Abstract

In this paper, a simplified model of silicon phase modulators is presented that enables favorable accuracy together with a substantial reduction in computational effort and without the requirement of semiconductor TCAD device simulation software. This permits fast optimization of the different parameters of a modulator. The model was successfully implemented in Phoenix Optodesigner optical software allowing the optimization of silicon phase shifters for different applications. Moreover, this model presents a great potential for the simulation of modulators based on PN interdigitated junctions, which normally require complex and time consuming 3D simulations. Simulation time was reduced by a factor of 6 for the lateral PN junction based modulator, and two orders of magnitude reduction was obtained for interdigitated PN junctions based modulators.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Silicon waveguide modulator based on carrier depletion in periodically interleaved PN junctions

Zhi-Yong Li, Dan-Xia Xu, W. Ross McKinnon, Siegfried Janz, Jens H. Schmid, Pavel Cheben, and Jin-Zhong Yu
Opt. Express 17(18) 15947-15958 (2009)

Modeling and optimization of a single-drive push–pull silicon Mach–Zehnder modulator

Yanyang Zhou, Linjie Zhou, Haike Zhu, Chiyan Wong, Yida Wen, Lei Liu, Xinwan Li, and Jianping Chen
Photon. Res. 4(4) 153-161 (2016)

Optimization of efficiency-loss figure of merit in carrier-depletion silicon Mach-Zehnder optical modulator

Ilya Goykhman, Boris Desiatov, Shalva Ben-Ezra, Joseph Shappir, and Uriel Levy
Opt. Express 21(17) 19518-19529 (2013)

References

  • View by:
  • |
  • |
  • |

  1. T.-Y. Liow, J. Song, X. Tu, A.-J. Lim, Q. Fang, N. Duan, M. Yu, and G.-Q. Lo, “Silicon optical interconnect device technologies for 40 gb/s and beyond,” IEEE J. Sel. Topics Quantum Electron. 19, 8200312 (2013).
    [Crossref]
  2. G. T. Reed, G. Z. Mashanovich, F. Y. Gardes, M. Nedeljkovic, Y. Hu, D. J. Thomson, K. Li, P. R. Wilson, S.-W. Chen, and S. S. Hsu, “Recent breakthroughs in carrier depletion based silicon optical modulators,” Nanophotonics 3, 229–245 (2014).
    [Crossref]
  3. F. Yang, Y. He, W. Chen, and Y. Zhan, “Laser altimeter based on random code phase modulation and heterodyne detection,” IEEE Photon. Technol. Lett. 26, 2337–2340 (2014).
    [Crossref]
  4. T. Baba, S. Akiyama, M. Imai, N. Hirayama, H. Takahashi, Y. Noguchi, T. Horikawa, and T. Usuki, “50-gb/s ring-resonator-based silicon modulator,” Opt. Express 21, 11869–11876 (2013).
    [Crossref] [PubMed]
  5. K. Kajikawa, T. Tabei, and H. Sunami, “An infrared silicon optical modulator of metal–oxide–semiconductor capacitor based on accumulation-carrier absorption,” Jpn. J. Appl. Phys. 48, 04C107 (2009).
    [Crossref]
  6. D. Marris-Morini, L. Virot, C. Baudot, J.-M. Fédéli, G. Rasigade, D. Perez-Galacho, J.-M. Hartmann, S. Olivier, P. Brindel, P. Crozat, F. Boeuf, and L. Vivie, “A 40 gbit/s optical link on a 300-mm silicon platform,” Opt. Express 22, 6674–6679 (2014).
    [Crossref] [PubMed]
  7. T. Ando, “Optical coherent beam control based on microwave photonics technologies,” in “Microwave Photonics (MWP) and the 2014 9th Asia-Pacific Microwave Photonics Conference (APMP), 2014 International Topical Meeting on,” (IEEE, 2014), pp. 381–384.
  8. P. Ma, Y. Lü, P. Zhou, X. Wang, Y. Ma, and Z. Liu, “Investigation of the influence of mode-mismatch errors on active coherent polarization beam combining system,” Opt. Express 22, 27321–27338 (2014).
    [Crossref] [PubMed]
  9. G. Rasigade, D. Marris-Morini, M. Ziebell, E. Cassan, and L. Vivien, “Analytical model for depletion-based silicon modulator simulation,” Opt. Express 19, 3919–3924 (2011)
    [Crossref] [PubMed]
  10. R. A. Soref and B. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23, 123–129 (1987).
    [Crossref]
  11. M. A. Webster, K. Lakshmikumar, C. Appel, C. Muzio, B. Dama, and K. Shastri, “Low-power MOS-capacitor based silicon photonic modulators and CMOS drivers,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2015), paper W4H.3.
  12. A. Jüngel, “Drift-diffusion equations,” in Transport Equations for Semiconductors, (Springer, 2009).
  13. K. Iizuka, Elements of Photonics, vol. II. For Fiber and Integrated Optics, B. Saleh, ed. (John Wiley & Sons, 2002).
  14. F. Gardes, A. Brimont, P. Sanchis, G. Rasigade, D. Marris-Morini, L. O’Faolain, F. Dong, J.M. Fédéli, P. Dumon, L. Vivien, T.F. Krauss, G.T. Reed, and J. Martí, “High-speed modulation of a compact silicon ring resonator based on a reverse-biased pn diode,” Opt. Express 17, 21986–21991 (2009).
    [Crossref] [PubMed]
  15. X. Xiao, H. Xu, X. Li, Z. Li, T. Chu, Y. Yu, and J. Yu, “High-speed, low-loss silicon mach–zehnder modulators with doping optimization,” Opt. Express 21, 4116–4125 (2013).
    [Crossref] [PubMed]
  16. http://www.lumerical.com .
  17. Y. Amemiya, H. Ding, and S. Yokoyama, “Design and simulation of silicon ring optical modulator with p/n junctions along circumference,” Jpn. J. Appl. Phys. 50, 04DG13 (2011).
    [Crossref]
  18. Y. Amemiya, R. Furutani, M. Fukuyama, and S. Yokoyama, “Silicon ring optical modulator with p/n junctions arranged along waveguide for low-voltage operation,” Jpn. J. Appl. Phys. 51, 04DG07 (2012).
    [Crossref]
  19. D. Marris-Morini, C. Baudot, J.-M. Fédéli, G. Rasigade, N. Vulliet, A. Souhaité, M. Ziebell, P. Rivallin, S. Olivier, P. Crozat, X. L. Roux, D. Bouville, S. Menezo, F. Boeuf, and L. Vivien, “Low loss 40 gbit/s silicon modulator based on interleaved junctions and fabricated on 300 mm soi wafers,” Opt. Express 21, 22471–22475 (2013).
    [Crossref] [PubMed]

2014 (4)

G. T. Reed, G. Z. Mashanovich, F. Y. Gardes, M. Nedeljkovic, Y. Hu, D. J. Thomson, K. Li, P. R. Wilson, S.-W. Chen, and S. S. Hsu, “Recent breakthroughs in carrier depletion based silicon optical modulators,” Nanophotonics 3, 229–245 (2014).
[Crossref]

F. Yang, Y. He, W. Chen, and Y. Zhan, “Laser altimeter based on random code phase modulation and heterodyne detection,” IEEE Photon. Technol. Lett. 26, 2337–2340 (2014).
[Crossref]

D. Marris-Morini, L. Virot, C. Baudot, J.-M. Fédéli, G. Rasigade, D. Perez-Galacho, J.-M. Hartmann, S. Olivier, P. Brindel, P. Crozat, F. Boeuf, and L. Vivie, “A 40 gbit/s optical link on a 300-mm silicon platform,” Opt. Express 22, 6674–6679 (2014).
[Crossref] [PubMed]

P. Ma, Y. Lü, P. Zhou, X. Wang, Y. Ma, and Z. Liu, “Investigation of the influence of mode-mismatch errors on active coherent polarization beam combining system,” Opt. Express 22, 27321–27338 (2014).
[Crossref] [PubMed]

2013 (4)

2012 (1)

Y. Amemiya, R. Furutani, M. Fukuyama, and S. Yokoyama, “Silicon ring optical modulator with p/n junctions arranged along waveguide for low-voltage operation,” Jpn. J. Appl. Phys. 51, 04DG07 (2012).
[Crossref]

2011 (2)

Y. Amemiya, H. Ding, and S. Yokoyama, “Design and simulation of silicon ring optical modulator with p/n junctions along circumference,” Jpn. J. Appl. Phys. 50, 04DG13 (2011).
[Crossref]

G. Rasigade, D. Marris-Morini, M. Ziebell, E. Cassan, and L. Vivien, “Analytical model for depletion-based silicon modulator simulation,” Opt. Express 19, 3919–3924 (2011)
[Crossref] [PubMed]

2009 (2)

1987 (1)

R. A. Soref and B. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23, 123–129 (1987).
[Crossref]

Akiyama, S.

Amemiya, Y.

Y. Amemiya, R. Furutani, M. Fukuyama, and S. Yokoyama, “Silicon ring optical modulator with p/n junctions arranged along waveguide for low-voltage operation,” Jpn. J. Appl. Phys. 51, 04DG07 (2012).
[Crossref]

Y. Amemiya, H. Ding, and S. Yokoyama, “Design and simulation of silicon ring optical modulator with p/n junctions along circumference,” Jpn. J. Appl. Phys. 50, 04DG13 (2011).
[Crossref]

Ando, T.

T. Ando, “Optical coherent beam control based on microwave photonics technologies,” in “Microwave Photonics (MWP) and the 2014 9th Asia-Pacific Microwave Photonics Conference (APMP), 2014 International Topical Meeting on,” (IEEE, 2014), pp. 381–384.

Appel, C.

M. A. Webster, K. Lakshmikumar, C. Appel, C. Muzio, B. Dama, and K. Shastri, “Low-power MOS-capacitor based silicon photonic modulators and CMOS drivers,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2015), paper W4H.3.

Baba, T.

Baudot, C.

Bennett, B.

R. A. Soref and B. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23, 123–129 (1987).
[Crossref]

Boeuf, F.

Bouville, D.

Brimont, A.

Brindel, P.

Cassan, E.

Chen, S.-W.

G. T. Reed, G. Z. Mashanovich, F. Y. Gardes, M. Nedeljkovic, Y. Hu, D. J. Thomson, K. Li, P. R. Wilson, S.-W. Chen, and S. S. Hsu, “Recent breakthroughs in carrier depletion based silicon optical modulators,” Nanophotonics 3, 229–245 (2014).
[Crossref]

Chen, W.

F. Yang, Y. He, W. Chen, and Y. Zhan, “Laser altimeter based on random code phase modulation and heterodyne detection,” IEEE Photon. Technol. Lett. 26, 2337–2340 (2014).
[Crossref]

Chu, T.

Crozat, P.

Dama, B.

M. A. Webster, K. Lakshmikumar, C. Appel, C. Muzio, B. Dama, and K. Shastri, “Low-power MOS-capacitor based silicon photonic modulators and CMOS drivers,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2015), paper W4H.3.

Ding, H.

Y. Amemiya, H. Ding, and S. Yokoyama, “Design and simulation of silicon ring optical modulator with p/n junctions along circumference,” Jpn. J. Appl. Phys. 50, 04DG13 (2011).
[Crossref]

Dong, F.

Duan, N.

T.-Y. Liow, J. Song, X. Tu, A.-J. Lim, Q. Fang, N. Duan, M. Yu, and G.-Q. Lo, “Silicon optical interconnect device technologies for 40 gb/s and beyond,” IEEE J. Sel. Topics Quantum Electron. 19, 8200312 (2013).
[Crossref]

Dumon, P.

Fang, Q.

T.-Y. Liow, J. Song, X. Tu, A.-J. Lim, Q. Fang, N. Duan, M. Yu, and G.-Q. Lo, “Silicon optical interconnect device technologies for 40 gb/s and beyond,” IEEE J. Sel. Topics Quantum Electron. 19, 8200312 (2013).
[Crossref]

Fédéli, J.M.

Fédéli, J.-M.

Fukuyama, M.

Y. Amemiya, R. Furutani, M. Fukuyama, and S. Yokoyama, “Silicon ring optical modulator with p/n junctions arranged along waveguide for low-voltage operation,” Jpn. J. Appl. Phys. 51, 04DG07 (2012).
[Crossref]

Furutani, R.

Y. Amemiya, R. Furutani, M. Fukuyama, and S. Yokoyama, “Silicon ring optical modulator with p/n junctions arranged along waveguide for low-voltage operation,” Jpn. J. Appl. Phys. 51, 04DG07 (2012).
[Crossref]

Gardes, F.

Gardes, F. Y.

G. T. Reed, G. Z. Mashanovich, F. Y. Gardes, M. Nedeljkovic, Y. Hu, D. J. Thomson, K. Li, P. R. Wilson, S.-W. Chen, and S. S. Hsu, “Recent breakthroughs in carrier depletion based silicon optical modulators,” Nanophotonics 3, 229–245 (2014).
[Crossref]

Hartmann, J.-M.

He, Y.

F. Yang, Y. He, W. Chen, and Y. Zhan, “Laser altimeter based on random code phase modulation and heterodyne detection,” IEEE Photon. Technol. Lett. 26, 2337–2340 (2014).
[Crossref]

Hirayama, N.

Horikawa, T.

Hsu, S. S.

G. T. Reed, G. Z. Mashanovich, F. Y. Gardes, M. Nedeljkovic, Y. Hu, D. J. Thomson, K. Li, P. R. Wilson, S.-W. Chen, and S. S. Hsu, “Recent breakthroughs in carrier depletion based silicon optical modulators,” Nanophotonics 3, 229–245 (2014).
[Crossref]

Hu, Y.

G. T. Reed, G. Z. Mashanovich, F. Y. Gardes, M. Nedeljkovic, Y. Hu, D. J. Thomson, K. Li, P. R. Wilson, S.-W. Chen, and S. S. Hsu, “Recent breakthroughs in carrier depletion based silicon optical modulators,” Nanophotonics 3, 229–245 (2014).
[Crossref]

Iizuka, K.

K. Iizuka, Elements of Photonics, vol. II. For Fiber and Integrated Optics, B. Saleh, ed. (John Wiley & Sons, 2002).

Imai, M.

Jüngel, A.

A. Jüngel, “Drift-diffusion equations,” in Transport Equations for Semiconductors, (Springer, 2009).

Kajikawa, K.

K. Kajikawa, T. Tabei, and H. Sunami, “An infrared silicon optical modulator of metal–oxide–semiconductor capacitor based on accumulation-carrier absorption,” Jpn. J. Appl. Phys. 48, 04C107 (2009).
[Crossref]

Krauss, T.F.

Lakshmikumar, K.

M. A. Webster, K. Lakshmikumar, C. Appel, C. Muzio, B. Dama, and K. Shastri, “Low-power MOS-capacitor based silicon photonic modulators and CMOS drivers,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2015), paper W4H.3.

Li, K.

G. T. Reed, G. Z. Mashanovich, F. Y. Gardes, M. Nedeljkovic, Y. Hu, D. J. Thomson, K. Li, P. R. Wilson, S.-W. Chen, and S. S. Hsu, “Recent breakthroughs in carrier depletion based silicon optical modulators,” Nanophotonics 3, 229–245 (2014).
[Crossref]

Li, X.

Li, Z.

Lim, A.-J.

T.-Y. Liow, J. Song, X. Tu, A.-J. Lim, Q. Fang, N. Duan, M. Yu, and G.-Q. Lo, “Silicon optical interconnect device technologies for 40 gb/s and beyond,” IEEE J. Sel. Topics Quantum Electron. 19, 8200312 (2013).
[Crossref]

Liow, T.-Y.

T.-Y. Liow, J. Song, X. Tu, A.-J. Lim, Q. Fang, N. Duan, M. Yu, and G.-Q. Lo, “Silicon optical interconnect device technologies for 40 gb/s and beyond,” IEEE J. Sel. Topics Quantum Electron. 19, 8200312 (2013).
[Crossref]

Liu, Z.

Lo, G.-Q.

T.-Y. Liow, J. Song, X. Tu, A.-J. Lim, Q. Fang, N. Duan, M. Yu, and G.-Q. Lo, “Silicon optical interconnect device technologies for 40 gb/s and beyond,” IEEE J. Sel. Topics Quantum Electron. 19, 8200312 (2013).
[Crossref]

Lü, Y.

Ma, P.

Ma, Y.

Marris-Morini, D.

Martí, J.

Mashanovich, G. Z.

G. T. Reed, G. Z. Mashanovich, F. Y. Gardes, M. Nedeljkovic, Y. Hu, D. J. Thomson, K. Li, P. R. Wilson, S.-W. Chen, and S. S. Hsu, “Recent breakthroughs in carrier depletion based silicon optical modulators,” Nanophotonics 3, 229–245 (2014).
[Crossref]

Menezo, S.

Muzio, C.

M. A. Webster, K. Lakshmikumar, C. Appel, C. Muzio, B. Dama, and K. Shastri, “Low-power MOS-capacitor based silicon photonic modulators and CMOS drivers,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2015), paper W4H.3.

Nedeljkovic, M.

G. T. Reed, G. Z. Mashanovich, F. Y. Gardes, M. Nedeljkovic, Y. Hu, D. J. Thomson, K. Li, P. R. Wilson, S.-W. Chen, and S. S. Hsu, “Recent breakthroughs in carrier depletion based silicon optical modulators,” Nanophotonics 3, 229–245 (2014).
[Crossref]

Noguchi, Y.

O’Faolain, L.

Olivier, S.

Perez-Galacho, D.

Rasigade, G.

Reed, G. T.

G. T. Reed, G. Z. Mashanovich, F. Y. Gardes, M. Nedeljkovic, Y. Hu, D. J. Thomson, K. Li, P. R. Wilson, S.-W. Chen, and S. S. Hsu, “Recent breakthroughs in carrier depletion based silicon optical modulators,” Nanophotonics 3, 229–245 (2014).
[Crossref]

Reed, G.T.

Rivallin, P.

Roux, X. L.

Sanchis, P.

Shastri, K.

M. A. Webster, K. Lakshmikumar, C. Appel, C. Muzio, B. Dama, and K. Shastri, “Low-power MOS-capacitor based silicon photonic modulators and CMOS drivers,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2015), paper W4H.3.

Song, J.

T.-Y. Liow, J. Song, X. Tu, A.-J. Lim, Q. Fang, N. Duan, M. Yu, and G.-Q. Lo, “Silicon optical interconnect device technologies for 40 gb/s and beyond,” IEEE J. Sel. Topics Quantum Electron. 19, 8200312 (2013).
[Crossref]

Soref, R. A.

R. A. Soref and B. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23, 123–129 (1987).
[Crossref]

Souhaité, A.

Sunami, H.

K. Kajikawa, T. Tabei, and H. Sunami, “An infrared silicon optical modulator of metal–oxide–semiconductor capacitor based on accumulation-carrier absorption,” Jpn. J. Appl. Phys. 48, 04C107 (2009).
[Crossref]

Tabei, T.

K. Kajikawa, T. Tabei, and H. Sunami, “An infrared silicon optical modulator of metal–oxide–semiconductor capacitor based on accumulation-carrier absorption,” Jpn. J. Appl. Phys. 48, 04C107 (2009).
[Crossref]

Takahashi, H.

Thomson, D. J.

G. T. Reed, G. Z. Mashanovich, F. Y. Gardes, M. Nedeljkovic, Y. Hu, D. J. Thomson, K. Li, P. R. Wilson, S.-W. Chen, and S. S. Hsu, “Recent breakthroughs in carrier depletion based silicon optical modulators,” Nanophotonics 3, 229–245 (2014).
[Crossref]

Tu, X.

T.-Y. Liow, J. Song, X. Tu, A.-J. Lim, Q. Fang, N. Duan, M. Yu, and G.-Q. Lo, “Silicon optical interconnect device technologies for 40 gb/s and beyond,” IEEE J. Sel. Topics Quantum Electron. 19, 8200312 (2013).
[Crossref]

Usuki, T.

Virot, L.

Vivie, L.

Vivien, L.

Vulliet, N.

Wang, X.

Webster, M. A.

M. A. Webster, K. Lakshmikumar, C. Appel, C. Muzio, B. Dama, and K. Shastri, “Low-power MOS-capacitor based silicon photonic modulators and CMOS drivers,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2015), paper W4H.3.

Wilson, P. R.

G. T. Reed, G. Z. Mashanovich, F. Y. Gardes, M. Nedeljkovic, Y. Hu, D. J. Thomson, K. Li, P. R. Wilson, S.-W. Chen, and S. S. Hsu, “Recent breakthroughs in carrier depletion based silicon optical modulators,” Nanophotonics 3, 229–245 (2014).
[Crossref]

Xiao, X.

Xu, H.

Yang, F.

F. Yang, Y. He, W. Chen, and Y. Zhan, “Laser altimeter based on random code phase modulation and heterodyne detection,” IEEE Photon. Technol. Lett. 26, 2337–2340 (2014).
[Crossref]

Yokoyama, S.

Y. Amemiya, R. Furutani, M. Fukuyama, and S. Yokoyama, “Silicon ring optical modulator with p/n junctions arranged along waveguide for low-voltage operation,” Jpn. J. Appl. Phys. 51, 04DG07 (2012).
[Crossref]

Y. Amemiya, H. Ding, and S. Yokoyama, “Design and simulation of silicon ring optical modulator with p/n junctions along circumference,” Jpn. J. Appl. Phys. 50, 04DG13 (2011).
[Crossref]

Yu, J.

Yu, M.

T.-Y. Liow, J. Song, X. Tu, A.-J. Lim, Q. Fang, N. Duan, M. Yu, and G.-Q. Lo, “Silicon optical interconnect device technologies for 40 gb/s and beyond,” IEEE J. Sel. Topics Quantum Electron. 19, 8200312 (2013).
[Crossref]

Yu, Y.

Zhan, Y.

F. Yang, Y. He, W. Chen, and Y. Zhan, “Laser altimeter based on random code phase modulation and heterodyne detection,” IEEE Photon. Technol. Lett. 26, 2337–2340 (2014).
[Crossref]

Zhou, P.

Ziebell, M.

IEEE J. Quantum Electron. (1)

R. A. Soref and B. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23, 123–129 (1987).
[Crossref]

IEEE J. Sel. Topics Quantum Electron. (1)

T.-Y. Liow, J. Song, X. Tu, A.-J. Lim, Q. Fang, N. Duan, M. Yu, and G.-Q. Lo, “Silicon optical interconnect device technologies for 40 gb/s and beyond,” IEEE J. Sel. Topics Quantum Electron. 19, 8200312 (2013).
[Crossref]

IEEE Photon. Technol. Lett. (1)

F. Yang, Y. He, W. Chen, and Y. Zhan, “Laser altimeter based on random code phase modulation and heterodyne detection,” IEEE Photon. Technol. Lett. 26, 2337–2340 (2014).
[Crossref]

Jpn. J. Appl. Phys. (3)

K. Kajikawa, T. Tabei, and H. Sunami, “An infrared silicon optical modulator of metal–oxide–semiconductor capacitor based on accumulation-carrier absorption,” Jpn. J. Appl. Phys. 48, 04C107 (2009).
[Crossref]

Y. Amemiya, H. Ding, and S. Yokoyama, “Design and simulation of silicon ring optical modulator with p/n junctions along circumference,” Jpn. J. Appl. Phys. 50, 04DG13 (2011).
[Crossref]

Y. Amemiya, R. Furutani, M. Fukuyama, and S. Yokoyama, “Silicon ring optical modulator with p/n junctions arranged along waveguide for low-voltage operation,” Jpn. J. Appl. Phys. 51, 04DG07 (2012).
[Crossref]

Nanophotonics (1)

G. T. Reed, G. Z. Mashanovich, F. Y. Gardes, M. Nedeljkovic, Y. Hu, D. J. Thomson, K. Li, P. R. Wilson, S.-W. Chen, and S. S. Hsu, “Recent breakthroughs in carrier depletion based silicon optical modulators,” Nanophotonics 3, 229–245 (2014).
[Crossref]

Opt. Express (7)

T. Baba, S. Akiyama, M. Imai, N. Hirayama, H. Takahashi, Y. Noguchi, T. Horikawa, and T. Usuki, “50-gb/s ring-resonator-based silicon modulator,” Opt. Express 21, 11869–11876 (2013).
[Crossref] [PubMed]

F. Gardes, A. Brimont, P. Sanchis, G. Rasigade, D. Marris-Morini, L. O’Faolain, F. Dong, J.M. Fédéli, P. Dumon, L. Vivien, T.F. Krauss, G.T. Reed, and J. Martí, “High-speed modulation of a compact silicon ring resonator based on a reverse-biased pn diode,” Opt. Express 17, 21986–21991 (2009).
[Crossref] [PubMed]

D. Marris-Morini, C. Baudot, J.-M. Fédéli, G. Rasigade, N. Vulliet, A. Souhaité, M. Ziebell, P. Rivallin, S. Olivier, P. Crozat, X. L. Roux, D. Bouville, S. Menezo, F. Boeuf, and L. Vivien, “Low loss 40 gbit/s silicon modulator based on interleaved junctions and fabricated on 300 mm soi wafers,” Opt. Express 21, 22471–22475 (2013).
[Crossref] [PubMed]

P. Ma, Y. Lü, P. Zhou, X. Wang, Y. Ma, and Z. Liu, “Investigation of the influence of mode-mismatch errors on active coherent polarization beam combining system,” Opt. Express 22, 27321–27338 (2014).
[Crossref] [PubMed]

G. Rasigade, D. Marris-Morini, M. Ziebell, E. Cassan, and L. Vivien, “Analytical model for depletion-based silicon modulator simulation,” Opt. Express 19, 3919–3924 (2011)
[Crossref] [PubMed]

X. Xiao, H. Xu, X. Li, Z. Li, T. Chu, Y. Yu, and J. Yu, “High-speed, low-loss silicon mach–zehnder modulators with doping optimization,” Opt. Express 21, 4116–4125 (2013).
[Crossref] [PubMed]

D. Marris-Morini, L. Virot, C. Baudot, J.-M. Fédéli, G. Rasigade, D. Perez-Galacho, J.-M. Hartmann, S. Olivier, P. Brindel, P. Crozat, F. Boeuf, and L. Vivie, “A 40 gbit/s optical link on a 300-mm silicon platform,” Opt. Express 22, 6674–6679 (2014).
[Crossref] [PubMed]

Other (5)

T. Ando, “Optical coherent beam control based on microwave photonics technologies,” in “Microwave Photonics (MWP) and the 2014 9th Asia-Pacific Microwave Photonics Conference (APMP), 2014 International Topical Meeting on,” (IEEE, 2014), pp. 381–384.

M. A. Webster, K. Lakshmikumar, C. Appel, C. Muzio, B. Dama, and K. Shastri, “Low-power MOS-capacitor based silicon photonic modulators and CMOS drivers,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2015), paper W4H.3.

A. Jüngel, “Drift-diffusion equations,” in Transport Equations for Semiconductors, (Springer, 2009).

K. Iizuka, Elements of Photonics, vol. II. For Fiber and Integrated Optics, B. Saleh, ed. (John Wiley & Sons, 2002).

http://www.lumerical.com .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 General schematic of the complete simulation (a) and the simplified phase modulator model (b).
Fig. 2
Fig. 2 Schematic view of the PN junction based modulator.
Fig. 3
Fig. 3 Performance of the PN junction based modulator.
Fig. 4
Fig. 4 Schematic view of the PN interdigitated junction based modulator.
Fig. 5
Fig. 5 Performance of the PN interdigitated junction based modulator.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δ ϕ ( L ) = z = 0 L 2 π λ n ( x , y ) Δ n ( x , y , z ) | E x ( x , y ) | 2 d x d y n eff | E x ( x , y ) | 2 d x d y d z I L dB ( L ) = 20 log 10 ( exp ( z = 0 L 2 π λ k ( x , y , z ) | E x ( x , y ) | 2 d x d y | E x ( x , y ) | 2 d x d y d z ) )

Metrics