]

S. Chen, C. Xie, and J. Zhang, “Comparison of advanced detection techniques for QPSK signals in super-Nyquist WDM systems,” IEEE Photonics Technol. Lett. 27(1), 105–108 (2015).
[Crossref]

2013 (1)

2012 (1)

2011 (1)

2009 (1)

I. Barhumi and M. Moonen, “MLSE and MAP equalization for transmission over doubly selective channels,” IEEE Trans. Vehicular Technol. 58(8), 4120–4128 (2009).
[Crossref]

2002 (1)

H. Kim and C. X. Yu, “Optical duobinary transmission system featuring improved receiver sensitivity and reduced optical bandwidth,” IEEE Photon. Technol. Lett. 14(8), 1205–1207 (2002).
[Crossref]

1999 (1)

1998 (1)

1997 (1)

K. Yonenaga and S. Kuwano, “Dispersion-tolerant optical transmission system using duobinary transmitter and binary receiver,” J. Lightwave Technol. 15(8), 1530–1537 (1997).
[Crossref]

1972 (1)

G. Forney, “Maximum-likelihood sequence estimation of digital sequences in the presence of intersymbol interference,” IEEE Trans. Inf. Theory 18(3), 363–378 (1972).
[Crossref]

1964 (1)

A. Lender, “Correlative digital communication techniques,” IEEE Trans. Commun. Technol. 12(4), 128–135 (1964).
[Crossref]

1963 (1)

A. Lender, “The duobinary technique for high-speed data transmission,” Trans. Am. Inst. Elec. Eng. 82(2), 214–218 (1963).

Adachi, F.

G. Gui, W. Peng, and F. Adachi, “Sub-Nyquist rate ADC sampling‐based compressive channel estimation,” Wirel. Commun. Mob. Comput. 15(4), 639–648 (2015).
[Crossref]

Andrekson, P. A.

Barhumi, I.

I. Barhumi and M. Moonen, “MLSE and MAP equalization for transmission over doubly selective channels,” IEEE Trans. Vehicular Technol. 58(8), 4120–4128 (2009).
[Crossref]

Chen, S.

S. Chen, C. Xie, and J. Zhang, “Adaptive quadrature-polybinary detection in super-Nyquist WDM systems,” Opt. Express 23(6), 7933–7939 (2015).
[Crossref] [PubMed]

S. Chen, C. Xie, and J. Zhang, “Comparison of advanced detection techniques for QPSK signals in super-Nyquist WDM systems,” IEEE Photonics Technol. Lett. 27(1), 105–108 (2015).
[Crossref]

Conradi, J.

Emura, K.

Eriksson, T.

Forney, G.

G. Forney, “Maximum-likelihood sequence estimation of digital sequences in the presence of intersymbol interference,” IEEE Trans. Inf. Theory 18(3), 363–378 (1972).
[Crossref]

Fukuchi, K.

Gui, G.

G. Gui, W. Peng, and F. Adachi, “Sub-Nyquist rate ADC sampling‐based compressive channel estimation,” Wirel. Commun. Mob. Comput. 15(4), 639–648 (2015).
[Crossref]

Hoshida, T.

Hu, R.

C. Yang, R. Hu, M. Luo, Q. Yang, C. Li, H. B. Li, and S. H. Yu, “IM/DD-Based 112-Gb/s/lambda PAM-4 Transmission Using 18-Gbps DML,” IEEE Photon. J. 8(3), 1–7 (2016).

Ito, T.

Karlsson, M.

Kim, H.

H. Kim and C. X. Yu, “Optical duobinary transmission system featuring improved receiver sensitivity and reduced optical bandwidth,” IEEE Photon. Technol. Lett. 14(8), 1205–1207 (2002).
[Crossref]

Kuwano, S.

K. Yonenaga and S. Kuwano, “Dispersion-tolerant optical transmission system using duobinary transmitter and binary receiver,” J. Lightwave Technol. 15(8), 1530–1537 (1997).
[Crossref]

Lender, A.

A. Lender, “Correlative digital communication techniques,” IEEE Trans. Commun. Technol. 12(4), 128–135 (1964).
[Crossref]

A. Lender, “The duobinary technique for high-speed data transmission,” Trans. Am. Inst. Elec. Eng. 82(2), 214–218 (1963).

Li, B.

Li, C.

C. Yang, R. Hu, M. Luo, Q. Yang, C. Li, H. B. Li, and S. H. Yu, “IM/DD-Based 112-Gb/s/lambda PAM-4 Transmission Using 18-Gbps DML,” IEEE Photon. J. 8(3), 1–7 (2016).

Li, H. B.

C. Yang, R. Hu, M. Luo, Q. Yang, C. Li, H. B. Li, and S. H. Yu, “IM/DD-Based 112-Gb/s/lambda PAM-4 Transmission Using 18-Gbps DML,” IEEE Photon. J. 8(3), 1–7 (2016).

Li, J.

Luo, M.

C. Yang, R. Hu, M. Luo, Q. Yang, C. Li, H. B. Li, and S. H. Yu, “IM/DD-Based 112-Gb/s/lambda PAM-4 Transmission Using 18-Gbps DML,” IEEE Photon. J. 8(3), 1–7 (2016).

Monroy, I. T.

Moonen, M.

I. Barhumi and M. Moonen, “MLSE and MAP equalization for transmission over doubly selective channels,” IEEE Trans. Vehicular Technol. 58(8), 4120–4128 (2009).
[Crossref]

Olmos, J. J. V.

Ono, T.

Peng, W.

G. Gui, W. Peng, and F. Adachi, “Sub-Nyquist rate ADC sampling‐based compressive channel estimation,” Wirel. Commun. Mob. Comput. 15(4), 639–648 (2015).
[Crossref]

Rasmussen, J. C.

Suhr, L. F.

Tao, Z.

Tipsuwannakul, E.

Walklin, S.

Xie, C.

S. Chen, C. Xie, and J. Zhang, “Adaptive quadrature-polybinary detection in super-Nyquist WDM systems,” Opt. Express 23(6), 7933–7939 (2015).
[Crossref] [PubMed]

S. Chen, C. Xie, and J. Zhang, “Comparison of advanced detection techniques for QPSK signals in super-Nyquist WDM systems,” IEEE Photonics Technol. Lett. 27(1), 105–108 (2015).
[Crossref]

Yamaguchi, M.

Yamazaki, H.

Yan, W.

Yang, C.

C. Yang, R. Hu, M. Luo, Q. Yang, C. Li, H. B. Li, and S. H. Yu, “IM/DD-Based 112-Gb/s/lambda PAM-4 Transmission Using 18-Gbps DML,” IEEE Photon. J. 8(3), 1–7 (2016).

Yang, Q.

C. Yang, R. Hu, M. Luo, Q. Yang, C. Li, H. B. Li, and S. H. Yu, “IM/DD-Based 112-Gb/s/lambda PAM-4 Transmission Using 18-Gbps DML,” IEEE Photon. J. 8(3), 1–7 (2016).

Yano, Y.

Yonenaga, K.

K. Yonenaga and S. Kuwano, “Dispersion-tolerant optical transmission system using duobinary transmitter and binary receiver,” J. Lightwave Technol. 15(8), 1530–1537 (1997).
[Crossref]

Yu, C. X.

H. Kim and C. X. Yu, “Optical duobinary transmission system featuring improved receiver sensitivity and reduced optical bandwidth,” IEEE Photon. Technol. Lett. 14(8), 1205–1207 (2002).
[Crossref]

Yu, S. H.

C. Yang, R. Hu, M. Luo, Q. Yang, C. Li, H. B. Li, and S. H. Yu, “IM/DD-Based 112-Gb/s/lambda PAM-4 Transmission Using 18-Gbps DML,” IEEE Photon. J. 8(3), 1–7 (2016).

Zhang, H.

Zhang, J.

S. Chen, C. Xie, and J. Zhang, “Comparison of advanced detection techniques for QPSK signals in super-Nyquist WDM systems,” IEEE Photonics Technol. Lett. 27(1), 105–108 (2015).
[Crossref]

S. Chen, C. Xie, and J. Zhang, “Adaptive quadrature-polybinary detection in super-Nyquist WDM systems,” Opt. Express 23(6), 7933–7939 (2015).
[Crossref] [PubMed]

IEEE Photon. J. (1)

C. Yang, R. Hu, M. Luo, Q. Yang, C. Li, H. B. Li, and S. H. Yu, “IM/DD-Based 112-Gb/s/lambda PAM-4 Transmission Using 18-Gbps DML,” IEEE Photon. J. 8(3), 1–7 (2016).

IEEE Photon. Technol. Lett. (1)

H. Kim and C. X. Yu, “Optical duobinary transmission system featuring improved receiver sensitivity and reduced optical bandwidth,” IEEE Photon. Technol. Lett. 14(8), 1205–1207 (2002).
[Crossref]

IEEE Photonics Technol. Lett. (1)

S. Chen, C. Xie, and J. Zhang, “Comparison of advanced detection techniques for QPSK signals in super-Nyquist WDM systems,” IEEE Photonics Technol. Lett. 27(1), 105–108 (2015).
[Crossref]

IEEE Trans. Commun. Technol. (1)

A. Lender, “Correlative digital communication techniques,” IEEE Trans. Commun. Technol. 12(4), 128–135 (1964).
[Crossref]

IEEE Trans. Inf. Theory (1)

G. Forney, “Maximum-likelihood sequence estimation of digital sequences in the presence of intersymbol interference,” IEEE Trans. Inf. Theory 18(3), 363–378 (1972).
[Crossref]

IEEE Trans. Vehicular Technol. (1)

I. Barhumi and M. Moonen, “MLSE and MAP equalization for transmission over doubly selective channels,” IEEE Trans. Vehicular Technol. 58(8), 4120–4128 (2009).
[Crossref]

J. Lightwave Technol. (5)

Opt. Express (2)

Trans. Am. Inst. Elec. Eng. (1)

A. Lender, “The duobinary technique for high-speed data transmission,” Trans. Am. Inst. Elec. Eng. 82(2), 214–218 (1963).

Wirel. Commun. Mob. Comput. (1)

G. Gui, W. Peng, and F. Adachi, “Sub-Nyquist rate ADC sampling‐based compressive channel estimation,” Wirel. Commun. Mob. Comput. 15(4), 639–648 (2015).
[Crossref]

Other (7)

C. Xu, G. Gao, J. Zhang, S. Chen, M. Luo, and R. Hu, “Sub-Symbol-Rate Sampling of Super-Nyquist Signals,” in Proceedings of ECOC’2016. Th.2.P2.SC3.28.

Y. Yano, T. Ono, K. Fukuchi, T. Ito, H. Yamazaki, M. Yamaguchi, and K. Emura, 2.6 Terabit/s WDM transmission experiment using optical duobinary coding,” in Proceedings of OEOC’1996, PDP ThB.3.1.

K. P. Zhong, W. Chen, Q. Sui, J. W. Man, A. P. T. Lau, C. Lu, and L. Zeng, “Experimental demonstration of 500Gbit/s short reach transmission employing PAM4 signal and direct detection with 25Gbps device.” in Proceedings of OFC’15, paper. TH3A.3.
[Crossref]

L. F. Suhr, J. J. V. Olmos, B. Mao, X. Xu, G. N. Liu, and I. T. Monroy, “Direct modulation of 56 Gbps duobinary-4-PAM.” in Proc. OFC’15, paper. TH1E.7.
[Crossref]

C. Zhu, B. Corcoran, M. Morshed, L. Zhuang, and A. Lowery, “Faster-than-Nyquist DFT-S-OFDM using overlapping sub-bands and duobinary filtering,” in Proceedings of OFC’15, paper. TH3G.5.
[Crossref]

C. Fludger, “Digital Signal Processing in Optical Communications,” in Proceedings of OFC’16, paper W3G.4.

X. Chen, S. Chandrasekhar, S. Randel, G. Raybon, A. Adamiecki, P. Pupalaikis, and P. Winzer, “All-electronic 100-GHz Bandwidth Digital-to-Analog Converter Generating PAM Signals up to 190-GBaud.” in Proceedings of OFC’16, paper. Th5C.5.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 (a) The FIR filter used to generate n level poly-binary signal and the constellation conversion of QDB and 4PB; (b) the spectrum of QPSK, QDB and 4PB signals
Fig. 2
Fig. 2 Schematic spectral diagrams at sub-symbol-rate sampling for (a) full-response signals and (b) poly-binary signals.
Fig. 3
Fig. 3 Receiver of sub-symbol-rate sampling in super-Nyquist WDM systems.
Fig. 4
Fig. 4 BER vs. MLSE tap number for a 112-Gb/s PDM-QPSK signal with 20-GHz channel spacing and a NSPS value of 0.9 at an OSNR of 17-dB
Fig. 5
Fig. 5 Required OSNR at BER of 3.8x10−3 vs. channel spacing for the 3-channel 112-Gb/s PDM-16QAM signal, the 3-channel 112-Gb/s PDM-QPSK signal with different DSP schemes
Fig. 6
Fig. 6 Required OSNR at BER of 3.8x10−3 vs. channel spacing for the 3-channel 112-Gb/s PDM-QPSK signal with different poly-binary shaping and sampling rate.
Fig. 7
Fig. 7 Experiment setup. The insets are eye diagrams of the electrical driving signal and optical signal after the WSS, and the spectra of the WDM signal at 10-GHz channel spacing
Fig. 8
Fig. 8 (a) Required OSNR vs. Samples per symbol; (b) Required OSNR vs. channel spacing; (c)The performance of QDB shaping with a NSPS value of 0.9 and 4PB shaping with a NSPS value of 0.8 at the spacing of 10GHz and 11GHz

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

S ( f ) = ( n 1 ) 2 A 2 T 4 sin c 2 [ ( n 1 ) f T ]
P = max S p ( Y ¯ | S ¯ ) .
p ( Y ¯ | S ¯ ) = k = 0 p ( y k | S ¯ ) .

Metrics