Abstract

Enhancement of the resolution of well-distributed multi-channel spectrometers beyond the pixel Nyquist limits while maintaining their inherent advantages such as high-speed measurement, compactness, and robustness will represent a critical step toward real-time monitoring of dynamic events. Here, we report the first super spectral resolution measurement beyond pixel Nyquist limits which was made possible by employing the Moiré effect in a commercially available Czerny-Turner type spectroscope of 4.63nm-spectral resolution. The experimental results show that the spectral resolution can be enhanced up to 0.31 nm by a factor of more than 10 with exceeding the 50-μm pixel Nyquist limits.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Super-resolution quantum imaging at the Heisenberg limit

Manuel Unternährer, Bänz Bessire, Leonardo Gasparini, Matteo Perenzoni, and André Stefanov
Optica 5(9) 1150-1154 (2018)

Super-resolution discrete Fourier transform spectroscopy beyond time-window size limitation using precisely periodic pulsed radiation

Takeshi Yasui, Yuki Iyonaga, Yi-Da Hsieh, Yoshiyuki Sakaguchi, Francis Hindle, Shuko Yokoyama, Tsutomu Araki, and Mamoru Hashimoto
Optica 2(5) 460-467 (2015)

References

  • View by:
  • |
  • |
  • |

  1. W. W. Parson, Modern Optical Spectroscopy, with Exercises and Examples from Biophysics and Biochemistry (Springer Verlag, 2009).
  2. D. Derickson, Fiber Optic Test and Measurement (Prentice Hall, 1998).
  3. P. Massey and M. M. Hanson, “Astronomical Spectroscopy,” in Planets, Stars and Stellar Systems, Terry D. Oswalt and Howard E. Bond, eds. (SpringerNetherlands, 2013).
    [Crossref]
  4. J. R Lakowicz, Principles of Fluorescence Spectroscopy (Springer Science & Business Media, 2013).
  5. E. Pincemin, M. Song, J. Karaki, O. Zia-Chahabi, T. Guillossou, D. Grot, G. Thouenon, C. Betoule, R. Clavier, A. Poudoulec, M. Van der Keur, Y. Jaouën, R. Le Bidan, T. Le Gall, P. Gravey, M. Morvan, B. Dumas-Feris, M. L. Moulinard, and G. Froc, “Multi-band ofdm transmission at 100 gbps with sub-band optical switching,” Journal of Lightwave Technology,  32(12), 2202–2219 (2014).
    [Crossref]
  6. T. Konishi, K. Tanimura, K. Asano, Y. Oshita, and Y. Ichioka, “All-optical analog-to-digital converter by use of self-frequency shifting in fiber and a pulse-shaping technique,” JOSA B,  19(11), 2817–2823 (2002).
    [Crossref]
  7. IJM Crossfield T. Barman, and B. MS Hansen, “High-resolution, differential, near-infrared transmission spectroscopy of gj 1214b,” The Astrophysical Journal,  736(2), 132 (2011).
    [Crossref]
  8. W. demtröder, Laser Spectroscopy: Basis Concepts and Instrumentation (Springer Science & Business Media, 2013).
  9. G. R. Harrison, “The production of diffraction gratings: II. the design of echelle gratings and spectrographs1,” JOSA,  39(7), 522–528 (1949).
    [Crossref]
  10. S. S. Vogt, S. L. Allen, B. C. Bigelow, L. Bresee, W. E. Brown, T Cantrall, A. Conrad, M. Couture, C. Delaney, H. W. Epps, D. Hilyard, D. F. Hilyard, E. Horn, N. Jern, D. Kanto, M. J. Keane, R. I. Kibrick, J. W. Lewis, J. Osborne, G. H. Pardeilhan, T. Pfister, T. Ricketts, L. B. Robinson, R. J. Stover, D. Tucker, J. M. Ward, and M. Wei, “Hires: the high-resolution echelle spectrometer on the keck 10-m telescope,” Proc. SPIE 2198, 362–375 (1994).
    [Crossref]
  11. T. Chen, P. B. Catrysse, A. El Gamal, and B. A. Wandell, “How small should pixel size be?” Proc. SPIE 3965, 451–459 (2000).
    [Crossref]
  12. J. Edelstein and D. J. Erskine, “High resolution absorption spectroscopy using externally dispersed interferometry,” Proc. SPIE 5898, 589811 (2005).
    [Crossref]
  13. K. Patorski, Handbook of The Moiré Fringe Technique (Elsevier Science, 1993).
  14. L. Schermelleh, R. Heintzmann, and H. Leonhardt, “A guide to super-resolution fluorescence microscopy,” The Journal of cell biology,  190(2), 165–175 (2010).
    [Crossref] [PubMed]
  15. P. Kner, B. B. Chhun, E. R. Griffis, L. Winoto, and M. GL Gustafsson, “Super-resolution video microscopy of live cells by structured illumination,” Nature methods,  6(5), 339–342 (2009).
    [Crossref] [PubMed]
  16. K. Chu, Z. J Smith, S. Wachsmann-Hogiu, and S. Lane, “Super-resolved spatial light interference microscopy,” JOSA A,  29(3), 344–351 (2012).
    [Crossref] [PubMed]
  17. D. J. Erskine and J. Ge, “A Novel Interferometer Spectrometer for Sensitive Stellar Radial Velocimetry,” in Proceedings of Astronomical Society of the Pacific Conference, W. van Breugel and J. Bland-Hawthorn, eds. (2000), pp. 501.
  18. D. J. Erskine, J. Edelstein, W. M. Feuerstein, and B. Welsh, “High-resolution broadband spectroscopy using an externally dispersed interferometer,” The Astrophysical Journal Letters,  592(2), L103 (2003).
    [Crossref]
  19. H. Ur and D. Gross, “Improved resolution from subpixel shifted pictures,” CVGIP: Graphical Models and Image Processing,  54(2), 181–186 (1992).
  20. A. Ashok and M. A. Neifeld, “Pseudorandom phase masks for superresolution imaging from subpixel shifting,” Applied optics,  46(12), 2256–2268 (2007).
    [Crossref] [PubMed]
  21. J. D. Hovanesian and Y.Y. Hung, “Moiré contour-sum contour-difference, and vibration analysis of arbitrary objects,” Applied Optics,  10(12), 2734–2738 (1971).
    [Crossref] [PubMed]

2014 (1)

E. Pincemin, M. Song, J. Karaki, O. Zia-Chahabi, T. Guillossou, D. Grot, G. Thouenon, C. Betoule, R. Clavier, A. Poudoulec, M. Van der Keur, Y. Jaouën, R. Le Bidan, T. Le Gall, P. Gravey, M. Morvan, B. Dumas-Feris, M. L. Moulinard, and G. Froc, “Multi-band ofdm transmission at 100 gbps with sub-band optical switching,” Journal of Lightwave Technology,  32(12), 2202–2219 (2014).
[Crossref]

2012 (1)

K. Chu, Z. J Smith, S. Wachsmann-Hogiu, and S. Lane, “Super-resolved spatial light interference microscopy,” JOSA A,  29(3), 344–351 (2012).
[Crossref] [PubMed]

2011 (1)

IJM Crossfield T. Barman, and B. MS Hansen, “High-resolution, differential, near-infrared transmission spectroscopy of gj 1214b,” The Astrophysical Journal,  736(2), 132 (2011).
[Crossref]

2010 (1)

L. Schermelleh, R. Heintzmann, and H. Leonhardt, “A guide to super-resolution fluorescence microscopy,” The Journal of cell biology,  190(2), 165–175 (2010).
[Crossref] [PubMed]

2009 (1)

P. Kner, B. B. Chhun, E. R. Griffis, L. Winoto, and M. GL Gustafsson, “Super-resolution video microscopy of live cells by structured illumination,” Nature methods,  6(5), 339–342 (2009).
[Crossref] [PubMed]

2007 (1)

A. Ashok and M. A. Neifeld, “Pseudorandom phase masks for superresolution imaging from subpixel shifting,” Applied optics,  46(12), 2256–2268 (2007).
[Crossref] [PubMed]

2005 (1)

J. Edelstein and D. J. Erskine, “High resolution absorption spectroscopy using externally dispersed interferometry,” Proc. SPIE 5898, 589811 (2005).
[Crossref]

2003 (1)

D. J. Erskine, J. Edelstein, W. M. Feuerstein, and B. Welsh, “High-resolution broadband spectroscopy using an externally dispersed interferometer,” The Astrophysical Journal Letters,  592(2), L103 (2003).
[Crossref]

2002 (1)

T. Konishi, K. Tanimura, K. Asano, Y. Oshita, and Y. Ichioka, “All-optical analog-to-digital converter by use of self-frequency shifting in fiber and a pulse-shaping technique,” JOSA B,  19(11), 2817–2823 (2002).
[Crossref]

2000 (1)

T. Chen, P. B. Catrysse, A. El Gamal, and B. A. Wandell, “How small should pixel size be?” Proc. SPIE 3965, 451–459 (2000).
[Crossref]

1994 (1)

S. S. Vogt, S. L. Allen, B. C. Bigelow, L. Bresee, W. E. Brown, T Cantrall, A. Conrad, M. Couture, C. Delaney, H. W. Epps, D. Hilyard, D. F. Hilyard, E. Horn, N. Jern, D. Kanto, M. J. Keane, R. I. Kibrick, J. W. Lewis, J. Osborne, G. H. Pardeilhan, T. Pfister, T. Ricketts, L. B. Robinson, R. J. Stover, D. Tucker, J. M. Ward, and M. Wei, “Hires: the high-resolution echelle spectrometer on the keck 10-m telescope,” Proc. SPIE 2198, 362–375 (1994).
[Crossref]

1992 (1)

H. Ur and D. Gross, “Improved resolution from subpixel shifted pictures,” CVGIP: Graphical Models and Image Processing,  54(2), 181–186 (1992).

1971 (1)

J. D. Hovanesian and Y.Y. Hung, “Moiré contour-sum contour-difference, and vibration analysis of arbitrary objects,” Applied Optics,  10(12), 2734–2738 (1971).
[Crossref] [PubMed]

1949 (1)

G. R. Harrison, “The production of diffraction gratings: II. the design of echelle gratings and spectrographs1,” JOSA,  39(7), 522–528 (1949).
[Crossref]

Allen, S. L.

S. S. Vogt, S. L. Allen, B. C. Bigelow, L. Bresee, W. E. Brown, T Cantrall, A. Conrad, M. Couture, C. Delaney, H. W. Epps, D. Hilyard, D. F. Hilyard, E. Horn, N. Jern, D. Kanto, M. J. Keane, R. I. Kibrick, J. W. Lewis, J. Osborne, G. H. Pardeilhan, T. Pfister, T. Ricketts, L. B. Robinson, R. J. Stover, D. Tucker, J. M. Ward, and M. Wei, “Hires: the high-resolution echelle spectrometer on the keck 10-m telescope,” Proc. SPIE 2198, 362–375 (1994).
[Crossref]

Asano, K.

T. Konishi, K. Tanimura, K. Asano, Y. Oshita, and Y. Ichioka, “All-optical analog-to-digital converter by use of self-frequency shifting in fiber and a pulse-shaping technique,” JOSA B,  19(11), 2817–2823 (2002).
[Crossref]

Ashok, A.

A. Ashok and M. A. Neifeld, “Pseudorandom phase masks for superresolution imaging from subpixel shifting,” Applied optics,  46(12), 2256–2268 (2007).
[Crossref] [PubMed]

Barman, T.

IJM Crossfield T. Barman, and B. MS Hansen, “High-resolution, differential, near-infrared transmission spectroscopy of gj 1214b,” The Astrophysical Journal,  736(2), 132 (2011).
[Crossref]

Betoule, C.

E. Pincemin, M. Song, J. Karaki, O. Zia-Chahabi, T. Guillossou, D. Grot, G. Thouenon, C. Betoule, R. Clavier, A. Poudoulec, M. Van der Keur, Y. Jaouën, R. Le Bidan, T. Le Gall, P. Gravey, M. Morvan, B. Dumas-Feris, M. L. Moulinard, and G. Froc, “Multi-band ofdm transmission at 100 gbps with sub-band optical switching,” Journal of Lightwave Technology,  32(12), 2202–2219 (2014).
[Crossref]

Bigelow, B. C.

S. S. Vogt, S. L. Allen, B. C. Bigelow, L. Bresee, W. E. Brown, T Cantrall, A. Conrad, M. Couture, C. Delaney, H. W. Epps, D. Hilyard, D. F. Hilyard, E. Horn, N. Jern, D. Kanto, M. J. Keane, R. I. Kibrick, J. W. Lewis, J. Osborne, G. H. Pardeilhan, T. Pfister, T. Ricketts, L. B. Robinson, R. J. Stover, D. Tucker, J. M. Ward, and M. Wei, “Hires: the high-resolution echelle spectrometer on the keck 10-m telescope,” Proc. SPIE 2198, 362–375 (1994).
[Crossref]

Bresee, L.

S. S. Vogt, S. L. Allen, B. C. Bigelow, L. Bresee, W. E. Brown, T Cantrall, A. Conrad, M. Couture, C. Delaney, H. W. Epps, D. Hilyard, D. F. Hilyard, E. Horn, N. Jern, D. Kanto, M. J. Keane, R. I. Kibrick, J. W. Lewis, J. Osborne, G. H. Pardeilhan, T. Pfister, T. Ricketts, L. B. Robinson, R. J. Stover, D. Tucker, J. M. Ward, and M. Wei, “Hires: the high-resolution echelle spectrometer on the keck 10-m telescope,” Proc. SPIE 2198, 362–375 (1994).
[Crossref]

Brown, W. E.

S. S. Vogt, S. L. Allen, B. C. Bigelow, L. Bresee, W. E. Brown, T Cantrall, A. Conrad, M. Couture, C. Delaney, H. W. Epps, D. Hilyard, D. F. Hilyard, E. Horn, N. Jern, D. Kanto, M. J. Keane, R. I. Kibrick, J. W. Lewis, J. Osborne, G. H. Pardeilhan, T. Pfister, T. Ricketts, L. B. Robinson, R. J. Stover, D. Tucker, J. M. Ward, and M. Wei, “Hires: the high-resolution echelle spectrometer on the keck 10-m telescope,” Proc. SPIE 2198, 362–375 (1994).
[Crossref]

Cantrall, T

S. S. Vogt, S. L. Allen, B. C. Bigelow, L. Bresee, W. E. Brown, T Cantrall, A. Conrad, M. Couture, C. Delaney, H. W. Epps, D. Hilyard, D. F. Hilyard, E. Horn, N. Jern, D. Kanto, M. J. Keane, R. I. Kibrick, J. W. Lewis, J. Osborne, G. H. Pardeilhan, T. Pfister, T. Ricketts, L. B. Robinson, R. J. Stover, D. Tucker, J. M. Ward, and M. Wei, “Hires: the high-resolution echelle spectrometer on the keck 10-m telescope,” Proc. SPIE 2198, 362–375 (1994).
[Crossref]

Catrysse, P. B.

T. Chen, P. B. Catrysse, A. El Gamal, and B. A. Wandell, “How small should pixel size be?” Proc. SPIE 3965, 451–459 (2000).
[Crossref]

Chen, T.

T. Chen, P. B. Catrysse, A. El Gamal, and B. A. Wandell, “How small should pixel size be?” Proc. SPIE 3965, 451–459 (2000).
[Crossref]

Chhun, B. B.

P. Kner, B. B. Chhun, E. R. Griffis, L. Winoto, and M. GL Gustafsson, “Super-resolution video microscopy of live cells by structured illumination,” Nature methods,  6(5), 339–342 (2009).
[Crossref] [PubMed]

Chu, K.

K. Chu, Z. J Smith, S. Wachsmann-Hogiu, and S. Lane, “Super-resolved spatial light interference microscopy,” JOSA A,  29(3), 344–351 (2012).
[Crossref] [PubMed]

Clavier, R.

E. Pincemin, M. Song, J. Karaki, O. Zia-Chahabi, T. Guillossou, D. Grot, G. Thouenon, C. Betoule, R. Clavier, A. Poudoulec, M. Van der Keur, Y. Jaouën, R. Le Bidan, T. Le Gall, P. Gravey, M. Morvan, B. Dumas-Feris, M. L. Moulinard, and G. Froc, “Multi-band ofdm transmission at 100 gbps with sub-band optical switching,” Journal of Lightwave Technology,  32(12), 2202–2219 (2014).
[Crossref]

Conrad, A.

S. S. Vogt, S. L. Allen, B. C. Bigelow, L. Bresee, W. E. Brown, T Cantrall, A. Conrad, M. Couture, C. Delaney, H. W. Epps, D. Hilyard, D. F. Hilyard, E. Horn, N. Jern, D. Kanto, M. J. Keane, R. I. Kibrick, J. W. Lewis, J. Osborne, G. H. Pardeilhan, T. Pfister, T. Ricketts, L. B. Robinson, R. J. Stover, D. Tucker, J. M. Ward, and M. Wei, “Hires: the high-resolution echelle spectrometer on the keck 10-m telescope,” Proc. SPIE 2198, 362–375 (1994).
[Crossref]

Couture, M.

S. S. Vogt, S. L. Allen, B. C. Bigelow, L. Bresee, W. E. Brown, T Cantrall, A. Conrad, M. Couture, C. Delaney, H. W. Epps, D. Hilyard, D. F. Hilyard, E. Horn, N. Jern, D. Kanto, M. J. Keane, R. I. Kibrick, J. W. Lewis, J. Osborne, G. H. Pardeilhan, T. Pfister, T. Ricketts, L. B. Robinson, R. J. Stover, D. Tucker, J. M. Ward, and M. Wei, “Hires: the high-resolution echelle spectrometer on the keck 10-m telescope,” Proc. SPIE 2198, 362–375 (1994).
[Crossref]

Delaney, C.

S. S. Vogt, S. L. Allen, B. C. Bigelow, L. Bresee, W. E. Brown, T Cantrall, A. Conrad, M. Couture, C. Delaney, H. W. Epps, D. Hilyard, D. F. Hilyard, E. Horn, N. Jern, D. Kanto, M. J. Keane, R. I. Kibrick, J. W. Lewis, J. Osborne, G. H. Pardeilhan, T. Pfister, T. Ricketts, L. B. Robinson, R. J. Stover, D. Tucker, J. M. Ward, and M. Wei, “Hires: the high-resolution echelle spectrometer on the keck 10-m telescope,” Proc. SPIE 2198, 362–375 (1994).
[Crossref]

demtröder, W.

W. demtröder, Laser Spectroscopy: Basis Concepts and Instrumentation (Springer Science & Business Media, 2013).

Derickson, D.

D. Derickson, Fiber Optic Test and Measurement (Prentice Hall, 1998).

Dumas-Feris, B.

E. Pincemin, M. Song, J. Karaki, O. Zia-Chahabi, T. Guillossou, D. Grot, G. Thouenon, C. Betoule, R. Clavier, A. Poudoulec, M. Van der Keur, Y. Jaouën, R. Le Bidan, T. Le Gall, P. Gravey, M. Morvan, B. Dumas-Feris, M. L. Moulinard, and G. Froc, “Multi-band ofdm transmission at 100 gbps with sub-band optical switching,” Journal of Lightwave Technology,  32(12), 2202–2219 (2014).
[Crossref]

Edelstein, J.

J. Edelstein and D. J. Erskine, “High resolution absorption spectroscopy using externally dispersed interferometry,” Proc. SPIE 5898, 589811 (2005).
[Crossref]

D. J. Erskine, J. Edelstein, W. M. Feuerstein, and B. Welsh, “High-resolution broadband spectroscopy using an externally dispersed interferometer,” The Astrophysical Journal Letters,  592(2), L103 (2003).
[Crossref]

El Gamal, A.

T. Chen, P. B. Catrysse, A. El Gamal, and B. A. Wandell, “How small should pixel size be?” Proc. SPIE 3965, 451–459 (2000).
[Crossref]

Epps, H. W.

S. S. Vogt, S. L. Allen, B. C. Bigelow, L. Bresee, W. E. Brown, T Cantrall, A. Conrad, M. Couture, C. Delaney, H. W. Epps, D. Hilyard, D. F. Hilyard, E. Horn, N. Jern, D. Kanto, M. J. Keane, R. I. Kibrick, J. W. Lewis, J. Osborne, G. H. Pardeilhan, T. Pfister, T. Ricketts, L. B. Robinson, R. J. Stover, D. Tucker, J. M. Ward, and M. Wei, “Hires: the high-resolution echelle spectrometer on the keck 10-m telescope,” Proc. SPIE 2198, 362–375 (1994).
[Crossref]

Erskine, D. J.

J. Edelstein and D. J. Erskine, “High resolution absorption spectroscopy using externally dispersed interferometry,” Proc. SPIE 5898, 589811 (2005).
[Crossref]

D. J. Erskine, J. Edelstein, W. M. Feuerstein, and B. Welsh, “High-resolution broadband spectroscopy using an externally dispersed interferometer,” The Astrophysical Journal Letters,  592(2), L103 (2003).
[Crossref]

D. J. Erskine and J. Ge, “A Novel Interferometer Spectrometer for Sensitive Stellar Radial Velocimetry,” in Proceedings of Astronomical Society of the Pacific Conference, W. van Breugel and J. Bland-Hawthorn, eds. (2000), pp. 501.

Feuerstein, W. M.

D. J. Erskine, J. Edelstein, W. M. Feuerstein, and B. Welsh, “High-resolution broadband spectroscopy using an externally dispersed interferometer,” The Astrophysical Journal Letters,  592(2), L103 (2003).
[Crossref]

Froc, G.

E. Pincemin, M. Song, J. Karaki, O. Zia-Chahabi, T. Guillossou, D. Grot, G. Thouenon, C. Betoule, R. Clavier, A. Poudoulec, M. Van der Keur, Y. Jaouën, R. Le Bidan, T. Le Gall, P. Gravey, M. Morvan, B. Dumas-Feris, M. L. Moulinard, and G. Froc, “Multi-band ofdm transmission at 100 gbps with sub-band optical switching,” Journal of Lightwave Technology,  32(12), 2202–2219 (2014).
[Crossref]

Ge, J.

D. J. Erskine and J. Ge, “A Novel Interferometer Spectrometer for Sensitive Stellar Radial Velocimetry,” in Proceedings of Astronomical Society of the Pacific Conference, W. van Breugel and J. Bland-Hawthorn, eds. (2000), pp. 501.

Gravey, P.

E. Pincemin, M. Song, J. Karaki, O. Zia-Chahabi, T. Guillossou, D. Grot, G. Thouenon, C. Betoule, R. Clavier, A. Poudoulec, M. Van der Keur, Y. Jaouën, R. Le Bidan, T. Le Gall, P. Gravey, M. Morvan, B. Dumas-Feris, M. L. Moulinard, and G. Froc, “Multi-band ofdm transmission at 100 gbps with sub-band optical switching,” Journal of Lightwave Technology,  32(12), 2202–2219 (2014).
[Crossref]

Griffis, E. R.

P. Kner, B. B. Chhun, E. R. Griffis, L. Winoto, and M. GL Gustafsson, “Super-resolution video microscopy of live cells by structured illumination,” Nature methods,  6(5), 339–342 (2009).
[Crossref] [PubMed]

Gross, D.

H. Ur and D. Gross, “Improved resolution from subpixel shifted pictures,” CVGIP: Graphical Models and Image Processing,  54(2), 181–186 (1992).

Grot, D.

E. Pincemin, M. Song, J. Karaki, O. Zia-Chahabi, T. Guillossou, D. Grot, G. Thouenon, C. Betoule, R. Clavier, A. Poudoulec, M. Van der Keur, Y. Jaouën, R. Le Bidan, T. Le Gall, P. Gravey, M. Morvan, B. Dumas-Feris, M. L. Moulinard, and G. Froc, “Multi-band ofdm transmission at 100 gbps with sub-band optical switching,” Journal of Lightwave Technology,  32(12), 2202–2219 (2014).
[Crossref]

Guillossou, T.

E. Pincemin, M. Song, J. Karaki, O. Zia-Chahabi, T. Guillossou, D. Grot, G. Thouenon, C. Betoule, R. Clavier, A. Poudoulec, M. Van der Keur, Y. Jaouën, R. Le Bidan, T. Le Gall, P. Gravey, M. Morvan, B. Dumas-Feris, M. L. Moulinard, and G. Froc, “Multi-band ofdm transmission at 100 gbps with sub-band optical switching,” Journal of Lightwave Technology,  32(12), 2202–2219 (2014).
[Crossref]

Gustafsson, M. GL

P. Kner, B. B. Chhun, E. R. Griffis, L. Winoto, and M. GL Gustafsson, “Super-resolution video microscopy of live cells by structured illumination,” Nature methods,  6(5), 339–342 (2009).
[Crossref] [PubMed]

Hansen, B. MS

IJM Crossfield T. Barman, and B. MS Hansen, “High-resolution, differential, near-infrared transmission spectroscopy of gj 1214b,” The Astrophysical Journal,  736(2), 132 (2011).
[Crossref]

Hanson, M. M.

P. Massey and M. M. Hanson, “Astronomical Spectroscopy,” in Planets, Stars and Stellar Systems, Terry D. Oswalt and Howard E. Bond, eds. (SpringerNetherlands, 2013).
[Crossref]

Harrison, G. R.

G. R. Harrison, “The production of diffraction gratings: II. the design of echelle gratings and spectrographs1,” JOSA,  39(7), 522–528 (1949).
[Crossref]

Heintzmann, R.

L. Schermelleh, R. Heintzmann, and H. Leonhardt, “A guide to super-resolution fluorescence microscopy,” The Journal of cell biology,  190(2), 165–175 (2010).
[Crossref] [PubMed]

Hilyard, D.

S. S. Vogt, S. L. Allen, B. C. Bigelow, L. Bresee, W. E. Brown, T Cantrall, A. Conrad, M. Couture, C. Delaney, H. W. Epps, D. Hilyard, D. F. Hilyard, E. Horn, N. Jern, D. Kanto, M. J. Keane, R. I. Kibrick, J. W. Lewis, J. Osborne, G. H. Pardeilhan, T. Pfister, T. Ricketts, L. B. Robinson, R. J. Stover, D. Tucker, J. M. Ward, and M. Wei, “Hires: the high-resolution echelle spectrometer on the keck 10-m telescope,” Proc. SPIE 2198, 362–375 (1994).
[Crossref]

Hilyard, D. F.

S. S. Vogt, S. L. Allen, B. C. Bigelow, L. Bresee, W. E. Brown, T Cantrall, A. Conrad, M. Couture, C. Delaney, H. W. Epps, D. Hilyard, D. F. Hilyard, E. Horn, N. Jern, D. Kanto, M. J. Keane, R. I. Kibrick, J. W. Lewis, J. Osborne, G. H. Pardeilhan, T. Pfister, T. Ricketts, L. B. Robinson, R. J. Stover, D. Tucker, J. M. Ward, and M. Wei, “Hires: the high-resolution echelle spectrometer on the keck 10-m telescope,” Proc. SPIE 2198, 362–375 (1994).
[Crossref]

Horn, E.

S. S. Vogt, S. L. Allen, B. C. Bigelow, L. Bresee, W. E. Brown, T Cantrall, A. Conrad, M. Couture, C. Delaney, H. W. Epps, D. Hilyard, D. F. Hilyard, E. Horn, N. Jern, D. Kanto, M. J. Keane, R. I. Kibrick, J. W. Lewis, J. Osborne, G. H. Pardeilhan, T. Pfister, T. Ricketts, L. B. Robinson, R. J. Stover, D. Tucker, J. M. Ward, and M. Wei, “Hires: the high-resolution echelle spectrometer on the keck 10-m telescope,” Proc. SPIE 2198, 362–375 (1994).
[Crossref]

Hovanesian, J. D.

J. D. Hovanesian and Y.Y. Hung, “Moiré contour-sum contour-difference, and vibration analysis of arbitrary objects,” Applied Optics,  10(12), 2734–2738 (1971).
[Crossref] [PubMed]

Hung, Y.Y.

J. D. Hovanesian and Y.Y. Hung, “Moiré contour-sum contour-difference, and vibration analysis of arbitrary objects,” Applied Optics,  10(12), 2734–2738 (1971).
[Crossref] [PubMed]

Ichioka, Y.

T. Konishi, K. Tanimura, K. Asano, Y. Oshita, and Y. Ichioka, “All-optical analog-to-digital converter by use of self-frequency shifting in fiber and a pulse-shaping technique,” JOSA B,  19(11), 2817–2823 (2002).
[Crossref]

Jaouën, Y.

E. Pincemin, M. Song, J. Karaki, O. Zia-Chahabi, T. Guillossou, D. Grot, G. Thouenon, C. Betoule, R. Clavier, A. Poudoulec, M. Van der Keur, Y. Jaouën, R. Le Bidan, T. Le Gall, P. Gravey, M. Morvan, B. Dumas-Feris, M. L. Moulinard, and G. Froc, “Multi-band ofdm transmission at 100 gbps with sub-band optical switching,” Journal of Lightwave Technology,  32(12), 2202–2219 (2014).
[Crossref]

Jern, N.

S. S. Vogt, S. L. Allen, B. C. Bigelow, L. Bresee, W. E. Brown, T Cantrall, A. Conrad, M. Couture, C. Delaney, H. W. Epps, D. Hilyard, D. F. Hilyard, E. Horn, N. Jern, D. Kanto, M. J. Keane, R. I. Kibrick, J. W. Lewis, J. Osborne, G. H. Pardeilhan, T. Pfister, T. Ricketts, L. B. Robinson, R. J. Stover, D. Tucker, J. M. Ward, and M. Wei, “Hires: the high-resolution echelle spectrometer on the keck 10-m telescope,” Proc. SPIE 2198, 362–375 (1994).
[Crossref]

Kanto, D.

S. S. Vogt, S. L. Allen, B. C. Bigelow, L. Bresee, W. E. Brown, T Cantrall, A. Conrad, M. Couture, C. Delaney, H. W. Epps, D. Hilyard, D. F. Hilyard, E. Horn, N. Jern, D. Kanto, M. J. Keane, R. I. Kibrick, J. W. Lewis, J. Osborne, G. H. Pardeilhan, T. Pfister, T. Ricketts, L. B. Robinson, R. J. Stover, D. Tucker, J. M. Ward, and M. Wei, “Hires: the high-resolution echelle spectrometer on the keck 10-m telescope,” Proc. SPIE 2198, 362–375 (1994).
[Crossref]

Karaki, J.

E. Pincemin, M. Song, J. Karaki, O. Zia-Chahabi, T. Guillossou, D. Grot, G. Thouenon, C. Betoule, R. Clavier, A. Poudoulec, M. Van der Keur, Y. Jaouën, R. Le Bidan, T. Le Gall, P. Gravey, M. Morvan, B. Dumas-Feris, M. L. Moulinard, and G. Froc, “Multi-band ofdm transmission at 100 gbps with sub-band optical switching,” Journal of Lightwave Technology,  32(12), 2202–2219 (2014).
[Crossref]

Keane, M. J.

S. S. Vogt, S. L. Allen, B. C. Bigelow, L. Bresee, W. E. Brown, T Cantrall, A. Conrad, M. Couture, C. Delaney, H. W. Epps, D. Hilyard, D. F. Hilyard, E. Horn, N. Jern, D. Kanto, M. J. Keane, R. I. Kibrick, J. W. Lewis, J. Osborne, G. H. Pardeilhan, T. Pfister, T. Ricketts, L. B. Robinson, R. J. Stover, D. Tucker, J. M. Ward, and M. Wei, “Hires: the high-resolution echelle spectrometer on the keck 10-m telescope,” Proc. SPIE 2198, 362–375 (1994).
[Crossref]

Kibrick, R. I.

S. S. Vogt, S. L. Allen, B. C. Bigelow, L. Bresee, W. E. Brown, T Cantrall, A. Conrad, M. Couture, C. Delaney, H. W. Epps, D. Hilyard, D. F. Hilyard, E. Horn, N. Jern, D. Kanto, M. J. Keane, R. I. Kibrick, J. W. Lewis, J. Osborne, G. H. Pardeilhan, T. Pfister, T. Ricketts, L. B. Robinson, R. J. Stover, D. Tucker, J. M. Ward, and M. Wei, “Hires: the high-resolution echelle spectrometer on the keck 10-m telescope,” Proc. SPIE 2198, 362–375 (1994).
[Crossref]

Kner, P.

P. Kner, B. B. Chhun, E. R. Griffis, L. Winoto, and M. GL Gustafsson, “Super-resolution video microscopy of live cells by structured illumination,” Nature methods,  6(5), 339–342 (2009).
[Crossref] [PubMed]

Konishi, T.

T. Konishi, K. Tanimura, K. Asano, Y. Oshita, and Y. Ichioka, “All-optical analog-to-digital converter by use of self-frequency shifting in fiber and a pulse-shaping technique,” JOSA B,  19(11), 2817–2823 (2002).
[Crossref]

Lakowicz, J. R

J. R Lakowicz, Principles of Fluorescence Spectroscopy (Springer Science & Business Media, 2013).

Lane, S.

K. Chu, Z. J Smith, S. Wachsmann-Hogiu, and S. Lane, “Super-resolved spatial light interference microscopy,” JOSA A,  29(3), 344–351 (2012).
[Crossref] [PubMed]

Le Bidan, R.

E. Pincemin, M. Song, J. Karaki, O. Zia-Chahabi, T. Guillossou, D. Grot, G. Thouenon, C. Betoule, R. Clavier, A. Poudoulec, M. Van der Keur, Y. Jaouën, R. Le Bidan, T. Le Gall, P. Gravey, M. Morvan, B. Dumas-Feris, M. L. Moulinard, and G. Froc, “Multi-band ofdm transmission at 100 gbps with sub-band optical switching,” Journal of Lightwave Technology,  32(12), 2202–2219 (2014).
[Crossref]

Le Gall, T.

E. Pincemin, M. Song, J. Karaki, O. Zia-Chahabi, T. Guillossou, D. Grot, G. Thouenon, C. Betoule, R. Clavier, A. Poudoulec, M. Van der Keur, Y. Jaouën, R. Le Bidan, T. Le Gall, P. Gravey, M. Morvan, B. Dumas-Feris, M. L. Moulinard, and G. Froc, “Multi-band ofdm transmission at 100 gbps with sub-band optical switching,” Journal of Lightwave Technology,  32(12), 2202–2219 (2014).
[Crossref]

Leonhardt, H.

L. Schermelleh, R. Heintzmann, and H. Leonhardt, “A guide to super-resolution fluorescence microscopy,” The Journal of cell biology,  190(2), 165–175 (2010).
[Crossref] [PubMed]

Lewis, J. W.

S. S. Vogt, S. L. Allen, B. C. Bigelow, L. Bresee, W. E. Brown, T Cantrall, A. Conrad, M. Couture, C. Delaney, H. W. Epps, D. Hilyard, D. F. Hilyard, E. Horn, N. Jern, D. Kanto, M. J. Keane, R. I. Kibrick, J. W. Lewis, J. Osborne, G. H. Pardeilhan, T. Pfister, T. Ricketts, L. B. Robinson, R. J. Stover, D. Tucker, J. M. Ward, and M. Wei, “Hires: the high-resolution echelle spectrometer on the keck 10-m telescope,” Proc. SPIE 2198, 362–375 (1994).
[Crossref]

Massey, P.

P. Massey and M. M. Hanson, “Astronomical Spectroscopy,” in Planets, Stars and Stellar Systems, Terry D. Oswalt and Howard E. Bond, eds. (SpringerNetherlands, 2013).
[Crossref]

Morvan, M.

E. Pincemin, M. Song, J. Karaki, O. Zia-Chahabi, T. Guillossou, D. Grot, G. Thouenon, C. Betoule, R. Clavier, A. Poudoulec, M. Van der Keur, Y. Jaouën, R. Le Bidan, T. Le Gall, P. Gravey, M. Morvan, B. Dumas-Feris, M. L. Moulinard, and G. Froc, “Multi-band ofdm transmission at 100 gbps with sub-band optical switching,” Journal of Lightwave Technology,  32(12), 2202–2219 (2014).
[Crossref]

Moulinard, M. L.

E. Pincemin, M. Song, J. Karaki, O. Zia-Chahabi, T. Guillossou, D. Grot, G. Thouenon, C. Betoule, R. Clavier, A. Poudoulec, M. Van der Keur, Y. Jaouën, R. Le Bidan, T. Le Gall, P. Gravey, M. Morvan, B. Dumas-Feris, M. L. Moulinard, and G. Froc, “Multi-band ofdm transmission at 100 gbps with sub-band optical switching,” Journal of Lightwave Technology,  32(12), 2202–2219 (2014).
[Crossref]

Neifeld, M. A.

A. Ashok and M. A. Neifeld, “Pseudorandom phase masks for superresolution imaging from subpixel shifting,” Applied optics,  46(12), 2256–2268 (2007).
[Crossref] [PubMed]

Osborne, J.

S. S. Vogt, S. L. Allen, B. C. Bigelow, L. Bresee, W. E. Brown, T Cantrall, A. Conrad, M. Couture, C. Delaney, H. W. Epps, D. Hilyard, D. F. Hilyard, E. Horn, N. Jern, D. Kanto, M. J. Keane, R. I. Kibrick, J. W. Lewis, J. Osborne, G. H. Pardeilhan, T. Pfister, T. Ricketts, L. B. Robinson, R. J. Stover, D. Tucker, J. M. Ward, and M. Wei, “Hires: the high-resolution echelle spectrometer on the keck 10-m telescope,” Proc. SPIE 2198, 362–375 (1994).
[Crossref]

Oshita, Y.

T. Konishi, K. Tanimura, K. Asano, Y. Oshita, and Y. Ichioka, “All-optical analog-to-digital converter by use of self-frequency shifting in fiber and a pulse-shaping technique,” JOSA B,  19(11), 2817–2823 (2002).
[Crossref]

Pardeilhan, G. H.

S. S. Vogt, S. L. Allen, B. C. Bigelow, L. Bresee, W. E. Brown, T Cantrall, A. Conrad, M. Couture, C. Delaney, H. W. Epps, D. Hilyard, D. F. Hilyard, E. Horn, N. Jern, D. Kanto, M. J. Keane, R. I. Kibrick, J. W. Lewis, J. Osborne, G. H. Pardeilhan, T. Pfister, T. Ricketts, L. B. Robinson, R. J. Stover, D. Tucker, J. M. Ward, and M. Wei, “Hires: the high-resolution echelle spectrometer on the keck 10-m telescope,” Proc. SPIE 2198, 362–375 (1994).
[Crossref]

Parson, W. W.

W. W. Parson, Modern Optical Spectroscopy, with Exercises and Examples from Biophysics and Biochemistry (Springer Verlag, 2009).

Patorski, K.

K. Patorski, Handbook of The Moiré Fringe Technique (Elsevier Science, 1993).

Pfister, T.

S. S. Vogt, S. L. Allen, B. C. Bigelow, L. Bresee, W. E. Brown, T Cantrall, A. Conrad, M. Couture, C. Delaney, H. W. Epps, D. Hilyard, D. F. Hilyard, E. Horn, N. Jern, D. Kanto, M. J. Keane, R. I. Kibrick, J. W. Lewis, J. Osborne, G. H. Pardeilhan, T. Pfister, T. Ricketts, L. B. Robinson, R. J. Stover, D. Tucker, J. M. Ward, and M. Wei, “Hires: the high-resolution echelle spectrometer on the keck 10-m telescope,” Proc. SPIE 2198, 362–375 (1994).
[Crossref]

Pincemin, E.

E. Pincemin, M. Song, J. Karaki, O. Zia-Chahabi, T. Guillossou, D. Grot, G. Thouenon, C. Betoule, R. Clavier, A. Poudoulec, M. Van der Keur, Y. Jaouën, R. Le Bidan, T. Le Gall, P. Gravey, M. Morvan, B. Dumas-Feris, M. L. Moulinard, and G. Froc, “Multi-band ofdm transmission at 100 gbps with sub-band optical switching,” Journal of Lightwave Technology,  32(12), 2202–2219 (2014).
[Crossref]

Poudoulec, A.

E. Pincemin, M. Song, J. Karaki, O. Zia-Chahabi, T. Guillossou, D. Grot, G. Thouenon, C. Betoule, R. Clavier, A. Poudoulec, M. Van der Keur, Y. Jaouën, R. Le Bidan, T. Le Gall, P. Gravey, M. Morvan, B. Dumas-Feris, M. L. Moulinard, and G. Froc, “Multi-band ofdm transmission at 100 gbps with sub-band optical switching,” Journal of Lightwave Technology,  32(12), 2202–2219 (2014).
[Crossref]

Ricketts, T.

S. S. Vogt, S. L. Allen, B. C. Bigelow, L. Bresee, W. E. Brown, T Cantrall, A. Conrad, M. Couture, C. Delaney, H. W. Epps, D. Hilyard, D. F. Hilyard, E. Horn, N. Jern, D. Kanto, M. J. Keane, R. I. Kibrick, J. W. Lewis, J. Osborne, G. H. Pardeilhan, T. Pfister, T. Ricketts, L. B. Robinson, R. J. Stover, D. Tucker, J. M. Ward, and M. Wei, “Hires: the high-resolution echelle spectrometer on the keck 10-m telescope,” Proc. SPIE 2198, 362–375 (1994).
[Crossref]

Robinson, L. B.

S. S. Vogt, S. L. Allen, B. C. Bigelow, L. Bresee, W. E. Brown, T Cantrall, A. Conrad, M. Couture, C. Delaney, H. W. Epps, D. Hilyard, D. F. Hilyard, E. Horn, N. Jern, D. Kanto, M. J. Keane, R. I. Kibrick, J. W. Lewis, J. Osborne, G. H. Pardeilhan, T. Pfister, T. Ricketts, L. B. Robinson, R. J. Stover, D. Tucker, J. M. Ward, and M. Wei, “Hires: the high-resolution echelle spectrometer on the keck 10-m telescope,” Proc. SPIE 2198, 362–375 (1994).
[Crossref]

Schermelleh, L.

L. Schermelleh, R. Heintzmann, and H. Leonhardt, “A guide to super-resolution fluorescence microscopy,” The Journal of cell biology,  190(2), 165–175 (2010).
[Crossref] [PubMed]

Smith, Z. J

K. Chu, Z. J Smith, S. Wachsmann-Hogiu, and S. Lane, “Super-resolved spatial light interference microscopy,” JOSA A,  29(3), 344–351 (2012).
[Crossref] [PubMed]

Song, M.

E. Pincemin, M. Song, J. Karaki, O. Zia-Chahabi, T. Guillossou, D. Grot, G. Thouenon, C. Betoule, R. Clavier, A. Poudoulec, M. Van der Keur, Y. Jaouën, R. Le Bidan, T. Le Gall, P. Gravey, M. Morvan, B. Dumas-Feris, M. L. Moulinard, and G. Froc, “Multi-band ofdm transmission at 100 gbps with sub-band optical switching,” Journal of Lightwave Technology,  32(12), 2202–2219 (2014).
[Crossref]

Stover, R. J.

S. S. Vogt, S. L. Allen, B. C. Bigelow, L. Bresee, W. E. Brown, T Cantrall, A. Conrad, M. Couture, C. Delaney, H. W. Epps, D. Hilyard, D. F. Hilyard, E. Horn, N. Jern, D. Kanto, M. J. Keane, R. I. Kibrick, J. W. Lewis, J. Osborne, G. H. Pardeilhan, T. Pfister, T. Ricketts, L. B. Robinson, R. J. Stover, D. Tucker, J. M. Ward, and M. Wei, “Hires: the high-resolution echelle spectrometer on the keck 10-m telescope,” Proc. SPIE 2198, 362–375 (1994).
[Crossref]

Tanimura, K.

T. Konishi, K. Tanimura, K. Asano, Y. Oshita, and Y. Ichioka, “All-optical analog-to-digital converter by use of self-frequency shifting in fiber and a pulse-shaping technique,” JOSA B,  19(11), 2817–2823 (2002).
[Crossref]

Thouenon, G.

E. Pincemin, M. Song, J. Karaki, O. Zia-Chahabi, T. Guillossou, D. Grot, G. Thouenon, C. Betoule, R. Clavier, A. Poudoulec, M. Van der Keur, Y. Jaouën, R. Le Bidan, T. Le Gall, P. Gravey, M. Morvan, B. Dumas-Feris, M. L. Moulinard, and G. Froc, “Multi-band ofdm transmission at 100 gbps with sub-band optical switching,” Journal of Lightwave Technology,  32(12), 2202–2219 (2014).
[Crossref]

Tucker, D.

S. S. Vogt, S. L. Allen, B. C. Bigelow, L. Bresee, W. E. Brown, T Cantrall, A. Conrad, M. Couture, C. Delaney, H. W. Epps, D. Hilyard, D. F. Hilyard, E. Horn, N. Jern, D. Kanto, M. J. Keane, R. I. Kibrick, J. W. Lewis, J. Osborne, G. H. Pardeilhan, T. Pfister, T. Ricketts, L. B. Robinson, R. J. Stover, D. Tucker, J. M. Ward, and M. Wei, “Hires: the high-resolution echelle spectrometer on the keck 10-m telescope,” Proc. SPIE 2198, 362–375 (1994).
[Crossref]

Ur, H.

H. Ur and D. Gross, “Improved resolution from subpixel shifted pictures,” CVGIP: Graphical Models and Image Processing,  54(2), 181–186 (1992).

Van der Keur, M.

E. Pincemin, M. Song, J. Karaki, O. Zia-Chahabi, T. Guillossou, D. Grot, G. Thouenon, C. Betoule, R. Clavier, A. Poudoulec, M. Van der Keur, Y. Jaouën, R. Le Bidan, T. Le Gall, P. Gravey, M. Morvan, B. Dumas-Feris, M. L. Moulinard, and G. Froc, “Multi-band ofdm transmission at 100 gbps with sub-band optical switching,” Journal of Lightwave Technology,  32(12), 2202–2219 (2014).
[Crossref]

Vogt, S. S.

S. S. Vogt, S. L. Allen, B. C. Bigelow, L. Bresee, W. E. Brown, T Cantrall, A. Conrad, M. Couture, C. Delaney, H. W. Epps, D. Hilyard, D. F. Hilyard, E. Horn, N. Jern, D. Kanto, M. J. Keane, R. I. Kibrick, J. W. Lewis, J. Osborne, G. H. Pardeilhan, T. Pfister, T. Ricketts, L. B. Robinson, R. J. Stover, D. Tucker, J. M. Ward, and M. Wei, “Hires: the high-resolution echelle spectrometer on the keck 10-m telescope,” Proc. SPIE 2198, 362–375 (1994).
[Crossref]

Wachsmann-Hogiu, S.

K. Chu, Z. J Smith, S. Wachsmann-Hogiu, and S. Lane, “Super-resolved spatial light interference microscopy,” JOSA A,  29(3), 344–351 (2012).
[Crossref] [PubMed]

Wandell, B. A.

T. Chen, P. B. Catrysse, A. El Gamal, and B. A. Wandell, “How small should pixel size be?” Proc. SPIE 3965, 451–459 (2000).
[Crossref]

Ward, J. M.

S. S. Vogt, S. L. Allen, B. C. Bigelow, L. Bresee, W. E. Brown, T Cantrall, A. Conrad, M. Couture, C. Delaney, H. W. Epps, D. Hilyard, D. F. Hilyard, E. Horn, N. Jern, D. Kanto, M. J. Keane, R. I. Kibrick, J. W. Lewis, J. Osborne, G. H. Pardeilhan, T. Pfister, T. Ricketts, L. B. Robinson, R. J. Stover, D. Tucker, J. M. Ward, and M. Wei, “Hires: the high-resolution echelle spectrometer on the keck 10-m telescope,” Proc. SPIE 2198, 362–375 (1994).
[Crossref]

Wei, M.

S. S. Vogt, S. L. Allen, B. C. Bigelow, L. Bresee, W. E. Brown, T Cantrall, A. Conrad, M. Couture, C. Delaney, H. W. Epps, D. Hilyard, D. F. Hilyard, E. Horn, N. Jern, D. Kanto, M. J. Keane, R. I. Kibrick, J. W. Lewis, J. Osborne, G. H. Pardeilhan, T. Pfister, T. Ricketts, L. B. Robinson, R. J. Stover, D. Tucker, J. M. Ward, and M. Wei, “Hires: the high-resolution echelle spectrometer on the keck 10-m telescope,” Proc. SPIE 2198, 362–375 (1994).
[Crossref]

Welsh, B.

D. J. Erskine, J. Edelstein, W. M. Feuerstein, and B. Welsh, “High-resolution broadband spectroscopy using an externally dispersed interferometer,” The Astrophysical Journal Letters,  592(2), L103 (2003).
[Crossref]

Winoto, L.

P. Kner, B. B. Chhun, E. R. Griffis, L. Winoto, and M. GL Gustafsson, “Super-resolution video microscopy of live cells by structured illumination,” Nature methods,  6(5), 339–342 (2009).
[Crossref] [PubMed]

Zia-Chahabi, O.

E. Pincemin, M. Song, J. Karaki, O. Zia-Chahabi, T. Guillossou, D. Grot, G. Thouenon, C. Betoule, R. Clavier, A. Poudoulec, M. Van der Keur, Y. Jaouën, R. Le Bidan, T. Le Gall, P. Gravey, M. Morvan, B. Dumas-Feris, M. L. Moulinard, and G. Froc, “Multi-band ofdm transmission at 100 gbps with sub-band optical switching,” Journal of Lightwave Technology,  32(12), 2202–2219 (2014).
[Crossref]

Applied optics (1)

A. Ashok and M. A. Neifeld, “Pseudorandom phase masks for superresolution imaging from subpixel shifting,” Applied optics,  46(12), 2256–2268 (2007).
[Crossref] [PubMed]

J. D. Hovanesian and Y.Y. Hung, “Moiré contour-sum contour-difference, and vibration analysis of arbitrary objects,” Applied Optics,  10(12), 2734–2738 (1971).
[Crossref] [PubMed]

CVGIP: Graphical Models and Image Processing (1)

H. Ur and D. Gross, “Improved resolution from subpixel shifted pictures,” CVGIP: Graphical Models and Image Processing,  54(2), 181–186 (1992).

JOSA (1)

G. R. Harrison, “The production of diffraction gratings: II. the design of echelle gratings and spectrographs1,” JOSA,  39(7), 522–528 (1949).
[Crossref]

JOSA A (1)

K. Chu, Z. J Smith, S. Wachsmann-Hogiu, and S. Lane, “Super-resolved spatial light interference microscopy,” JOSA A,  29(3), 344–351 (2012).
[Crossref] [PubMed]

JOSA B (1)

T. Konishi, K. Tanimura, K. Asano, Y. Oshita, and Y. Ichioka, “All-optical analog-to-digital converter by use of self-frequency shifting in fiber and a pulse-shaping technique,” JOSA B,  19(11), 2817–2823 (2002).
[Crossref]

Journal of Lightwave Technology (1)

E. Pincemin, M. Song, J. Karaki, O. Zia-Chahabi, T. Guillossou, D. Grot, G. Thouenon, C. Betoule, R. Clavier, A. Poudoulec, M. Van der Keur, Y. Jaouën, R. Le Bidan, T. Le Gall, P. Gravey, M. Morvan, B. Dumas-Feris, M. L. Moulinard, and G. Froc, “Multi-band ofdm transmission at 100 gbps with sub-band optical switching,” Journal of Lightwave Technology,  32(12), 2202–2219 (2014).
[Crossref]

Nature methods (1)

P. Kner, B. B. Chhun, E. R. Griffis, L. Winoto, and M. GL Gustafsson, “Super-resolution video microscopy of live cells by structured illumination,” Nature methods,  6(5), 339–342 (2009).
[Crossref] [PubMed]

Proc. SPIE (3)

S. S. Vogt, S. L. Allen, B. C. Bigelow, L. Bresee, W. E. Brown, T Cantrall, A. Conrad, M. Couture, C. Delaney, H. W. Epps, D. Hilyard, D. F. Hilyard, E. Horn, N. Jern, D. Kanto, M. J. Keane, R. I. Kibrick, J. W. Lewis, J. Osborne, G. H. Pardeilhan, T. Pfister, T. Ricketts, L. B. Robinson, R. J. Stover, D. Tucker, J. M. Ward, and M. Wei, “Hires: the high-resolution echelle spectrometer on the keck 10-m telescope,” Proc. SPIE 2198, 362–375 (1994).
[Crossref]

T. Chen, P. B. Catrysse, A. El Gamal, and B. A. Wandell, “How small should pixel size be?” Proc. SPIE 3965, 451–459 (2000).
[Crossref]

J. Edelstein and D. J. Erskine, “High resolution absorption spectroscopy using externally dispersed interferometry,” Proc. SPIE 5898, 589811 (2005).
[Crossref]

The Astrophysical Journal (1)

IJM Crossfield T. Barman, and B. MS Hansen, “High-resolution, differential, near-infrared transmission spectroscopy of gj 1214b,” The Astrophysical Journal,  736(2), 132 (2011).
[Crossref]

The Astrophysical Journal Letters (1)

D. J. Erskine, J. Edelstein, W. M. Feuerstein, and B. Welsh, “High-resolution broadband spectroscopy using an externally dispersed interferometer,” The Astrophysical Journal Letters,  592(2), L103 (2003).
[Crossref]

The Journal of cell biology (1)

L. Schermelleh, R. Heintzmann, and H. Leonhardt, “A guide to super-resolution fluorescence microscopy,” The Journal of cell biology,  190(2), 165–175 (2010).
[Crossref] [PubMed]

Other (7)

W. demtröder, Laser Spectroscopy: Basis Concepts and Instrumentation (Springer Science & Business Media, 2013).

D. J. Erskine and J. Ge, “A Novel Interferometer Spectrometer for Sensitive Stellar Radial Velocimetry,” in Proceedings of Astronomical Society of the Pacific Conference, W. van Breugel and J. Bland-Hawthorn, eds. (2000), pp. 501.

K. Patorski, Handbook of The Moiré Fringe Technique (Elsevier Science, 1993).

W. W. Parson, Modern Optical Spectroscopy, with Exercises and Examples from Biophysics and Biochemistry (Springer Verlag, 2009).

D. Derickson, Fiber Optic Test and Measurement (Prentice Hall, 1998).

P. Massey and M. M. Hanson, “Astronomical Spectroscopy,” in Planets, Stars and Stellar Systems, Terry D. Oswalt and Howard E. Bond, eds. (SpringerNetherlands, 2013).
[Crossref]

J. R Lakowicz, Principles of Fluorescence Spectroscopy (Springer Science & Business Media, 2013).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (17)

Fig. 1
Fig. 1 Pixel Nyquist limits issue in an externally dispersed interferometer (EDI): Fine details beyond LSF of an optical system in the Fourier transform of an EDI-detected signal can be shifted by an interferometer delay of τ but an EDI apparatus cannot relieve the blur caused by pixel Nyquist limits (determined by the Nyquist frequency).
Fig. 2
Fig. 2 Schematic configuration of the proposed method for the Moiré effect-based super spectral resolution beyond pixel Nyquist limits: Two repetitive structures RS1 and RS2 are set at the entrance and exit planes in a multi-channel spectrometer. An image of RS1 is superposed on RS2 for the Moiré effect generation under an imaging conditions between the entrance and exit planes.
Fig. 3
Fig. 3 Procedure of the proposed method for the Moiré effect-based super spectral resolution beyond pixel Nyquist limits: A measured input light Ein is multiplied by RS1. After spectral decomposition, colored images of RS1 are imaged on RS2, and they form colored Moiré fringes.
Fig. 4
Fig. 4 Moiré effect generation between sinusoidal repetitive structures: A multiplication-type Moiré pattern is generated from multiplication of G1(x) and G2(x). A generated Moiré pattern has a magnified form of G1(x).
Fig. 5
Fig. 5 Sinusoidal repetitive structure G1(x) in the notation of the convolution between a comb function combp1(x) and an elemental wavelet WLcos(x) for one cycle.
Fig. 6
Fig. 6 Fourier space description of the Moiré effect-based super spectral resolution using sinusoidal repetitive structures: The Fourier transform of the original G1 (a blue line) can be down-scaled by Δfp12/fp1 to that of the magnified G1 (a red line) so that the Fourier transform of the magnified G1 is sufficiently lower than the pixel Nyquist limits (a pale blue dotted line; Nyquist frequency).
Fig. 7
Fig. 7 Spectral resolution limitation due to sinusoidal repetitive structures: The resolvable size on a linear image sensor array is limited to 1/2Δfp12.
Fig. 8
Fig. 8 Repetitive structure of a spectral structure WLsp (x) imaged on G2(x) in the notation of the convolution between a comb function combp1(x) and an elemental wavelet WLsp (x) for one cycle.
Fig. 9
Fig. 9 Fourier space description of the Moiré effect-based super spectral resolution using a repetitive structure with a more general spectral structure WLsp (x) and a sinusoidal one: W̃Lsp (fx) (pale blue area) cannot be completely down-scaled by Δfp12/fp1 and aliasing occurs.
Fig. 10
Fig. 10 Fourier space description of the Moiré effect-based super spectral resolution using a repetitive structure with a more general spectral structure WLsp (x) and a comb structure combp2(x): W̃Lsp (fx) (pale blue area) can be completely down-scaled by Δ fp12/fp1 and aliasing does not occur.
Fig. 11
Fig. 11 Moiré effect generation between a repetitive function of the measured spectrum So (x) with the period p1 and a comb structure combp2(x): A generated Moiré pattern is discretely sampled with intervals p2, and it can be interpreted as the spatial version of an equivalent sampling.
Fig. 12
Fig. 12 Experimental setup: Two slit arrays SLA1 and SLA2 are set at the entrance and exit planes in a commercially available Czerny–Turner type spectroscope. The entrance plane is imaged on the exit plane through a 1.5-times magnification imaging system.
Fig. 13
Fig. 13 Photograph of experimental setup in diagonal view.
Fig. 14
Fig. 14 Experimental results of spectral line shift measurement using a normal spectrometer configuration with a 300-μm width entrance single slit: The observed LSF of the 300-μm width entrance single slit is magnified by about 1.5 times (∼450μm width) on the linear image sensor. The center of the LSF moves 4 pixels between two white dotted lines for a 2.0-nm wavelength change.
Fig. 15
Fig. 15 Experimental results of a series of observed Moiré fringes with tuning of the center wavelength from 1549.20 nm to 1553.00 nm with steps of 0.05 nm. The actual periods of the entrance and exit slit arrays on the linear image sensor are evaluated as 156 μm and 187 μm, respectively.
Fig. 16
Fig. 16 Experimental results of a series of observed Moiré fringes formed by two spectral lines from two CW lasers as a polychrimatic light spectrum. One center wavelength is fixed at 1550.00 nm and the other one is varied with 0.05 nm steps from 1549.20 nm to 1553.00 nm.
Fig. 17
Fig. 17 Achievable spectral resolution as a function of the entrance slit period p1 for different values of beam diameter Wbeam. Appropriate p1 and Wbeam are determined so as to satisfy the demand of spatial resolution Δres from the pixel size limit Wpixel.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

U edi ( x ) = { S o ( x ) + S o ( x ) exp ( j 2 π τ x ) } LSF ( x ) ,
U edi pixel ( x ) = U edi ( x ) × n = δ ( x n W pixel ) ,
S edi pixel ( x ) = | U edi pixel ( x ) | 2 , = [ 2 | S o ( x ) | 2 ( 1 + cos ( 2 π τ x ) ) ] × n = δ ( x n W pixel ) = S edi ( x ) × n = δ ( x n W pixel ) .
S ˜ edi pixel ( f x ) = 1 W pixel n = S ˜ edi ( f x n 1 W pixel )
BW edi 1 2 W pixel .
G 1 ( x ) = 1 2 { 1 + cos ( 2 π f p 1 x ) } ,
G 2 ( x ) = 1 2 { 1 + cos ( 2 π f p 2 x ) } ,
G 1 ( x ) × G 2 ( x ) 1 8 + 1 4 cos ( 2 π f p 1 x ) + 1 4 cos ( 2 π f p 2 x ) + 1 8 cos ( 4 π f p 1 x ) + 1 8 { 1 + cos ( 2 π Δ f p 12 x ) } ,
The fifth term = 1 8 { 1 + cos ( 2 π Δ f p 12 x + f p 1 Δ G 1 ) } , = 1 4 G 1 ( Δ f p 12 f p 1 x + Δ G 1 ) , = 1 2 { W L cos ( Δ f p 12 f p 1 x + Δ G 1 ) comb p 1 ( Δ f p 12 f p 1 x + Δ G 1 ) } .
S G 12 pixel ( x ) = const + 1 4 G 1 ( Δ f p 12 f p 1 x + Δ G 1 ) × n = δ ( x n W pixel ) .
S ˜ G 12 pixel ( f x ) = 1 W pixel n = G ˜ 1 [ f p 1 Δ f p 12 ( f x n 1 W pixel ) ] ,
B W M o i r e ´ G 1 f p 1 Δ f p 12 1 2 W pixel .
BW Moir e ´ Ideal f p 1 Δ f p 12 1 2 W pixel .

Metrics