Abstract

We propose a sunlight-switchable light shutter using liquid crystal/polymer composite doped with push-pull azobenzene. The proposed light shutter is switchable between the translucent and transparent states by application of an electric field or by UV irradiation. Switching by UV irradiation is based on the change of the liquid crystal (LC) clearing point by the photo-isomerization effect of push-pull azobenzene. Under sunlight, the light shutter can be switched from the translucent to the transparent state by the nematic-isotropic phase transition of the LC domains triggered by trans-cis photo-isomerization of the push-pull azobenzene molecules. When the amount of sunlight is low because of cloud cover or when there is no sunlight at sunset, the light shutter rapidly relaxes from its transparent state back to its initial translucent state by the isotropic-nematic phase transition induced by cis-trans back-isomerization of the push-pull azobenzene molecules.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Photo- and electro-isomerization of azobenzenes based on polymer-dispersed liquid crystals doped with azobenzenes and their applications

Yen-Chen Liu, Ko-Ting Cheng, Hsin-Fu Chen, and Andy Ying-Guey Fuh
Opt. Express 22(4) 4404-4411 (2014)

Optically switchable, rapidly relaxing cholesteric liquid crystal reflectors

Uladzimir A. Hrozhyk, Svetlana V. Serak, Nelson V. Tabiryan, Timothy J. White, and Timothy J. Bunning
Opt. Express 18(9) 9651-9657 (2010)

Direct optical switching of bistable cholesteric textures in chiral azobenzene-doped liquid crystals

Andy Ying-Guey Fuh, Zong-Han Wu, Ko-Ting Cheng, Cheng-Kai Liu, and Yuan-Di Chen
Opt. Express 21(19) 21840-21846 (2013)

References

  • View by:
  • |
  • |
  • |

  1. D. Cupelli, F. P. Nicoletta, S. Manfredi, M. Vivacqua, P. Formoso, G. D. Filpo, and G. Chidichimo, “Self-adjusting smart windows based on polymer-dispersed liquid crystals,” Sol. Energy Mater. Sol. Cells 93(11), 2008–2012 (2009).
    [Crossref]
  2. T.-Y. Kim, S. M. Cho, C. S. Ah, K.-S. Suh, H. Ryu, and H. Y. Chu, “Electrochromic device for the reversible electrodeposition system,” J. Inf. Disp. 15(1), 13–17 (2014).
    [Crossref]
  3. D. Kim, E. Lee, H. S. Lee, and J. Yoon, “Energy efficient glazing for adaptive solar control fabricated with photothermotropic hydrogels containing graphene oxide,” Sci. Rep. 5, 7646 (2015).
    [Crossref] [PubMed]
  4. J. W. Doane, N. A. Vaz, B.-G. Wu, and S. Žumer, “Field controlled light scattering from nematic micorodroplets,” Appl. Phys. Lett. 48(4), 269–271 (1986).
    [Crossref]
  5. P. S. Drzaic, “Polymer dispersed nematic liquid crystal for large area displays and light valves,” J. Appl. Phys. 60(6), 2142–2146 (1986).
    [Crossref]
  6. P. P. Crooker and D. K. Yang, “Polymer-dispersed chiral liquid crystal color display,” Appl. Phys. Lett. 57(24), 2529–2531 (1990).
    [Crossref]
  7. V. Vorflusev and S. Kumar, “Phase-separated composite films for liquid crystal displays,” Science 283(5409), 1903–1905 (1999).
    [Crossref] [PubMed]
  8. P. Mach, S. J. Rodriguez, R. Notrup, P. Wiltzius, and J. A. Rogers, “Monolithically integrated, flexible display of polymer-dispersed liquid crystal driven by rubber-stamped organic thin-film transistors,” Appl. Phys. Lett. 78(23), 3592–3594 (2001).
    [Crossref]
  9. J. Qi, L. Li, M. D. Sarkar, and G. P. Crawford, “Nonlocal photopolymerization effect in the formation of reflective holographic polymer-dispersed liquid crystals,” J. Appl. Phys. 96(5), 2443–2450 (2004).
    [Crossref]
  10. W. Li, H. Cao, M. Kashima, F. Liu, Z. Cheng, Z. Yang, S. Zhu, and H. Yang, “Control of the microstructure of polymer network and effects of the microstructures on light scattering properties of UV-cured polymer-dispersed liquid crystal films,” J. Polym. Sci., B, Polym. Phys. 46(19), 2090–2099 (2008).
    [Crossref]
  11. S.-W. Oh, J.-M. Baek, J. Heo, and T.-H. Yoon, “Dye-doped cholesteric liquid crystal light shutter with a polymer-dispersed liquid crystal film,” Dyes Pigments 134, 36–40 (2016).
    [Crossref]
  12. D. J. Broer, J. Lub, and G. N. Mol, “Wide-band reflective polarizers from cholesteric polymer networks with a pitch gradient,” Nature 378(6556), 467–469 (1995).
    [Crossref]
  13. H. Ren and S.-T. Wu, “Anisotropic liquid crystal gels for switchable polarizers and displays,” Appl. Phys. Lett. 81(8), 1432–1434 (2002).
    [Crossref]
  14. H. Ren, T.-H. Lin, Y.-H. Fan, and S.-T. Wu, “In-plane switching liquid crystal gel for polarization-independent light switch,” J. Appl. Phys. 96(7), 3609–3611 (2004).
    [Crossref]
  15. L. T. de Haan, C. Sánchez-Somolinos, C. M. W. Bastiaansen, A. P. H. J. Schenning, and D. J. Broer, “Engineering of complex order and the macroscopic deformation of liquid crystal polymer networks,” Angew. Chem. Int. Ed. Engl. 51(50), 12469–12472 (2012).
    [Crossref] [PubMed]
  16. J. Heo, J.-W. Huh, and T.-H. Yoon, “Fast-switching initially-transparent liquid crystal light shutter with crossed patterned electrodes,” AIP Adv. 5(4), 047118 (2015).
    [Crossref]
  17. J.-W. Huh, S.-M. Ji, J. Heo, B.-H. Yu, and T.-H. Yoon, “Bistable light shutter using dye-doped cholesteric liquid crystals driven with crossed patterned electrodes,” J. Disp. Technol. 12(8), 779–783 (2016).
    [Crossref]
  18. D.-K. Yang and S.-T. Wu, Fundamentals of Liquid Crystal Devices (Wiley, 2006).
  19. S. Kurihara, K. Masumoto, and T. Nonaka, “Optical shutter driven photochemically from anisotropic polymer network containing liquid crystalline and azobenzene molecules,” Appl. Phys. Lett. 73(2), 160–162 (1998).
    [Crossref]
  20. Y.-C. Liu, K.-T. Cheng, Y.-D. Chen, and A. Y.-G. Fuh, “All-optically controllable and highly efficient scattering mode light modulator based on azobenzene liquid crystals and poly(N-vinylcarbazole) films,” Opt. Express 21(15), 18492–18500 (2013).
    [Crossref] [PubMed]
  21. D.-Y. Kim, S.-A. Lee, H. Kim, S. Min Kim, N. Kim, and K.-U. Jeong, “An azobenzene-based photochromic liquid crystalline amphiphile for a remote-controllable light shutter,” Chem. Commun. (Camb.) 51(55), 11080–11083 (2015).
    [Crossref] [PubMed]
  22. J. P. Otruba and R. G. Weiss, “Liquid crystalline solvents as mechanistic probes. 11. The syn → anti thermal isomerization mechanism of some low-bipolarity azobenzenes,” J. Org. Chem. 48(20), 3448–3453 (1983).
    [Crossref]
  23. Y. Kawanishi, T. Tamaki, and K. Ichimura, “Reversible photoinduced phase transition and image recording in polymer-dispersed liquid crystals,” J. Phys. D 24(5), 782–784 (1991).
    [Crossref]
  24. J. Bin and W. S. Oates, “A unified material description for light induced deformation in azobenzene polymers,” Sci. Rep. 5, 14654 (2015).
    [Crossref] [PubMed]
  25. J. García-Amorós and D. Velasco, “Recent advances towards azobenzene-based light-driven real-time information-transmitting materials,” Beilstein J. Org. Chem. 8(1), 1003–1017 (2012).
    [Crossref] [PubMed]
  26. S. M. Morris, M. M. Qasim, K. T. Cheng, F. Castles, D.-H. Ko, D. J. Gardiner, S. Nosheen, T. D. Wilkinson, H. J. Coles, C. Burgess, and L. Hill, “Optically activated shutter using a photo-tunable short-pitch chiral nematic liquid crystal,” Appl. Phys. Lett. 103(10), 101105 (2013).
    [Crossref]
  27. H. Yu and T. Kobayashi, “Photoresponsive block copolymers containing azobenzenes and other chromophores,” Molecules 15(1), 570–603 (2010).
    [Crossref] [PubMed]
  28. P. El-Kallassi, R. Ferrini, L. Zuppiroli, N. L. Thomas, R. Houdré, A. Berrier, S. Anand, and A. Talneau, “Optical tuning of planar photonic crystals infiltrated with organic molecules,” J. Opt. Soc. Am. B 24(9), 2165–2171 (2007).
    [Crossref]
  29. H.-K. Lee, A. Kanazawa, T. Shiono, T. Ikeda, T. Fujisawa, M. Aizawa, and B. Lee, “All-optically controllable polymer/liquid crystal composite films containing the azobenzene liquid crystal,” Chem. Mater. 10(5), 1402–1407 (1998).
    [Crossref]
  30. C.-C. Lee, The Current Trends of Optics and Photonics (Springer, 2014).

2016 (2)

S.-W. Oh, J.-M. Baek, J. Heo, and T.-H. Yoon, “Dye-doped cholesteric liquid crystal light shutter with a polymer-dispersed liquid crystal film,” Dyes Pigments 134, 36–40 (2016).
[Crossref]

J.-W. Huh, S.-M. Ji, J. Heo, B.-H. Yu, and T.-H. Yoon, “Bistable light shutter using dye-doped cholesteric liquid crystals driven with crossed patterned electrodes,” J. Disp. Technol. 12(8), 779–783 (2016).
[Crossref]

2015 (4)

D. Kim, E. Lee, H. S. Lee, and J. Yoon, “Energy efficient glazing for adaptive solar control fabricated with photothermotropic hydrogels containing graphene oxide,” Sci. Rep. 5, 7646 (2015).
[Crossref] [PubMed]

J. Heo, J.-W. Huh, and T.-H. Yoon, “Fast-switching initially-transparent liquid crystal light shutter with crossed patterned electrodes,” AIP Adv. 5(4), 047118 (2015).
[Crossref]

D.-Y. Kim, S.-A. Lee, H. Kim, S. Min Kim, N. Kim, and K.-U. Jeong, “An azobenzene-based photochromic liquid crystalline amphiphile for a remote-controllable light shutter,” Chem. Commun. (Camb.) 51(55), 11080–11083 (2015).
[Crossref] [PubMed]

J. Bin and W. S. Oates, “A unified material description for light induced deformation in azobenzene polymers,” Sci. Rep. 5, 14654 (2015).
[Crossref] [PubMed]

2014 (1)

T.-Y. Kim, S. M. Cho, C. S. Ah, K.-S. Suh, H. Ryu, and H. Y. Chu, “Electrochromic device for the reversible electrodeposition system,” J. Inf. Disp. 15(1), 13–17 (2014).
[Crossref]

2013 (2)

Y.-C. Liu, K.-T. Cheng, Y.-D. Chen, and A. Y.-G. Fuh, “All-optically controllable and highly efficient scattering mode light modulator based on azobenzene liquid crystals and poly(N-vinylcarbazole) films,” Opt. Express 21(15), 18492–18500 (2013).
[Crossref] [PubMed]

S. M. Morris, M. M. Qasim, K. T. Cheng, F. Castles, D.-H. Ko, D. J. Gardiner, S. Nosheen, T. D. Wilkinson, H. J. Coles, C. Burgess, and L. Hill, “Optically activated shutter using a photo-tunable short-pitch chiral nematic liquid crystal,” Appl. Phys. Lett. 103(10), 101105 (2013).
[Crossref]

2012 (2)

J. García-Amorós and D. Velasco, “Recent advances towards azobenzene-based light-driven real-time information-transmitting materials,” Beilstein J. Org. Chem. 8(1), 1003–1017 (2012).
[Crossref] [PubMed]

L. T. de Haan, C. Sánchez-Somolinos, C. M. W. Bastiaansen, A. P. H. J. Schenning, and D. J. Broer, “Engineering of complex order and the macroscopic deformation of liquid crystal polymer networks,” Angew. Chem. Int. Ed. Engl. 51(50), 12469–12472 (2012).
[Crossref] [PubMed]

2010 (1)

H. Yu and T. Kobayashi, “Photoresponsive block copolymers containing azobenzenes and other chromophores,” Molecules 15(1), 570–603 (2010).
[Crossref] [PubMed]

2009 (1)

D. Cupelli, F. P. Nicoletta, S. Manfredi, M. Vivacqua, P. Formoso, G. D. Filpo, and G. Chidichimo, “Self-adjusting smart windows based on polymer-dispersed liquid crystals,” Sol. Energy Mater. Sol. Cells 93(11), 2008–2012 (2009).
[Crossref]

2008 (1)

W. Li, H. Cao, M. Kashima, F. Liu, Z. Cheng, Z. Yang, S. Zhu, and H. Yang, “Control of the microstructure of polymer network and effects of the microstructures on light scattering properties of UV-cured polymer-dispersed liquid crystal films,” J. Polym. Sci., B, Polym. Phys. 46(19), 2090–2099 (2008).
[Crossref]

2007 (1)

2004 (2)

H. Ren, T.-H. Lin, Y.-H. Fan, and S.-T. Wu, “In-plane switching liquid crystal gel for polarization-independent light switch,” J. Appl. Phys. 96(7), 3609–3611 (2004).
[Crossref]

J. Qi, L. Li, M. D. Sarkar, and G. P. Crawford, “Nonlocal photopolymerization effect in the formation of reflective holographic polymer-dispersed liquid crystals,” J. Appl. Phys. 96(5), 2443–2450 (2004).
[Crossref]

2002 (1)

H. Ren and S.-T. Wu, “Anisotropic liquid crystal gels for switchable polarizers and displays,” Appl. Phys. Lett. 81(8), 1432–1434 (2002).
[Crossref]

2001 (1)

P. Mach, S. J. Rodriguez, R. Notrup, P. Wiltzius, and J. A. Rogers, “Monolithically integrated, flexible display of polymer-dispersed liquid crystal driven by rubber-stamped organic thin-film transistors,” Appl. Phys. Lett. 78(23), 3592–3594 (2001).
[Crossref]

1999 (1)

V. Vorflusev and S. Kumar, “Phase-separated composite films for liquid crystal displays,” Science 283(5409), 1903–1905 (1999).
[Crossref] [PubMed]

1998 (2)

S. Kurihara, K. Masumoto, and T. Nonaka, “Optical shutter driven photochemically from anisotropic polymer network containing liquid crystalline and azobenzene molecules,” Appl. Phys. Lett. 73(2), 160–162 (1998).
[Crossref]

H.-K. Lee, A. Kanazawa, T. Shiono, T. Ikeda, T. Fujisawa, M. Aizawa, and B. Lee, “All-optically controllable polymer/liquid crystal composite films containing the azobenzene liquid crystal,” Chem. Mater. 10(5), 1402–1407 (1998).
[Crossref]

1995 (1)

D. J. Broer, J. Lub, and G. N. Mol, “Wide-band reflective polarizers from cholesteric polymer networks with a pitch gradient,” Nature 378(6556), 467–469 (1995).
[Crossref]

1991 (1)

Y. Kawanishi, T. Tamaki, and K. Ichimura, “Reversible photoinduced phase transition and image recording in polymer-dispersed liquid crystals,” J. Phys. D 24(5), 782–784 (1991).
[Crossref]

1990 (1)

P. P. Crooker and D. K. Yang, “Polymer-dispersed chiral liquid crystal color display,” Appl. Phys. Lett. 57(24), 2529–2531 (1990).
[Crossref]

1986 (2)

J. W. Doane, N. A. Vaz, B.-G. Wu, and S. Žumer, “Field controlled light scattering from nematic micorodroplets,” Appl. Phys. Lett. 48(4), 269–271 (1986).
[Crossref]

P. S. Drzaic, “Polymer dispersed nematic liquid crystal for large area displays and light valves,” J. Appl. Phys. 60(6), 2142–2146 (1986).
[Crossref]

1983 (1)

J. P. Otruba and R. G. Weiss, “Liquid crystalline solvents as mechanistic probes. 11. The syn → anti thermal isomerization mechanism of some low-bipolarity azobenzenes,” J. Org. Chem. 48(20), 3448–3453 (1983).
[Crossref]

Ah, C. S.

T.-Y. Kim, S. M. Cho, C. S. Ah, K.-S. Suh, H. Ryu, and H. Y. Chu, “Electrochromic device for the reversible electrodeposition system,” J. Inf. Disp. 15(1), 13–17 (2014).
[Crossref]

Aizawa, M.

H.-K. Lee, A. Kanazawa, T. Shiono, T. Ikeda, T. Fujisawa, M. Aizawa, and B. Lee, “All-optically controllable polymer/liquid crystal composite films containing the azobenzene liquid crystal,” Chem. Mater. 10(5), 1402–1407 (1998).
[Crossref]

Anand, S.

Baek, J.-M.

S.-W. Oh, J.-M. Baek, J. Heo, and T.-H. Yoon, “Dye-doped cholesteric liquid crystal light shutter with a polymer-dispersed liquid crystal film,” Dyes Pigments 134, 36–40 (2016).
[Crossref]

Bastiaansen, C. M. W.

L. T. de Haan, C. Sánchez-Somolinos, C. M. W. Bastiaansen, A. P. H. J. Schenning, and D. J. Broer, “Engineering of complex order and the macroscopic deformation of liquid crystal polymer networks,” Angew. Chem. Int. Ed. Engl. 51(50), 12469–12472 (2012).
[Crossref] [PubMed]

Berrier, A.

Bin, J.

J. Bin and W. S. Oates, “A unified material description for light induced deformation in azobenzene polymers,” Sci. Rep. 5, 14654 (2015).
[Crossref] [PubMed]

Broer, D. J.

L. T. de Haan, C. Sánchez-Somolinos, C. M. W. Bastiaansen, A. P. H. J. Schenning, and D. J. Broer, “Engineering of complex order and the macroscopic deformation of liquid crystal polymer networks,” Angew. Chem. Int. Ed. Engl. 51(50), 12469–12472 (2012).
[Crossref] [PubMed]

D. J. Broer, J. Lub, and G. N. Mol, “Wide-band reflective polarizers from cholesteric polymer networks with a pitch gradient,” Nature 378(6556), 467–469 (1995).
[Crossref]

Burgess, C.

S. M. Morris, M. M. Qasim, K. T. Cheng, F. Castles, D.-H. Ko, D. J. Gardiner, S. Nosheen, T. D. Wilkinson, H. J. Coles, C. Burgess, and L. Hill, “Optically activated shutter using a photo-tunable short-pitch chiral nematic liquid crystal,” Appl. Phys. Lett. 103(10), 101105 (2013).
[Crossref]

Cao, H.

W. Li, H. Cao, M. Kashima, F. Liu, Z. Cheng, Z. Yang, S. Zhu, and H. Yang, “Control of the microstructure of polymer network and effects of the microstructures on light scattering properties of UV-cured polymer-dispersed liquid crystal films,” J. Polym. Sci., B, Polym. Phys. 46(19), 2090–2099 (2008).
[Crossref]

Castles, F.

S. M. Morris, M. M. Qasim, K. T. Cheng, F. Castles, D.-H. Ko, D. J. Gardiner, S. Nosheen, T. D. Wilkinson, H. J. Coles, C. Burgess, and L. Hill, “Optically activated shutter using a photo-tunable short-pitch chiral nematic liquid crystal,” Appl. Phys. Lett. 103(10), 101105 (2013).
[Crossref]

Chen, Y.-D.

Cheng, K. T.

S. M. Morris, M. M. Qasim, K. T. Cheng, F. Castles, D.-H. Ko, D. J. Gardiner, S. Nosheen, T. D. Wilkinson, H. J. Coles, C. Burgess, and L. Hill, “Optically activated shutter using a photo-tunable short-pitch chiral nematic liquid crystal,” Appl. Phys. Lett. 103(10), 101105 (2013).
[Crossref]

Cheng, K.-T.

Cheng, Z.

W. Li, H. Cao, M. Kashima, F. Liu, Z. Cheng, Z. Yang, S. Zhu, and H. Yang, “Control of the microstructure of polymer network and effects of the microstructures on light scattering properties of UV-cured polymer-dispersed liquid crystal films,” J. Polym. Sci., B, Polym. Phys. 46(19), 2090–2099 (2008).
[Crossref]

Chidichimo, G.

D. Cupelli, F. P. Nicoletta, S. Manfredi, M. Vivacqua, P. Formoso, G. D. Filpo, and G. Chidichimo, “Self-adjusting smart windows based on polymer-dispersed liquid crystals,” Sol. Energy Mater. Sol. Cells 93(11), 2008–2012 (2009).
[Crossref]

Cho, S. M.

T.-Y. Kim, S. M. Cho, C. S. Ah, K.-S. Suh, H. Ryu, and H. Y. Chu, “Electrochromic device for the reversible electrodeposition system,” J. Inf. Disp. 15(1), 13–17 (2014).
[Crossref]

Chu, H. Y.

T.-Y. Kim, S. M. Cho, C. S. Ah, K.-S. Suh, H. Ryu, and H. Y. Chu, “Electrochromic device for the reversible electrodeposition system,” J. Inf. Disp. 15(1), 13–17 (2014).
[Crossref]

Coles, H. J.

S. M. Morris, M. M. Qasim, K. T. Cheng, F. Castles, D.-H. Ko, D. J. Gardiner, S. Nosheen, T. D. Wilkinson, H. J. Coles, C. Burgess, and L. Hill, “Optically activated shutter using a photo-tunable short-pitch chiral nematic liquid crystal,” Appl. Phys. Lett. 103(10), 101105 (2013).
[Crossref]

Crawford, G. P.

J. Qi, L. Li, M. D. Sarkar, and G. P. Crawford, “Nonlocal photopolymerization effect in the formation of reflective holographic polymer-dispersed liquid crystals,” J. Appl. Phys. 96(5), 2443–2450 (2004).
[Crossref]

Crooker, P. P.

P. P. Crooker and D. K. Yang, “Polymer-dispersed chiral liquid crystal color display,” Appl. Phys. Lett. 57(24), 2529–2531 (1990).
[Crossref]

Cupelli, D.

D. Cupelli, F. P. Nicoletta, S. Manfredi, M. Vivacqua, P. Formoso, G. D. Filpo, and G. Chidichimo, “Self-adjusting smart windows based on polymer-dispersed liquid crystals,” Sol. Energy Mater. Sol. Cells 93(11), 2008–2012 (2009).
[Crossref]

de Haan, L. T.

L. T. de Haan, C. Sánchez-Somolinos, C. M. W. Bastiaansen, A. P. H. J. Schenning, and D. J. Broer, “Engineering of complex order and the macroscopic deformation of liquid crystal polymer networks,” Angew. Chem. Int. Ed. Engl. 51(50), 12469–12472 (2012).
[Crossref] [PubMed]

Doane, J. W.

J. W. Doane, N. A. Vaz, B.-G. Wu, and S. Žumer, “Field controlled light scattering from nematic micorodroplets,” Appl. Phys. Lett. 48(4), 269–271 (1986).
[Crossref]

Drzaic, P. S.

P. S. Drzaic, “Polymer dispersed nematic liquid crystal for large area displays and light valves,” J. Appl. Phys. 60(6), 2142–2146 (1986).
[Crossref]

El-Kallassi, P.

Fan, Y.-H.

H. Ren, T.-H. Lin, Y.-H. Fan, and S.-T. Wu, “In-plane switching liquid crystal gel for polarization-independent light switch,” J. Appl. Phys. 96(7), 3609–3611 (2004).
[Crossref]

Ferrini, R.

Filpo, G. D.

D. Cupelli, F. P. Nicoletta, S. Manfredi, M. Vivacqua, P. Formoso, G. D. Filpo, and G. Chidichimo, “Self-adjusting smart windows based on polymer-dispersed liquid crystals,” Sol. Energy Mater. Sol. Cells 93(11), 2008–2012 (2009).
[Crossref]

Formoso, P.

D. Cupelli, F. P. Nicoletta, S. Manfredi, M. Vivacqua, P. Formoso, G. D. Filpo, and G. Chidichimo, “Self-adjusting smart windows based on polymer-dispersed liquid crystals,” Sol. Energy Mater. Sol. Cells 93(11), 2008–2012 (2009).
[Crossref]

Fuh, A. Y.-G.

Fujisawa, T.

H.-K. Lee, A. Kanazawa, T. Shiono, T. Ikeda, T. Fujisawa, M. Aizawa, and B. Lee, “All-optically controllable polymer/liquid crystal composite films containing the azobenzene liquid crystal,” Chem. Mater. 10(5), 1402–1407 (1998).
[Crossref]

García-Amorós, J.

J. García-Amorós and D. Velasco, “Recent advances towards azobenzene-based light-driven real-time information-transmitting materials,” Beilstein J. Org. Chem. 8(1), 1003–1017 (2012).
[Crossref] [PubMed]

Gardiner, D. J.

S. M. Morris, M. M. Qasim, K. T. Cheng, F. Castles, D.-H. Ko, D. J. Gardiner, S. Nosheen, T. D. Wilkinson, H. J. Coles, C. Burgess, and L. Hill, “Optically activated shutter using a photo-tunable short-pitch chiral nematic liquid crystal,” Appl. Phys. Lett. 103(10), 101105 (2013).
[Crossref]

Heo, J.

J.-W. Huh, S.-M. Ji, J. Heo, B.-H. Yu, and T.-H. Yoon, “Bistable light shutter using dye-doped cholesteric liquid crystals driven with crossed patterned electrodes,” J. Disp. Technol. 12(8), 779–783 (2016).
[Crossref]

S.-W. Oh, J.-M. Baek, J. Heo, and T.-H. Yoon, “Dye-doped cholesteric liquid crystal light shutter with a polymer-dispersed liquid crystal film,” Dyes Pigments 134, 36–40 (2016).
[Crossref]

J. Heo, J.-W. Huh, and T.-H. Yoon, “Fast-switching initially-transparent liquid crystal light shutter with crossed patterned electrodes,” AIP Adv. 5(4), 047118 (2015).
[Crossref]

Hill, L.

S. M. Morris, M. M. Qasim, K. T. Cheng, F. Castles, D.-H. Ko, D. J. Gardiner, S. Nosheen, T. D. Wilkinson, H. J. Coles, C. Burgess, and L. Hill, “Optically activated shutter using a photo-tunable short-pitch chiral nematic liquid crystal,” Appl. Phys. Lett. 103(10), 101105 (2013).
[Crossref]

Houdré, R.

Huh, J.-W.

J.-W. Huh, S.-M. Ji, J. Heo, B.-H. Yu, and T.-H. Yoon, “Bistable light shutter using dye-doped cholesteric liquid crystals driven with crossed patterned electrodes,” J. Disp. Technol. 12(8), 779–783 (2016).
[Crossref]

J. Heo, J.-W. Huh, and T.-H. Yoon, “Fast-switching initially-transparent liquid crystal light shutter with crossed patterned electrodes,” AIP Adv. 5(4), 047118 (2015).
[Crossref]

Ichimura, K.

Y. Kawanishi, T. Tamaki, and K. Ichimura, “Reversible photoinduced phase transition and image recording in polymer-dispersed liquid crystals,” J. Phys. D 24(5), 782–784 (1991).
[Crossref]

Ikeda, T.

H.-K. Lee, A. Kanazawa, T. Shiono, T. Ikeda, T. Fujisawa, M. Aizawa, and B. Lee, “All-optically controllable polymer/liquid crystal composite films containing the azobenzene liquid crystal,” Chem. Mater. 10(5), 1402–1407 (1998).
[Crossref]

Jeong, K.-U.

D.-Y. Kim, S.-A. Lee, H. Kim, S. Min Kim, N. Kim, and K.-U. Jeong, “An azobenzene-based photochromic liquid crystalline amphiphile for a remote-controllable light shutter,” Chem. Commun. (Camb.) 51(55), 11080–11083 (2015).
[Crossref] [PubMed]

Ji, S.-M.

J.-W. Huh, S.-M. Ji, J. Heo, B.-H. Yu, and T.-H. Yoon, “Bistable light shutter using dye-doped cholesteric liquid crystals driven with crossed patterned electrodes,” J. Disp. Technol. 12(8), 779–783 (2016).
[Crossref]

Kanazawa, A.

H.-K. Lee, A. Kanazawa, T. Shiono, T. Ikeda, T. Fujisawa, M. Aizawa, and B. Lee, “All-optically controllable polymer/liquid crystal composite films containing the azobenzene liquid crystal,” Chem. Mater. 10(5), 1402–1407 (1998).
[Crossref]

Kashima, M.

W. Li, H. Cao, M. Kashima, F. Liu, Z. Cheng, Z. Yang, S. Zhu, and H. Yang, “Control of the microstructure of polymer network and effects of the microstructures on light scattering properties of UV-cured polymer-dispersed liquid crystal films,” J. Polym. Sci., B, Polym. Phys. 46(19), 2090–2099 (2008).
[Crossref]

Kawanishi, Y.

Y. Kawanishi, T. Tamaki, and K. Ichimura, “Reversible photoinduced phase transition and image recording in polymer-dispersed liquid crystals,” J. Phys. D 24(5), 782–784 (1991).
[Crossref]

Kim, D.

D. Kim, E. Lee, H. S. Lee, and J. Yoon, “Energy efficient glazing for adaptive solar control fabricated with photothermotropic hydrogels containing graphene oxide,” Sci. Rep. 5, 7646 (2015).
[Crossref] [PubMed]

Kim, D.-Y.

D.-Y. Kim, S.-A. Lee, H. Kim, S. Min Kim, N. Kim, and K.-U. Jeong, “An azobenzene-based photochromic liquid crystalline amphiphile for a remote-controllable light shutter,” Chem. Commun. (Camb.) 51(55), 11080–11083 (2015).
[Crossref] [PubMed]

Kim, H.

D.-Y. Kim, S.-A. Lee, H. Kim, S. Min Kim, N. Kim, and K.-U. Jeong, “An azobenzene-based photochromic liquid crystalline amphiphile for a remote-controllable light shutter,” Chem. Commun. (Camb.) 51(55), 11080–11083 (2015).
[Crossref] [PubMed]

Kim, N.

D.-Y. Kim, S.-A. Lee, H. Kim, S. Min Kim, N. Kim, and K.-U. Jeong, “An azobenzene-based photochromic liquid crystalline amphiphile for a remote-controllable light shutter,” Chem. Commun. (Camb.) 51(55), 11080–11083 (2015).
[Crossref] [PubMed]

Kim, T.-Y.

T.-Y. Kim, S. M. Cho, C. S. Ah, K.-S. Suh, H. Ryu, and H. Y. Chu, “Electrochromic device for the reversible electrodeposition system,” J. Inf. Disp. 15(1), 13–17 (2014).
[Crossref]

Ko, D.-H.

S. M. Morris, M. M. Qasim, K. T. Cheng, F. Castles, D.-H. Ko, D. J. Gardiner, S. Nosheen, T. D. Wilkinson, H. J. Coles, C. Burgess, and L. Hill, “Optically activated shutter using a photo-tunable short-pitch chiral nematic liquid crystal,” Appl. Phys. Lett. 103(10), 101105 (2013).
[Crossref]

Kobayashi, T.

H. Yu and T. Kobayashi, “Photoresponsive block copolymers containing azobenzenes and other chromophores,” Molecules 15(1), 570–603 (2010).
[Crossref] [PubMed]

Kumar, S.

V. Vorflusev and S. Kumar, “Phase-separated composite films for liquid crystal displays,” Science 283(5409), 1903–1905 (1999).
[Crossref] [PubMed]

Kurihara, S.

S. Kurihara, K. Masumoto, and T. Nonaka, “Optical shutter driven photochemically from anisotropic polymer network containing liquid crystalline and azobenzene molecules,” Appl. Phys. Lett. 73(2), 160–162 (1998).
[Crossref]

Lee, B.

H.-K. Lee, A. Kanazawa, T. Shiono, T. Ikeda, T. Fujisawa, M. Aizawa, and B. Lee, “All-optically controllable polymer/liquid crystal composite films containing the azobenzene liquid crystal,” Chem. Mater. 10(5), 1402–1407 (1998).
[Crossref]

Lee, E.

D. Kim, E. Lee, H. S. Lee, and J. Yoon, “Energy efficient glazing for adaptive solar control fabricated with photothermotropic hydrogels containing graphene oxide,” Sci. Rep. 5, 7646 (2015).
[Crossref] [PubMed]

Lee, H. S.

D. Kim, E. Lee, H. S. Lee, and J. Yoon, “Energy efficient glazing for adaptive solar control fabricated with photothermotropic hydrogels containing graphene oxide,” Sci. Rep. 5, 7646 (2015).
[Crossref] [PubMed]

Lee, H.-K.

H.-K. Lee, A. Kanazawa, T. Shiono, T. Ikeda, T. Fujisawa, M. Aizawa, and B. Lee, “All-optically controllable polymer/liquid crystal composite films containing the azobenzene liquid crystal,” Chem. Mater. 10(5), 1402–1407 (1998).
[Crossref]

Lee, S.-A.

D.-Y. Kim, S.-A. Lee, H. Kim, S. Min Kim, N. Kim, and K.-U. Jeong, “An azobenzene-based photochromic liquid crystalline amphiphile for a remote-controllable light shutter,” Chem. Commun. (Camb.) 51(55), 11080–11083 (2015).
[Crossref] [PubMed]

Li, L.

J. Qi, L. Li, M. D. Sarkar, and G. P. Crawford, “Nonlocal photopolymerization effect in the formation of reflective holographic polymer-dispersed liquid crystals,” J. Appl. Phys. 96(5), 2443–2450 (2004).
[Crossref]

Li, W.

W. Li, H. Cao, M. Kashima, F. Liu, Z. Cheng, Z. Yang, S. Zhu, and H. Yang, “Control of the microstructure of polymer network and effects of the microstructures on light scattering properties of UV-cured polymer-dispersed liquid crystal films,” J. Polym. Sci., B, Polym. Phys. 46(19), 2090–2099 (2008).
[Crossref]

Lin, T.-H.

H. Ren, T.-H. Lin, Y.-H. Fan, and S.-T. Wu, “In-plane switching liquid crystal gel for polarization-independent light switch,” J. Appl. Phys. 96(7), 3609–3611 (2004).
[Crossref]

Liu, F.

W. Li, H. Cao, M. Kashima, F. Liu, Z. Cheng, Z. Yang, S. Zhu, and H. Yang, “Control of the microstructure of polymer network and effects of the microstructures on light scattering properties of UV-cured polymer-dispersed liquid crystal films,” J. Polym. Sci., B, Polym. Phys. 46(19), 2090–2099 (2008).
[Crossref]

Liu, Y.-C.

Lub, J.

D. J. Broer, J. Lub, and G. N. Mol, “Wide-band reflective polarizers from cholesteric polymer networks with a pitch gradient,” Nature 378(6556), 467–469 (1995).
[Crossref]

Mach, P.

P. Mach, S. J. Rodriguez, R. Notrup, P. Wiltzius, and J. A. Rogers, “Monolithically integrated, flexible display of polymer-dispersed liquid crystal driven by rubber-stamped organic thin-film transistors,” Appl. Phys. Lett. 78(23), 3592–3594 (2001).
[Crossref]

Manfredi, S.

D. Cupelli, F. P. Nicoletta, S. Manfredi, M. Vivacqua, P. Formoso, G. D. Filpo, and G. Chidichimo, “Self-adjusting smart windows based on polymer-dispersed liquid crystals,” Sol. Energy Mater. Sol. Cells 93(11), 2008–2012 (2009).
[Crossref]

Masumoto, K.

S. Kurihara, K. Masumoto, and T. Nonaka, “Optical shutter driven photochemically from anisotropic polymer network containing liquid crystalline and azobenzene molecules,” Appl. Phys. Lett. 73(2), 160–162 (1998).
[Crossref]

Min Kim, S.

D.-Y. Kim, S.-A. Lee, H. Kim, S. Min Kim, N. Kim, and K.-U. Jeong, “An azobenzene-based photochromic liquid crystalline amphiphile for a remote-controllable light shutter,” Chem. Commun. (Camb.) 51(55), 11080–11083 (2015).
[Crossref] [PubMed]

Mol, G. N.

D. J. Broer, J. Lub, and G. N. Mol, “Wide-band reflective polarizers from cholesteric polymer networks with a pitch gradient,” Nature 378(6556), 467–469 (1995).
[Crossref]

Morris, S. M.

S. M. Morris, M. M. Qasim, K. T. Cheng, F. Castles, D.-H. Ko, D. J. Gardiner, S. Nosheen, T. D. Wilkinson, H. J. Coles, C. Burgess, and L. Hill, “Optically activated shutter using a photo-tunable short-pitch chiral nematic liquid crystal,” Appl. Phys. Lett. 103(10), 101105 (2013).
[Crossref]

Nicoletta, F. P.

D. Cupelli, F. P. Nicoletta, S. Manfredi, M. Vivacqua, P. Formoso, G. D. Filpo, and G. Chidichimo, “Self-adjusting smart windows based on polymer-dispersed liquid crystals,” Sol. Energy Mater. Sol. Cells 93(11), 2008–2012 (2009).
[Crossref]

Nonaka, T.

S. Kurihara, K. Masumoto, and T. Nonaka, “Optical shutter driven photochemically from anisotropic polymer network containing liquid crystalline and azobenzene molecules,” Appl. Phys. Lett. 73(2), 160–162 (1998).
[Crossref]

Nosheen, S.

S. M. Morris, M. M. Qasim, K. T. Cheng, F. Castles, D.-H. Ko, D. J. Gardiner, S. Nosheen, T. D. Wilkinson, H. J. Coles, C. Burgess, and L. Hill, “Optically activated shutter using a photo-tunable short-pitch chiral nematic liquid crystal,” Appl. Phys. Lett. 103(10), 101105 (2013).
[Crossref]

Notrup, R.

P. Mach, S. J. Rodriguez, R. Notrup, P. Wiltzius, and J. A. Rogers, “Monolithically integrated, flexible display of polymer-dispersed liquid crystal driven by rubber-stamped organic thin-film transistors,” Appl. Phys. Lett. 78(23), 3592–3594 (2001).
[Crossref]

Oates, W. S.

J. Bin and W. S. Oates, “A unified material description for light induced deformation in azobenzene polymers,” Sci. Rep. 5, 14654 (2015).
[Crossref] [PubMed]

Oh, S.-W.

S.-W. Oh, J.-M. Baek, J. Heo, and T.-H. Yoon, “Dye-doped cholesteric liquid crystal light shutter with a polymer-dispersed liquid crystal film,” Dyes Pigments 134, 36–40 (2016).
[Crossref]

Otruba, J. P.

J. P. Otruba and R. G. Weiss, “Liquid crystalline solvents as mechanistic probes. 11. The syn → anti thermal isomerization mechanism of some low-bipolarity azobenzenes,” J. Org. Chem. 48(20), 3448–3453 (1983).
[Crossref]

Qasim, M. M.

S. M. Morris, M. M. Qasim, K. T. Cheng, F. Castles, D.-H. Ko, D. J. Gardiner, S. Nosheen, T. D. Wilkinson, H. J. Coles, C. Burgess, and L. Hill, “Optically activated shutter using a photo-tunable short-pitch chiral nematic liquid crystal,” Appl. Phys. Lett. 103(10), 101105 (2013).
[Crossref]

Qi, J.

J. Qi, L. Li, M. D. Sarkar, and G. P. Crawford, “Nonlocal photopolymerization effect in the formation of reflective holographic polymer-dispersed liquid crystals,” J. Appl. Phys. 96(5), 2443–2450 (2004).
[Crossref]

Ren, H.

H. Ren, T.-H. Lin, Y.-H. Fan, and S.-T. Wu, “In-plane switching liquid crystal gel for polarization-independent light switch,” J. Appl. Phys. 96(7), 3609–3611 (2004).
[Crossref]

H. Ren and S.-T. Wu, “Anisotropic liquid crystal gels for switchable polarizers and displays,” Appl. Phys. Lett. 81(8), 1432–1434 (2002).
[Crossref]

Rodriguez, S. J.

P. Mach, S. J. Rodriguez, R. Notrup, P. Wiltzius, and J. A. Rogers, “Monolithically integrated, flexible display of polymer-dispersed liquid crystal driven by rubber-stamped organic thin-film transistors,” Appl. Phys. Lett. 78(23), 3592–3594 (2001).
[Crossref]

Rogers, J. A.

P. Mach, S. J. Rodriguez, R. Notrup, P. Wiltzius, and J. A. Rogers, “Monolithically integrated, flexible display of polymer-dispersed liquid crystal driven by rubber-stamped organic thin-film transistors,” Appl. Phys. Lett. 78(23), 3592–3594 (2001).
[Crossref]

Ryu, H.

T.-Y. Kim, S. M. Cho, C. S. Ah, K.-S. Suh, H. Ryu, and H. Y. Chu, “Electrochromic device for the reversible electrodeposition system,” J. Inf. Disp. 15(1), 13–17 (2014).
[Crossref]

Sánchez-Somolinos, C.

L. T. de Haan, C. Sánchez-Somolinos, C. M. W. Bastiaansen, A. P. H. J. Schenning, and D. J. Broer, “Engineering of complex order and the macroscopic deformation of liquid crystal polymer networks,” Angew. Chem. Int. Ed. Engl. 51(50), 12469–12472 (2012).
[Crossref] [PubMed]

Sarkar, M. D.

J. Qi, L. Li, M. D. Sarkar, and G. P. Crawford, “Nonlocal photopolymerization effect in the formation of reflective holographic polymer-dispersed liquid crystals,” J. Appl. Phys. 96(5), 2443–2450 (2004).
[Crossref]

Schenning, A. P. H. J.

L. T. de Haan, C. Sánchez-Somolinos, C. M. W. Bastiaansen, A. P. H. J. Schenning, and D. J. Broer, “Engineering of complex order and the macroscopic deformation of liquid crystal polymer networks,” Angew. Chem. Int. Ed. Engl. 51(50), 12469–12472 (2012).
[Crossref] [PubMed]

Shiono, T.

H.-K. Lee, A. Kanazawa, T. Shiono, T. Ikeda, T. Fujisawa, M. Aizawa, and B. Lee, “All-optically controllable polymer/liquid crystal composite films containing the azobenzene liquid crystal,” Chem. Mater. 10(5), 1402–1407 (1998).
[Crossref]

Suh, K.-S.

T.-Y. Kim, S. M. Cho, C. S. Ah, K.-S. Suh, H. Ryu, and H. Y. Chu, “Electrochromic device for the reversible electrodeposition system,” J. Inf. Disp. 15(1), 13–17 (2014).
[Crossref]

Talneau, A.

Tamaki, T.

Y. Kawanishi, T. Tamaki, and K. Ichimura, “Reversible photoinduced phase transition and image recording in polymer-dispersed liquid crystals,” J. Phys. D 24(5), 782–784 (1991).
[Crossref]

Thomas, N. L.

Vaz, N. A.

J. W. Doane, N. A. Vaz, B.-G. Wu, and S. Žumer, “Field controlled light scattering from nematic micorodroplets,” Appl. Phys. Lett. 48(4), 269–271 (1986).
[Crossref]

Velasco, D.

J. García-Amorós and D. Velasco, “Recent advances towards azobenzene-based light-driven real-time information-transmitting materials,” Beilstein J. Org. Chem. 8(1), 1003–1017 (2012).
[Crossref] [PubMed]

Vivacqua, M.

D. Cupelli, F. P. Nicoletta, S. Manfredi, M. Vivacqua, P. Formoso, G. D. Filpo, and G. Chidichimo, “Self-adjusting smart windows based on polymer-dispersed liquid crystals,” Sol. Energy Mater. Sol. Cells 93(11), 2008–2012 (2009).
[Crossref]

Vorflusev, V.

V. Vorflusev and S. Kumar, “Phase-separated composite films for liquid crystal displays,” Science 283(5409), 1903–1905 (1999).
[Crossref] [PubMed]

Weiss, R. G.

J. P. Otruba and R. G. Weiss, “Liquid crystalline solvents as mechanistic probes. 11. The syn → anti thermal isomerization mechanism of some low-bipolarity azobenzenes,” J. Org. Chem. 48(20), 3448–3453 (1983).
[Crossref]

Wilkinson, T. D.

S. M. Morris, M. M. Qasim, K. T. Cheng, F. Castles, D.-H. Ko, D. J. Gardiner, S. Nosheen, T. D. Wilkinson, H. J. Coles, C. Burgess, and L. Hill, “Optically activated shutter using a photo-tunable short-pitch chiral nematic liquid crystal,” Appl. Phys. Lett. 103(10), 101105 (2013).
[Crossref]

Wiltzius, P.

P. Mach, S. J. Rodriguez, R. Notrup, P. Wiltzius, and J. A. Rogers, “Monolithically integrated, flexible display of polymer-dispersed liquid crystal driven by rubber-stamped organic thin-film transistors,” Appl. Phys. Lett. 78(23), 3592–3594 (2001).
[Crossref]

Wu, B.-G.

J. W. Doane, N. A. Vaz, B.-G. Wu, and S. Žumer, “Field controlled light scattering from nematic micorodroplets,” Appl. Phys. Lett. 48(4), 269–271 (1986).
[Crossref]

Wu, S.-T.

H. Ren, T.-H. Lin, Y.-H. Fan, and S.-T. Wu, “In-plane switching liquid crystal gel for polarization-independent light switch,” J. Appl. Phys. 96(7), 3609–3611 (2004).
[Crossref]

H. Ren and S.-T. Wu, “Anisotropic liquid crystal gels for switchable polarizers and displays,” Appl. Phys. Lett. 81(8), 1432–1434 (2002).
[Crossref]

Yang, D. K.

P. P. Crooker and D. K. Yang, “Polymer-dispersed chiral liquid crystal color display,” Appl. Phys. Lett. 57(24), 2529–2531 (1990).
[Crossref]

Yang, H.

W. Li, H. Cao, M. Kashima, F. Liu, Z. Cheng, Z. Yang, S. Zhu, and H. Yang, “Control of the microstructure of polymer network and effects of the microstructures on light scattering properties of UV-cured polymer-dispersed liquid crystal films,” J. Polym. Sci., B, Polym. Phys. 46(19), 2090–2099 (2008).
[Crossref]

Yang, Z.

W. Li, H. Cao, M. Kashima, F. Liu, Z. Cheng, Z. Yang, S. Zhu, and H. Yang, “Control of the microstructure of polymer network and effects of the microstructures on light scattering properties of UV-cured polymer-dispersed liquid crystal films,” J. Polym. Sci., B, Polym. Phys. 46(19), 2090–2099 (2008).
[Crossref]

Yoon, J.

D. Kim, E. Lee, H. S. Lee, and J. Yoon, “Energy efficient glazing for adaptive solar control fabricated with photothermotropic hydrogels containing graphene oxide,” Sci. Rep. 5, 7646 (2015).
[Crossref] [PubMed]

Yoon, T.-H.

S.-W. Oh, J.-M. Baek, J. Heo, and T.-H. Yoon, “Dye-doped cholesteric liquid crystal light shutter with a polymer-dispersed liquid crystal film,” Dyes Pigments 134, 36–40 (2016).
[Crossref]

J.-W. Huh, S.-M. Ji, J. Heo, B.-H. Yu, and T.-H. Yoon, “Bistable light shutter using dye-doped cholesteric liquid crystals driven with crossed patterned electrodes,” J. Disp. Technol. 12(8), 779–783 (2016).
[Crossref]

J. Heo, J.-W. Huh, and T.-H. Yoon, “Fast-switching initially-transparent liquid crystal light shutter with crossed patterned electrodes,” AIP Adv. 5(4), 047118 (2015).
[Crossref]

Yu, B.-H.

J.-W. Huh, S.-M. Ji, J. Heo, B.-H. Yu, and T.-H. Yoon, “Bistable light shutter using dye-doped cholesteric liquid crystals driven with crossed patterned electrodes,” J. Disp. Technol. 12(8), 779–783 (2016).
[Crossref]

Yu, H.

H. Yu and T. Kobayashi, “Photoresponsive block copolymers containing azobenzenes and other chromophores,” Molecules 15(1), 570–603 (2010).
[Crossref] [PubMed]

Zhu, S.

W. Li, H. Cao, M. Kashima, F. Liu, Z. Cheng, Z. Yang, S. Zhu, and H. Yang, “Control of the microstructure of polymer network and effects of the microstructures on light scattering properties of UV-cured polymer-dispersed liquid crystal films,” J. Polym. Sci., B, Polym. Phys. 46(19), 2090–2099 (2008).
[Crossref]

Žumer, S.

J. W. Doane, N. A. Vaz, B.-G. Wu, and S. Žumer, “Field controlled light scattering from nematic micorodroplets,” Appl. Phys. Lett. 48(4), 269–271 (1986).
[Crossref]

Zuppiroli, L.

AIP Adv. (1)

J. Heo, J.-W. Huh, and T.-H. Yoon, “Fast-switching initially-transparent liquid crystal light shutter with crossed patterned electrodes,” AIP Adv. 5(4), 047118 (2015).
[Crossref]

Angew. Chem. Int. Ed. Engl. (1)

L. T. de Haan, C. Sánchez-Somolinos, C. M. W. Bastiaansen, A. P. H. J. Schenning, and D. J. Broer, “Engineering of complex order and the macroscopic deformation of liquid crystal polymer networks,” Angew. Chem. Int. Ed. Engl. 51(50), 12469–12472 (2012).
[Crossref] [PubMed]

Appl. Phys. Lett. (6)

H. Ren and S.-T. Wu, “Anisotropic liquid crystal gels for switchable polarizers and displays,” Appl. Phys. Lett. 81(8), 1432–1434 (2002).
[Crossref]

J. W. Doane, N. A. Vaz, B.-G. Wu, and S. Žumer, “Field controlled light scattering from nematic micorodroplets,” Appl. Phys. Lett. 48(4), 269–271 (1986).
[Crossref]

P. P. Crooker and D. K. Yang, “Polymer-dispersed chiral liquid crystal color display,” Appl. Phys. Lett. 57(24), 2529–2531 (1990).
[Crossref]

P. Mach, S. J. Rodriguez, R. Notrup, P. Wiltzius, and J. A. Rogers, “Monolithically integrated, flexible display of polymer-dispersed liquid crystal driven by rubber-stamped organic thin-film transistors,” Appl. Phys. Lett. 78(23), 3592–3594 (2001).
[Crossref]

S. Kurihara, K. Masumoto, and T. Nonaka, “Optical shutter driven photochemically from anisotropic polymer network containing liquid crystalline and azobenzene molecules,” Appl. Phys. Lett. 73(2), 160–162 (1998).
[Crossref]

S. M. Morris, M. M. Qasim, K. T. Cheng, F. Castles, D.-H. Ko, D. J. Gardiner, S. Nosheen, T. D. Wilkinson, H. J. Coles, C. Burgess, and L. Hill, “Optically activated shutter using a photo-tunable short-pitch chiral nematic liquid crystal,” Appl. Phys. Lett. 103(10), 101105 (2013).
[Crossref]

Beilstein J. Org. Chem. (1)

J. García-Amorós and D. Velasco, “Recent advances towards azobenzene-based light-driven real-time information-transmitting materials,” Beilstein J. Org. Chem. 8(1), 1003–1017 (2012).
[Crossref] [PubMed]

Chem. Commun. (Camb.) (1)

D.-Y. Kim, S.-A. Lee, H. Kim, S. Min Kim, N. Kim, and K.-U. Jeong, “An azobenzene-based photochromic liquid crystalline amphiphile for a remote-controllable light shutter,” Chem. Commun. (Camb.) 51(55), 11080–11083 (2015).
[Crossref] [PubMed]

Chem. Mater. (1)

H.-K. Lee, A. Kanazawa, T. Shiono, T. Ikeda, T. Fujisawa, M. Aizawa, and B. Lee, “All-optically controllable polymer/liquid crystal composite films containing the azobenzene liquid crystal,” Chem. Mater. 10(5), 1402–1407 (1998).
[Crossref]

Dyes Pigments (1)

S.-W. Oh, J.-M. Baek, J. Heo, and T.-H. Yoon, “Dye-doped cholesteric liquid crystal light shutter with a polymer-dispersed liquid crystal film,” Dyes Pigments 134, 36–40 (2016).
[Crossref]

J. Appl. Phys. (3)

H. Ren, T.-H. Lin, Y.-H. Fan, and S.-T. Wu, “In-plane switching liquid crystal gel for polarization-independent light switch,” J. Appl. Phys. 96(7), 3609–3611 (2004).
[Crossref]

J. Qi, L. Li, M. D. Sarkar, and G. P. Crawford, “Nonlocal photopolymerization effect in the formation of reflective holographic polymer-dispersed liquid crystals,” J. Appl. Phys. 96(5), 2443–2450 (2004).
[Crossref]

P. S. Drzaic, “Polymer dispersed nematic liquid crystal for large area displays and light valves,” J. Appl. Phys. 60(6), 2142–2146 (1986).
[Crossref]

J. Disp. Technol. (1)

J.-W. Huh, S.-M. Ji, J. Heo, B.-H. Yu, and T.-H. Yoon, “Bistable light shutter using dye-doped cholesteric liquid crystals driven with crossed patterned electrodes,” J. Disp. Technol. 12(8), 779–783 (2016).
[Crossref]

J. Inf. Disp. (1)

T.-Y. Kim, S. M. Cho, C. S. Ah, K.-S. Suh, H. Ryu, and H. Y. Chu, “Electrochromic device for the reversible electrodeposition system,” J. Inf. Disp. 15(1), 13–17 (2014).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Org. Chem. (1)

J. P. Otruba and R. G. Weiss, “Liquid crystalline solvents as mechanistic probes. 11. The syn → anti thermal isomerization mechanism of some low-bipolarity azobenzenes,” J. Org. Chem. 48(20), 3448–3453 (1983).
[Crossref]

J. Phys. D (1)

Y. Kawanishi, T. Tamaki, and K. Ichimura, “Reversible photoinduced phase transition and image recording in polymer-dispersed liquid crystals,” J. Phys. D 24(5), 782–784 (1991).
[Crossref]

J. Polym. Sci., B, Polym. Phys. (1)

W. Li, H. Cao, M. Kashima, F. Liu, Z. Cheng, Z. Yang, S. Zhu, and H. Yang, “Control of the microstructure of polymer network and effects of the microstructures on light scattering properties of UV-cured polymer-dispersed liquid crystal films,” J. Polym. Sci., B, Polym. Phys. 46(19), 2090–2099 (2008).
[Crossref]

Molecules (1)

H. Yu and T. Kobayashi, “Photoresponsive block copolymers containing azobenzenes and other chromophores,” Molecules 15(1), 570–603 (2010).
[Crossref] [PubMed]

Nature (1)

D. J. Broer, J. Lub, and G. N. Mol, “Wide-band reflective polarizers from cholesteric polymer networks with a pitch gradient,” Nature 378(6556), 467–469 (1995).
[Crossref]

Opt. Express (1)

Sci. Rep. (2)

D. Kim, E. Lee, H. S. Lee, and J. Yoon, “Energy efficient glazing for adaptive solar control fabricated with photothermotropic hydrogels containing graphene oxide,” Sci. Rep. 5, 7646 (2015).
[Crossref] [PubMed]

J. Bin and W. S. Oates, “A unified material description for light induced deformation in azobenzene polymers,” Sci. Rep. 5, 14654 (2015).
[Crossref] [PubMed]

Science (1)

V. Vorflusev and S. Kumar, “Phase-separated composite films for liquid crystal displays,” Science 283(5409), 1903–1905 (1999).
[Crossref] [PubMed]

Sol. Energy Mater. Sol. Cells (1)

D. Cupelli, F. P. Nicoletta, S. Manfredi, M. Vivacqua, P. Formoso, G. D. Filpo, and G. Chidichimo, “Self-adjusting smart windows based on polymer-dispersed liquid crystals,” Sol. Energy Mater. Sol. Cells 93(11), 2008–2012 (2009).
[Crossref]

Other (2)

D.-K. Yang and S.-T. Wu, Fundamentals of Liquid Crystal Devices (Wiley, 2006).

C.-C. Lee, The Current Trends of Optics and Photonics (Springer, 2014).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Schematic representation of a sunlight-switchable light shutter using push-pull azobenzene.
Fig. 2
Fig. 2 Molecular structures of the materials used.
Fig. 3
Fig. 3 Clearing point of the 5CB/HABA mixture as a function of the HABA concentration.
Fig. 4
Fig. 4 Total transmittance, specular transmittance, and haze of the fabricated light shutter as function of the applied voltage.
Fig. 5
Fig. 5 Switching behavior of sunlight-switchable light shutters as a function of UV intensity.
Fig. 6
Fig. 6 (a) Molecular structures of PABA (4-(phenylazo)benzoic acid). (b) Relaxation of LC/polymer composite cells using azobenzene PABA and push-pull azobenzene HABA.
Fig. 7
Fig. 7 Transmission spectra of a sunlight-switchable light shutter.
Fig. 8
Fig. 8 Photographs of the translucent-transparent transition of the proposed light shutter (left) and a LC/polymer composite cell (right).
Fig. 9
Fig. 9 Reversible and repeatable transition of a sunlight-switchable light shutter between the transparent and translucent states.

Metrics