Abstract

A bundle composed of 245 anti-resonant glass hollow optical fibers with a total diameter of 1 mm and fiber core diameter of 60 μm is fabricated for endoscopic infrared-thermal imaging. The bundle fiber shows low losses in the wavelength range of 3 to 4 μm owing to the anti-resonant effect of the thin glass wall. An image resolution of around 420 μm with a field-of-view of 3-mm diameter is obtained although crosstalk between adjacent fibers is observed. The experimental results of an imaging system using the fiber bundle with a half-ball lens at the distal end, which can be inserted into a working channel of endoscopes, are also shown.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Flexible hollow optical fiber bundle for infrared thermal imaging

Yuji Matsuura and Keisuke Naito
Biomed. Opt. Express 2(1) 65-70 (2011)

Coherent hollow-core waveguide bundles for thermal imaging

Udi Gal, James Harrington, Moshe Ben-David, Carlos Bledt, Nicholas Syzonenko, and Israel Gannot
Appl. Opt. 49(25) 4700-4709 (2010)

High-resolution chalcogenide fiber bundles for longwave infrared imaging

Sisheng Qi, Bin Zhang, Chengcheng Zhai, Yaocheng Li, Anping Yang, Yi Yu, Dingyuan Tang, Zhiyong Yang, and Barry Luther-Davies
Opt. Express 25(21) 26160-26165 (2017)

References

  • View by:
  • |
  • |
  • |

  1. M. Diakides, J. D. Bronzino, and D. R. Peterson, Medical Infrared Imaging: Principles and Practices (CRC, 2013).
  2. M. Vollmer and K. Mollmann, Infrared Thermal Imaging: Fundamentals, Research and Applications (Wiley, 2010).
  3. N. Arora, D. Martins, D. Ruggerio, E. Tousimis, A. J. Swistel, M. P. Osborne, and R. M. Simmons, “Effectiveness of a noninvasive digital infrared thermal imaging system in the detection of breast cancer,” Am. J. Surg. 196(4), 523–526 (2008).
    [Crossref] [PubMed]
  4. T. M. Buzug, S. Schumann, L. Pfaffmann, U. Reinhold, and J. Ruhlmann, “Functional Infrared Imaging for Skin-Cancer Screening,” in Conference Proceedings of IEEE Engineering in Medicine and Biology Society, (IEEE, 2006), pp. 2766–2769.
  5. Q. Wang, L. Xie, Z. He, D. Di, and J. Liu, “Biodegradable magnesium nanoparticle-enhanced laser hyperthermia therapy,” Int. J. Nanomedicine 7, 4715–4725 (2012).
    [PubMed]
  6. Y. Matsuura and K. Naito, “Flexible hollow optical fiber bundle for infrared thermal imaging,” Biomed. Opt. Express 2(1), 65–70 (2011).
    [Crossref] [PubMed]
  7. C. Huang, S. Kino, T. Katagiri, and Y. Matsuura, “Remote Fourier transform-infrared spectral imaging system with hollow-optical fiber bundle,” Appl. Opt. 51(29), 6913–6916 (2012).
    [Crossref] [PubMed]
  8. M. A. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2-Si multilayer structures,” Appl. Phys. Lett. 49(1), 13–15 (1986).
    [Crossref]
  9. N. M. Litchinitser, A. K. Abeeluck, C. Headley, and B. J. Eggleton, “Antiresonant reflecting photonic crystal optical waveguides,” Opt. Lett. 27(18), 1592–1594 (2002).
    [Crossref] [PubMed]
  10. W. Belardi and J. C. Knight, “Hollow antiresonant fibers with low bending loss,” Opt. Express 22(8), 10091–10096 (2014).
    [Crossref] [PubMed]
  11. J. R. Hayes, F. Poletti, M. S. Abokhamis, N. V. Wheeler, N. K. Baddela, and D. J. Richardson, “Anti-resonant hexagram hollow core fibers,” Opt. Express 23(2), 1289–1299 (2015).
    [Crossref] [PubMed]
  12. A. N. Kolyadin, A. F. Kosolapov, A. D. Pryamikov, A. S. Biriukov, V. G. Plotnichenko, and E. M. Dianov, “Light transmission in negative curvature hollow core fiber in extremely high material loss region,” Opt. Express 21(8), 9514–9519 (2013).
    [Crossref] [PubMed]
  13. S. Kobayashi, T. Katagiri, and Y. Matsuura, “Microstructured tube-leaky glass waveguide for delivery of high-powered Er:YAG laser,” J. Lightwave Technol. 32(5), 986–990 (2014).
    [Crossref]
  14. A. Urich, R. R. J. Maier, F. Yu, J. C. Knight, D. P. Hand, and J. D. Shephard, “Silica hollow core microstructured fibres for mid-infrared surgical applications,” J. Non-Cryst. Solids 377, 236–239 (2013).
    [Crossref]
  15. S. Février, B. Beaudou, and P. Viale, “Understanding origin of loss in large pitch hollow-core photonic crystal fibers and their design simplification,” Opt. Express 18(5), 5142–5150 (2010).
    [Crossref] [PubMed]
  16. L. Vincetti and V. Setti, “Waveguiding mechanism in tube lattice fibers,” Opt. Express 18(22), 23133–23146 (2010).
    [Crossref] [PubMed]
  17. M. Miyagi and S. Nishida, “A proposal of low loss leaky waveguide for submillimeter waves transmission,” IEEE Trans. Microw. Theory Tech. 28(4), 398–401 (1980).
    [Crossref]
  18. M. Miyagi, “Bending losses in hollow and dielectric tube leaky waveguides,” Appl. Opt. 20(7), 1221–1229 (1981).
    [Crossref] [PubMed]
  19. Y. Matsuura, R. Kasahara, T. Katagiri, and M. Miyagi, “Hollow infrared fibers fabricated by glass-drawing technique,” Opt. Express 10(12), 488–492 (2002).
    [Crossref] [PubMed]
  20. R. Kasahara, Y. Matsuura, T. Katagiri, and M. Miyagi, “Transmission properties of infrared hollow fibers produced by drawing a glass-tube preform,” Opt. Eng. 46(2), 025001 (2007).
    [Crossref]
  21. E. D. Palik, ed., Handbook of Optical Constants of Solids (Academic, 1985)
  22. A. A. Rifat, G. A. Mahdiraji, D. M. Chow, Y. G. Shee, R. Ahmed, and F. R. M. Adikan, “Photonic crystal fiber-based surface plasmon resonance sensor with selective analyte channels and graphene-silver deposited core,” Sensors (Basel) 15(5), 11499–11510 (2015).
    [Crossref] [PubMed]
  23. Y. Matsuura, A. Hongo, M. Saito, and M. Miyagi, “Loss characteristics of circular hollow waveguides for incoherent infrared light,” J. Opt. Soc. Am. A 6(3), 423–427 (1989).
    [Crossref]

2015 (2)

J. R. Hayes, F. Poletti, M. S. Abokhamis, N. V. Wheeler, N. K. Baddela, and D. J. Richardson, “Anti-resonant hexagram hollow core fibers,” Opt. Express 23(2), 1289–1299 (2015).
[Crossref] [PubMed]

A. A. Rifat, G. A. Mahdiraji, D. M. Chow, Y. G. Shee, R. Ahmed, and F. R. M. Adikan, “Photonic crystal fiber-based surface plasmon resonance sensor with selective analyte channels and graphene-silver deposited core,” Sensors (Basel) 15(5), 11499–11510 (2015).
[Crossref] [PubMed]

2014 (2)

2013 (2)

A. Urich, R. R. J. Maier, F. Yu, J. C. Knight, D. P. Hand, and J. D. Shephard, “Silica hollow core microstructured fibres for mid-infrared surgical applications,” J. Non-Cryst. Solids 377, 236–239 (2013).
[Crossref]

A. N. Kolyadin, A. F. Kosolapov, A. D. Pryamikov, A. S. Biriukov, V. G. Plotnichenko, and E. M. Dianov, “Light transmission in negative curvature hollow core fiber in extremely high material loss region,” Opt. Express 21(8), 9514–9519 (2013).
[Crossref] [PubMed]

2012 (2)

Q. Wang, L. Xie, Z. He, D. Di, and J. Liu, “Biodegradable magnesium nanoparticle-enhanced laser hyperthermia therapy,” Int. J. Nanomedicine 7, 4715–4725 (2012).
[PubMed]

C. Huang, S. Kino, T. Katagiri, and Y. Matsuura, “Remote Fourier transform-infrared spectral imaging system with hollow-optical fiber bundle,” Appl. Opt. 51(29), 6913–6916 (2012).
[Crossref] [PubMed]

2011 (1)

2010 (2)

2008 (1)

N. Arora, D. Martins, D. Ruggerio, E. Tousimis, A. J. Swistel, M. P. Osborne, and R. M. Simmons, “Effectiveness of a noninvasive digital infrared thermal imaging system in the detection of breast cancer,” Am. J. Surg. 196(4), 523–526 (2008).
[Crossref] [PubMed]

2007 (1)

R. Kasahara, Y. Matsuura, T. Katagiri, and M. Miyagi, “Transmission properties of infrared hollow fibers produced by drawing a glass-tube preform,” Opt. Eng. 46(2), 025001 (2007).
[Crossref]

2002 (2)

1989 (1)

1986 (1)

M. A. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2-Si multilayer structures,” Appl. Phys. Lett. 49(1), 13–15 (1986).
[Crossref]

1981 (1)

1980 (1)

M. Miyagi and S. Nishida, “A proposal of low loss leaky waveguide for submillimeter waves transmission,” IEEE Trans. Microw. Theory Tech. 28(4), 398–401 (1980).
[Crossref]

Abeeluck, A. K.

Abokhamis, M. S.

Adikan, F. R. M.

A. A. Rifat, G. A. Mahdiraji, D. M. Chow, Y. G. Shee, R. Ahmed, and F. R. M. Adikan, “Photonic crystal fiber-based surface plasmon resonance sensor with selective analyte channels and graphene-silver deposited core,” Sensors (Basel) 15(5), 11499–11510 (2015).
[Crossref] [PubMed]

Ahmed, R.

A. A. Rifat, G. A. Mahdiraji, D. M. Chow, Y. G. Shee, R. Ahmed, and F. R. M. Adikan, “Photonic crystal fiber-based surface plasmon resonance sensor with selective analyte channels and graphene-silver deposited core,” Sensors (Basel) 15(5), 11499–11510 (2015).
[Crossref] [PubMed]

Arora, N.

N. Arora, D. Martins, D. Ruggerio, E. Tousimis, A. J. Swistel, M. P. Osborne, and R. M. Simmons, “Effectiveness of a noninvasive digital infrared thermal imaging system in the detection of breast cancer,” Am. J. Surg. 196(4), 523–526 (2008).
[Crossref] [PubMed]

Baddela, N. K.

Beaudou, B.

Belardi, W.

Biriukov, A. S.

Chow, D. M.

A. A. Rifat, G. A. Mahdiraji, D. M. Chow, Y. G. Shee, R. Ahmed, and F. R. M. Adikan, “Photonic crystal fiber-based surface plasmon resonance sensor with selective analyte channels and graphene-silver deposited core,” Sensors (Basel) 15(5), 11499–11510 (2015).
[Crossref] [PubMed]

Di, D.

Q. Wang, L. Xie, Z. He, D. Di, and J. Liu, “Biodegradable magnesium nanoparticle-enhanced laser hyperthermia therapy,” Int. J. Nanomedicine 7, 4715–4725 (2012).
[PubMed]

Dianov, E. M.

Duguay, M. A.

M. A. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2-Si multilayer structures,” Appl. Phys. Lett. 49(1), 13–15 (1986).
[Crossref]

Eggleton, B. J.

Février, S.

Hand, D. P.

A. Urich, R. R. J. Maier, F. Yu, J. C. Knight, D. P. Hand, and J. D. Shephard, “Silica hollow core microstructured fibres for mid-infrared surgical applications,” J. Non-Cryst. Solids 377, 236–239 (2013).
[Crossref]

Hayes, J. R.

He, Z.

Q. Wang, L. Xie, Z. He, D. Di, and J. Liu, “Biodegradable magnesium nanoparticle-enhanced laser hyperthermia therapy,” Int. J. Nanomedicine 7, 4715–4725 (2012).
[PubMed]

Headley, C.

Hongo, A.

Huang, C.

Kasahara, R.

R. Kasahara, Y. Matsuura, T. Katagiri, and M. Miyagi, “Transmission properties of infrared hollow fibers produced by drawing a glass-tube preform,” Opt. Eng. 46(2), 025001 (2007).
[Crossref]

Y. Matsuura, R. Kasahara, T. Katagiri, and M. Miyagi, “Hollow infrared fibers fabricated by glass-drawing technique,” Opt. Express 10(12), 488–492 (2002).
[Crossref] [PubMed]

Katagiri, T.

Kino, S.

Knight, J. C.

W. Belardi and J. C. Knight, “Hollow antiresonant fibers with low bending loss,” Opt. Express 22(8), 10091–10096 (2014).
[Crossref] [PubMed]

A. Urich, R. R. J. Maier, F. Yu, J. C. Knight, D. P. Hand, and J. D. Shephard, “Silica hollow core microstructured fibres for mid-infrared surgical applications,” J. Non-Cryst. Solids 377, 236–239 (2013).
[Crossref]

Kobayashi, S.

Koch, T. L.

M. A. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2-Si multilayer structures,” Appl. Phys. Lett. 49(1), 13–15 (1986).
[Crossref]

Kokubun, Y.

M. A. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2-Si multilayer structures,” Appl. Phys. Lett. 49(1), 13–15 (1986).
[Crossref]

Kolyadin, A. N.

Kosolapov, A. F.

Litchinitser, N. M.

Liu, J.

Q. Wang, L. Xie, Z. He, D. Di, and J. Liu, “Biodegradable magnesium nanoparticle-enhanced laser hyperthermia therapy,” Int. J. Nanomedicine 7, 4715–4725 (2012).
[PubMed]

Mahdiraji, G. A.

A. A. Rifat, G. A. Mahdiraji, D. M. Chow, Y. G. Shee, R. Ahmed, and F. R. M. Adikan, “Photonic crystal fiber-based surface plasmon resonance sensor with selective analyte channels and graphene-silver deposited core,” Sensors (Basel) 15(5), 11499–11510 (2015).
[Crossref] [PubMed]

Maier, R. R. J.

A. Urich, R. R. J. Maier, F. Yu, J. C. Knight, D. P. Hand, and J. D. Shephard, “Silica hollow core microstructured fibres for mid-infrared surgical applications,” J. Non-Cryst. Solids 377, 236–239 (2013).
[Crossref]

Martins, D.

N. Arora, D. Martins, D. Ruggerio, E. Tousimis, A. J. Swistel, M. P. Osborne, and R. M. Simmons, “Effectiveness of a noninvasive digital infrared thermal imaging system in the detection of breast cancer,” Am. J. Surg. 196(4), 523–526 (2008).
[Crossref] [PubMed]

Matsuura, Y.

Miyagi, M.

R. Kasahara, Y. Matsuura, T. Katagiri, and M. Miyagi, “Transmission properties of infrared hollow fibers produced by drawing a glass-tube preform,” Opt. Eng. 46(2), 025001 (2007).
[Crossref]

Y. Matsuura, R. Kasahara, T. Katagiri, and M. Miyagi, “Hollow infrared fibers fabricated by glass-drawing technique,” Opt. Express 10(12), 488–492 (2002).
[Crossref] [PubMed]

Y. Matsuura, A. Hongo, M. Saito, and M. Miyagi, “Loss characteristics of circular hollow waveguides for incoherent infrared light,” J. Opt. Soc. Am. A 6(3), 423–427 (1989).
[Crossref]

M. Miyagi, “Bending losses in hollow and dielectric tube leaky waveguides,” Appl. Opt. 20(7), 1221–1229 (1981).
[Crossref] [PubMed]

M. Miyagi and S. Nishida, “A proposal of low loss leaky waveguide for submillimeter waves transmission,” IEEE Trans. Microw. Theory Tech. 28(4), 398–401 (1980).
[Crossref]

Naito, K.

Nishida, S.

M. Miyagi and S. Nishida, “A proposal of low loss leaky waveguide for submillimeter waves transmission,” IEEE Trans. Microw. Theory Tech. 28(4), 398–401 (1980).
[Crossref]

Osborne, M. P.

N. Arora, D. Martins, D. Ruggerio, E. Tousimis, A. J. Swistel, M. P. Osborne, and R. M. Simmons, “Effectiveness of a noninvasive digital infrared thermal imaging system in the detection of breast cancer,” Am. J. Surg. 196(4), 523–526 (2008).
[Crossref] [PubMed]

Pfeiffer, L.

M. A. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2-Si multilayer structures,” Appl. Phys. Lett. 49(1), 13–15 (1986).
[Crossref]

Plotnichenko, V. G.

Poletti, F.

Pryamikov, A. D.

Richardson, D. J.

Rifat, A. A.

A. A. Rifat, G. A. Mahdiraji, D. M. Chow, Y. G. Shee, R. Ahmed, and F. R. M. Adikan, “Photonic crystal fiber-based surface plasmon resonance sensor with selective analyte channels and graphene-silver deposited core,” Sensors (Basel) 15(5), 11499–11510 (2015).
[Crossref] [PubMed]

Ruggerio, D.

N. Arora, D. Martins, D. Ruggerio, E. Tousimis, A. J. Swistel, M. P. Osborne, and R. M. Simmons, “Effectiveness of a noninvasive digital infrared thermal imaging system in the detection of breast cancer,” Am. J. Surg. 196(4), 523–526 (2008).
[Crossref] [PubMed]

Saito, M.

Setti, V.

Shee, Y. G.

A. A. Rifat, G. A. Mahdiraji, D. M. Chow, Y. G. Shee, R. Ahmed, and F. R. M. Adikan, “Photonic crystal fiber-based surface plasmon resonance sensor with selective analyte channels and graphene-silver deposited core,” Sensors (Basel) 15(5), 11499–11510 (2015).
[Crossref] [PubMed]

Shephard, J. D.

A. Urich, R. R. J. Maier, F. Yu, J. C. Knight, D. P. Hand, and J. D. Shephard, “Silica hollow core microstructured fibres for mid-infrared surgical applications,” J. Non-Cryst. Solids 377, 236–239 (2013).
[Crossref]

Simmons, R. M.

N. Arora, D. Martins, D. Ruggerio, E. Tousimis, A. J. Swistel, M. P. Osborne, and R. M. Simmons, “Effectiveness of a noninvasive digital infrared thermal imaging system in the detection of breast cancer,” Am. J. Surg. 196(4), 523–526 (2008).
[Crossref] [PubMed]

Swistel, A. J.

N. Arora, D. Martins, D. Ruggerio, E. Tousimis, A. J. Swistel, M. P. Osborne, and R. M. Simmons, “Effectiveness of a noninvasive digital infrared thermal imaging system in the detection of breast cancer,” Am. J. Surg. 196(4), 523–526 (2008).
[Crossref] [PubMed]

Tousimis, E.

N. Arora, D. Martins, D. Ruggerio, E. Tousimis, A. J. Swistel, M. P. Osborne, and R. M. Simmons, “Effectiveness of a noninvasive digital infrared thermal imaging system in the detection of breast cancer,” Am. J. Surg. 196(4), 523–526 (2008).
[Crossref] [PubMed]

Urich, A.

A. Urich, R. R. J. Maier, F. Yu, J. C. Knight, D. P. Hand, and J. D. Shephard, “Silica hollow core microstructured fibres for mid-infrared surgical applications,” J. Non-Cryst. Solids 377, 236–239 (2013).
[Crossref]

Viale, P.

Vincetti, L.

Wang, Q.

Q. Wang, L. Xie, Z. He, D. Di, and J. Liu, “Biodegradable magnesium nanoparticle-enhanced laser hyperthermia therapy,” Int. J. Nanomedicine 7, 4715–4725 (2012).
[PubMed]

Wheeler, N. V.

Xie, L.

Q. Wang, L. Xie, Z. He, D. Di, and J. Liu, “Biodegradable magnesium nanoparticle-enhanced laser hyperthermia therapy,” Int. J. Nanomedicine 7, 4715–4725 (2012).
[PubMed]

Yu, F.

A. Urich, R. R. J. Maier, F. Yu, J. C. Knight, D. P. Hand, and J. D. Shephard, “Silica hollow core microstructured fibres for mid-infrared surgical applications,” J. Non-Cryst. Solids 377, 236–239 (2013).
[Crossref]

Am. J. Surg. (1)

N. Arora, D. Martins, D. Ruggerio, E. Tousimis, A. J. Swistel, M. P. Osborne, and R. M. Simmons, “Effectiveness of a noninvasive digital infrared thermal imaging system in the detection of breast cancer,” Am. J. Surg. 196(4), 523–526 (2008).
[Crossref] [PubMed]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

M. A. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2-Si multilayer structures,” Appl. Phys. Lett. 49(1), 13–15 (1986).
[Crossref]

Biomed. Opt. Express (1)

IEEE Trans. Microw. Theory Tech. (1)

M. Miyagi and S. Nishida, “A proposal of low loss leaky waveguide for submillimeter waves transmission,” IEEE Trans. Microw. Theory Tech. 28(4), 398–401 (1980).
[Crossref]

Int. J. Nanomedicine (1)

Q. Wang, L. Xie, Z. He, D. Di, and J. Liu, “Biodegradable magnesium nanoparticle-enhanced laser hyperthermia therapy,” Int. J. Nanomedicine 7, 4715–4725 (2012).
[PubMed]

J. Lightwave Technol. (1)

J. Non-Cryst. Solids (1)

A. Urich, R. R. J. Maier, F. Yu, J. C. Knight, D. P. Hand, and J. D. Shephard, “Silica hollow core microstructured fibres for mid-infrared surgical applications,” J. Non-Cryst. Solids 377, 236–239 (2013).
[Crossref]

J. Opt. Soc. Am. A (1)

Opt. Eng. (1)

R. Kasahara, Y. Matsuura, T. Katagiri, and M. Miyagi, “Transmission properties of infrared hollow fibers produced by drawing a glass-tube preform,” Opt. Eng. 46(2), 025001 (2007).
[Crossref]

Opt. Express (6)

Opt. Lett. (1)

Sensors (Basel) (1)

A. A. Rifat, G. A. Mahdiraji, D. M. Chow, Y. G. Shee, R. Ahmed, and F. R. M. Adikan, “Photonic crystal fiber-based surface plasmon resonance sensor with selective analyte channels and graphene-silver deposited core,” Sensors (Basel) 15(5), 11499–11510 (2015).
[Crossref] [PubMed]

Other (4)

E. D. Palik, ed., Handbook of Optical Constants of Solids (Academic, 1985)

T. M. Buzug, S. Schumann, L. Pfaffmann, U. Reinhold, and J. Ruhlmann, “Functional Infrared Imaging for Skin-Cancer Screening,” in Conference Proceedings of IEEE Engineering in Medicine and Biology Society, (IEEE, 2006), pp. 2766–2769.

M. Diakides, J. D. Bronzino, and D. R. Peterson, Medical Infrared Imaging: Principles and Practices (CRC, 2013).

M. Vollmer and K. Mollmann, Infrared Thermal Imaging: Fundamentals, Research and Applications (Wiley, 2010).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 Structure of bundled anti-resonant hollow optical fiber.
Fig. 2
Fig. 2 Calculated reflectance of borosilicate glass as a function of wall thickness for incident angles that correspond to the propagation angles of low order modes in a hollow-optical fiber with an inner diameter of 60 μm. Dotted line is theoretical reflectance of silver.
Fig. 3
Fig. 3 Fabrication process of stack-and-draw technique: (a)preparation of the preform, and (b)drawing process for the bundled fiber.
Fig. 4
Fig. 4 Cutting section of fabricated fiber bundle.
Fig. 5
Fig. 5 Loss spectrum of fabricated hollow-fiber bundle with a length of 90 cm measured by using a FT-IR spectrometer. Incident light was coupled to the bundle via a hollow-optical fiber with an inner diameter of 0.7 mm.
Fig. 6
Fig. 6 Measured loss spectrum of fabricated hollow-fiber bundle (90-cm long) compared to bundle of silver-coated hollow optical fibers with length of 3 cm. Both fiber bundles are composed of around 120 fibers with an inner diameter of 60-65 μm.
Fig. 7
Fig. 7 Observed thermal images of heated metal wire of 0.2-mm thickness transmitted through fiber bundles with different lengths.
Fig. 8
Fig. 8 The numbers of cores used in the power transfer simulation.
Fig. 9
Fig. 9 Thickness of observed thermal images of heated metal wire of 0.2-mm thickness transmitted through fiber bundles with different lengths. Results of numerical simulation based on a ray-optic method is also shown for comparison.
Fig. 10
Fig. 10 Outer appearance and structure of fabricated fiber bundle with half-ball lens at distal end.
Fig. 11
Fig. 11 Observed thermal images of heated ceramic plates: (a) plate at 32.0°C placed in air and (b) two plates with temperatures of 38.0 and 37.3°C.
Fig. 12
Fig. 12 Observed thermal image of a looped metal wire with a diameter of 0.2 mm heated to 38.0°C (right) and the appearance of the wire (left)..

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

α= 1R 2Ttanθ.
P 0 ' = P 0 exp(αx)+ 1 6 ( P 1 + P 2 + P 3 + P 4 + P 5 + P 6 )( 1exp(αx) ).

Metrics