Abstract

Energy transfer between Tm3+ and Tb3+ dependent on the power density of pump laser was investigated in NaYF4: Tb3+,Tm3+,Yb3+ microcrystals. Under the excitation of a 976-nm near-infrared laser at various power densities, Tb3+-Tm3+-Yb3+ doped samples exhibited intense visible emissions with tunable color between green and blue. The ratio of blue and green emission were determined by energy transfer between Tm3+ and Tb3+. When the power density of pump laser was low, the energy transfer process from Tm3+ (3F4) to Tb3+ (7F0) occurred efficiently. Upconversion processes in Tm3+ were inhibited, only visible emissions from Tb3+ with green color were observed. When the power density increased, energy transfer from the 3F4 (Tm3+) to 7F0 level (Tb3+) was restrained and population on high energy levels of Tm3+ was increased. Contribution of upconversion emissions from Tm3+ gradually became dominant. The emission color was tuned from green to blue with increasing the power density. Energy transfer processes between low-lying levels of activators, such as Tm3+ will greatly reduce the population on certain levels for further high-order upconversion processes. The Tb3+-Tm3+-Yb3+ doped phosphors are promising materials for detecting the condition of power density of the invisible near-infrared laser.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Upconversion emissions from high energy levels of Tb3+ under near-infrared laser excitation at 976 nm

Xiaojie Xue, Tonglei Cheng, Takenobu Suzuki, and Yasutake Ohishi
Opt. Mater. Express 5(12) 2768-2776 (2015)

Power switched multiphoton upconversion emissions of Er3+ in Yb3+/Er3+ codoped β-NaYF4 microcrystals induced by 980 nm excitation

Kezhi Zheng, Lili Wang, Daisheng Zhang, Dan Zhao, and Weiping Qin
Opt. Express 18(3) 2934-2939 (2010)

Intense ultraviolet upconversion luminescence from hexagonal NaYF4:Yb3+/Tm3+ microcrystals

Guofeng Wang, Weiping Qin, Lili Wang, Guodong Wei, Peifen Zhu, and Ryongjin Kim
Opt. Express 16(16) 11907-11914 (2008)

References

  • View by:
  • |
  • |
  • |

  1. A. Gnach and A. Bednarkiewicz, “Lanthanide-doped up-converting nanoparticles: Merits and challenges,” Nano Today 7, 532–563 (2012).
    [Crossref]
  2. H. H. Gorris and O. S. Wolfbeis, “Photon-upconverting nanoparticles for optical encoding and multiplexing of cells, biomolecules, and microspheres,” Angew. Chem., Int. Ed. 52, 3584–3600 (2013).
    [Crossref]
  3. F. Auzel, “Upconversion and anti-stokes processes with f and d ions in solids,” Chem. Rev. 104, 139–174 (2004).
    [Crossref] [PubMed]
  4. K. W. Krämer, D. Biner, G. Frei, H. U. Güdel, M. P. Hehlen, and S. R. Lüthi, “Hexagonal sodium yttrium fluoride based green and blue emitting upconversion phosphors,” Chem. Mater. 16, 1244–1251 (2004).
    [Crossref]
  5. J. Suyver, A. Aebischer, D. Biner, P. Gerner, J. Grimm, S. Heer, K. Krämer, C. Reinhard, and H. Güdel, “Novel materials doped with trivalent lanthanides and transition metal ions showing near-infrared to visible photon upconversion,” Opt. Mater. 27, 1111–1130 (2005).
    [Crossref]
  6. W. Gao, R. Wang, Q. Han, J. Dong, L. Yan, and H. Zheng, “Tuning red upconversion emission in single LiYF4:Yb3+/Ho3+ microparticle,” J. Phys. Chem. C 119, 2349–2355 (2015).
  7. D. Li, W. Qin, D. Zhao, T. Aidilibike, H. Chen, S. Liu, P. Zhang, and L. Wang, “Tunable green to red upconversion fluorescence of water-soluble hexagonal-phase core-shell CaF2@NaYF4 nanocrystals,” Opt. Mater. Express 6, 270–278 (2016).
    [Crossref]
  8. F. Wang, R. Deng, J. Wang, Q. Wang, Y. Han, H. Zhu, X. Chen, and X. Liu, “Tuning upconversion through energy migration in core–shell nanoparticles,” Nat. Mater. 10, 968–973 (2011).
    [Crossref] [PubMed]
  9. L. Wang, X. Xue, H. Chen, D. Zhao, and W. Qin, “Unusual radiative transitions of Eu3+ ions in Yb/Er/Eu tri-doped NaYF4 nanocrystals under infrared excitation,” Chem. Phys. Lett. 485, 183–186 (2010).
    [Crossref]
  10. L. Wang, X. Xue, F. Shi, D. Zhao, D. Zhang, K. Zheng, G. Wang, C. He, R. Kim, and W. Qin, “Ultraviolet and violet upconversion fluorescence of europium (III) doped in YF3 nanocrystals,” Opt. Lett. 34, 2781–2783 (2009).
    [Crossref] [PubMed]
  11. S. F. León-Luis, U. R. Rodríguez-Mendoza, E. Lalla, and V. Lavín, “Temperature sensor based on the Er3+ green upconverted emission in a fluorotellurite glass,” Sens. Actuators B 158, 208–213 (2011).
    [Crossref]
  12. B. P. Singh, A. K. Parchur, R. S. Ningthoujam, P. V. Ramakrishna, S. Singh, P. Singh, S. B. Rai, and R. Maalej, “Enhanced up-conversion and temperature-sensing behaviour of Er3+ and Yb3+ co-doped Y2Ti2O7 by incorporation of Li+ ions,” Phys. Chem. Chem. Phys. 16, 22665–22676 (2014).
    [Crossref] [PubMed]
  13. S. Zhou, K. Deng, X. Wei, G. Jiang, C. Duan, Y. Chen, and M. Yin, “Upconversion luminescence of NaYF4: Yb3+, Er3+ for temperature sensing,” Opt. Commun. 291, 138–142 (2013).
    [Crossref]
  14. H. Zheng, B. Chen, H. Yu, J. Zhang, J. Sun, X. Li, M. Sun, B. Tian, S. Fu, and H. Zhong, “Microwave-assisted hydrothermal synthesis and temperature sensing application of Er3+/Yb3+ doped NaY(WO4)2 microstructures,” J. Colloid Interface Sci. 420, 27–34 (2014).
    [Crossref] [PubMed]
  15. H. Zheng, B. Chen, H. Yu, X. Li, J. Zhang, J. Sun, L. Tong, Z. Wu, H. Zhong, and R. Hua, “Rod-shaped NaY(MoO4)2:Sm3+/Yb3+ nanoheaters for photothermal conversion: Influence of doping concentration and excitation power density,” Sens. Actuators B 234, 286–293 (2016).
    [Crossref]
  16. N. Ishiwada, S. Fujioka, T. Ueda, and T. Yokomori, “Co-doped Y2O3:Tb3+/Tm3+ multicolor emitting phosphors for thermometry,” Opt. Lett. 36, 760–762 (2011).
    [Crossref] [PubMed]
  17. X. Zhai, S. Liu, Y. Zhang, G. Qin, and W. Qin, “Controlled synthesis of ultrasmall hexagonal NaTm0.02Lu0.98–xYbxF4 nanocrystals with enhanced upconversion luminescence,” J. Mater. Chem. C 2, 2037–2044 (2014).
    [Crossref]
  18. X. Xue, L. Wang, L. Huang, D. Zhao, and W. Qin, “Effect of alkali ions on the formation of rare earth fluoride by hydrothermal synthesis: structure tuning and size controlling,” Cryst. Eng. Commun. 15, 2897–2903 (2013).
    [Crossref]
  19. X. Xue, T. Cheng, T. Suzuki, and Y. Ohishi, “Upconversion emissions from high energy levels of Tb3+ under near-infrared laser excitation at 976 nm,” Opt. Mater. Express 5, 2768–2776 (2015).
    [Crossref]
  20. M. Pollnau, D. R. Gamelin, S. R. Lüthi, H. U. Güdel, and M. P. Hehlen, “Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems,” Phys. Rev. B 61, 3337–3346 (2000).
    [Crossref]
  21. J. Zhao, D. Jin, E. P. Schartner, Y. Lu, Y. Liu, A. V. Zvyagin, L. Zhang, J. M. Dawes, P. Xi, J. A. Piper, E. M. Goldys, and T. M. Monro, “Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence,” Nat. Nanotechnol. 8, 729–734 (2013).
    [Crossref] [PubMed]
  22. J. Zhao, Z. Lu, Y. Yin, C. McRae, J. A. Piper, J. M. Dawes, D. Jin, and E. M. Goldys, “Upconversion luminescence with tunable lifetime in NaYF4:Yb,Er nanocrystals: role of nanocrystal size,” Nanoscale 5, 944–952 (2013).
    [Crossref]
  23. X. Xue, T. Suzuki, R. N. Tiwari, M. Yoshimura, and Y. Ohishi, “Quenching effect of surface adsorbed ligands on luminescence of α-NaYF4:Nd3+ nanocrystals,” Jpn. J. Appl. Phys. 53, 075001 (2014).
    [Crossref]
  24. X. Xue, S. Uechi, R. N. Tiwari, Z. Duan, M. Liao, M. Yoshimura, T. Suzuki, and Y. Ohishi, “Size-dependent upconversion luminescence and quenching mechanism of LiYF4: Er3+/Yb3+ nanocrystals with oleate ligand adsorbed,” Opt. Mater. Express 3, 989–999 (2013).
    [Crossref]
  25. J. Suyver, J. Grimm, M. van Veen, D. Biner, K. Krämer, and H. Güdel, “Upconversion spectroscopy and properties of NaYF4 doped with Er3+, Tm3+ and/or Yb3+,” J. Lumin. 117, 1–12 (2006).
    [Crossref]
  26. D. Gao, X. Zhang, and W. Gao, “Tuning upconversion emission by controlling particle shape in NaYF4:Yb3+/Er3+ nanocrystals,” J. Appl. Phys. 111, 033505 (2012).
    [Crossref]
  27. G. Wang, W. Qin, L. Wang, G. Wei, P. Zhu, and R. Kim, “Intense ultraviolet upconversion luminescence from hexagonal NaYF4:Yb3+/Tm3+ microcrystals,” Opt. Express 16, 11907–11914 (2008).
    [Crossref] [PubMed]
  28. B. Zhou, L. Tao, W. Jin, and Y. H. Tsang, “Intense near-uv upconversion luminescence in Tm3+/Yb3+ co-doped low-phonon-energy lithium gallogermanate oxide glass,” IEEE Photonics Technol. Lett. 24, 1726–1729 (2012).
    [Crossref]
  29. H. Liang, G. Chen, L. Li, Y. Liu, F. Qin, and Z. Zhang, “Upconversion luminescence in Yb3+/Tb3+-codoped monodisperse NaYF4 nanocrystals,” Opt. Commun. 282, 3028–3031 (2009).
    [Crossref]
  30. X. Xue, M. Liao, R. N. Tiwari, M. Yoshimura, T. Suzuki, and Y. Ohishi, “Intense ultraviolet and blue upconverison emissions in Tb3+/Yb3+ codoped KY3F10 nanocrystals,” Appl. Phys. Express 5, 092601 (2012).
    [Crossref]
  31. T. Miyakawa and D. L. Dexter, “Phonon sidebands, multiphonon relaxation of excited states, and phonon-assisted energy transfer between ions in solids,” Phys. Rev. B 1, 2961–2969 (1970).
    [Crossref]
  32. W. Carnall, H. Crosswhite, and H. M. Crosswhite, “Energy level structure and transition probabilities in the spectra of the trivalent lanthanides in LaF3,” Tech. Rep. (1978).
  33. D. Chen, Y. Wang, Y. Yu, and P. Huang, “Intense ultraviolet upconversion luminescence from Tm3+/Yb3+:β-YF3 nanocrystals embedded glass ceramic,” Appl. Phys. Lett. 91, 051920 (2007).
    [Crossref]
  34. F. Pandozzi, F. Vetrone, J.-C. Boyer, R. Naccache, J. A. Capobianco, A. Speghini, and M. Bettinelli, “A spectroscopic analysis of blue and ultraviolet upconverted emissions from Gd3Ga5O12:Tm3+, Yb3+ nanocrystals,” J. Phys. Chem. B 109, 17400–17405 (2005).
    [Crossref]
  35. J. Zhang, Z. Hao, X. Zhang, Y. Luo, X. Ren, X.-j. Wang, and J. Zhang, “Color tunable phosphorescence in KY3F10:Tb3+ for x-ray or cathode-ray tubes,” J. Appl. Phys. 106, 034915 (2009).
    [Crossref]
  36. L. Wang, D. Zhang, D. Zhao, G. Qin, and W. Qin, “Sensitized upconversion emissions of Tb3+ by Tm3+ in YF3 and NaYF4 nanocrystals,” J. Nanosci. Nanotechnol. 11, 9580–9583 (2011).
    [Crossref]
  37. T. Sakamoto, M. Shimizu, M. Yamada, T. Kanamori, Y. Ohishi, Y. Terunuma, and S. Sudo, “35-db gain Tm-doped ZBLYAN fiber amplifier operating at 1.65 µ m,” IEEE Photonics Technol. Lett. 8, 349–351 (1996).
    [Crossref]
  38. E. Nakazawa and S. Shionoya, “Energy transfer between trivalent rare-earth ions in inorganic solids,” J. Chem. Phys. 47, 3211–3219 (1967).
    [Crossref]
  39. J. Suyver, J. Grimm, K. Krämer, and H. Güdel, “Highly efficient near-infrared to visible up-conversion process in NaYF4:Er3+,Yb3+,” J. Lumin. 114, 53–59 (2005).
    [Crossref]
  40. X. Chen and Z. Song, “Study on six-photon and five-photon ultraviolet upconversion luminescence,” J. Opt. Soc. Am. B 24, 965–971 (2007).
    [Crossref]
  41. A. Sillen and Y. Engelborghs, “The correct use of “average” fluorescence parameters,” Photochem. Photobiol. 67, 475–486 (1998).
  42. N. M. Sangeetha and F. C. J. M. van Veggel, “Lanthanum silicate and lanthanum zirconate nanoparticles co-doped with Ho3+ and Yb3+: Matrix-dependent red and green upconversion emissions,” J. Phys. Chem. C 113, 14702–14707 (2009).
    [Crossref]
  43. G. Liu and B. Jacquier, Spectroscopic Properties of Rare Earths in Optical Materials (Springer, 2006).
  44. H. Toratani, T. Izumitani, and H. Kuroda, “Compositional dependence of nonradiative decay rate in nd laser glasses,” J. Non-Cryst. Solids 52, 303–313 (1982).
    [Crossref]

2016 (2)

D. Li, W. Qin, D. Zhao, T. Aidilibike, H. Chen, S. Liu, P. Zhang, and L. Wang, “Tunable green to red upconversion fluorescence of water-soluble hexagonal-phase core-shell CaF2@NaYF4 nanocrystals,” Opt. Mater. Express 6, 270–278 (2016).
[Crossref]

H. Zheng, B. Chen, H. Yu, X. Li, J. Zhang, J. Sun, L. Tong, Z. Wu, H. Zhong, and R. Hua, “Rod-shaped NaY(MoO4)2:Sm3+/Yb3+ nanoheaters for photothermal conversion: Influence of doping concentration and excitation power density,” Sens. Actuators B 234, 286–293 (2016).
[Crossref]

2015 (2)

W. Gao, R. Wang, Q. Han, J. Dong, L. Yan, and H. Zheng, “Tuning red upconversion emission in single LiYF4:Yb3+/Ho3+ microparticle,” J. Phys. Chem. C 119, 2349–2355 (2015).

X. Xue, T. Cheng, T. Suzuki, and Y. Ohishi, “Upconversion emissions from high energy levels of Tb3+ under near-infrared laser excitation at 976 nm,” Opt. Mater. Express 5, 2768–2776 (2015).
[Crossref]

2014 (4)

X. Xue, T. Suzuki, R. N. Tiwari, M. Yoshimura, and Y. Ohishi, “Quenching effect of surface adsorbed ligands on luminescence of α-NaYF4:Nd3+ nanocrystals,” Jpn. J. Appl. Phys. 53, 075001 (2014).
[Crossref]

H. Zheng, B. Chen, H. Yu, J. Zhang, J. Sun, X. Li, M. Sun, B. Tian, S. Fu, and H. Zhong, “Microwave-assisted hydrothermal synthesis and temperature sensing application of Er3+/Yb3+ doped NaY(WO4)2 microstructures,” J. Colloid Interface Sci. 420, 27–34 (2014).
[Crossref] [PubMed]

B. P. Singh, A. K. Parchur, R. S. Ningthoujam, P. V. Ramakrishna, S. Singh, P. Singh, S. B. Rai, and R. Maalej, “Enhanced up-conversion and temperature-sensing behaviour of Er3+ and Yb3+ co-doped Y2Ti2O7 by incorporation of Li+ ions,” Phys. Chem. Chem. Phys. 16, 22665–22676 (2014).
[Crossref] [PubMed]

X. Zhai, S. Liu, Y. Zhang, G. Qin, and W. Qin, “Controlled synthesis of ultrasmall hexagonal NaTm0.02Lu0.98–xYbxF4 nanocrystals with enhanced upconversion luminescence,” J. Mater. Chem. C 2, 2037–2044 (2014).
[Crossref]

2013 (6)

X. Xue, L. Wang, L. Huang, D. Zhao, and W. Qin, “Effect of alkali ions on the formation of rare earth fluoride by hydrothermal synthesis: structure tuning and size controlling,” Cryst. Eng. Commun. 15, 2897–2903 (2013).
[Crossref]

S. Zhou, K. Deng, X. Wei, G. Jiang, C. Duan, Y. Chen, and M. Yin, “Upconversion luminescence of NaYF4: Yb3+, Er3+ for temperature sensing,” Opt. Commun. 291, 138–142 (2013).
[Crossref]

H. H. Gorris and O. S. Wolfbeis, “Photon-upconverting nanoparticles for optical encoding and multiplexing of cells, biomolecules, and microspheres,” Angew. Chem., Int. Ed. 52, 3584–3600 (2013).
[Crossref]

X. Xue, S. Uechi, R. N. Tiwari, Z. Duan, M. Liao, M. Yoshimura, T. Suzuki, and Y. Ohishi, “Size-dependent upconversion luminescence and quenching mechanism of LiYF4: Er3+/Yb3+ nanocrystals with oleate ligand adsorbed,” Opt. Mater. Express 3, 989–999 (2013).
[Crossref]

J. Zhao, D. Jin, E. P. Schartner, Y. Lu, Y. Liu, A. V. Zvyagin, L. Zhang, J. M. Dawes, P. Xi, J. A. Piper, E. M. Goldys, and T. M. Monro, “Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence,” Nat. Nanotechnol. 8, 729–734 (2013).
[Crossref] [PubMed]

J. Zhao, Z. Lu, Y. Yin, C. McRae, J. A. Piper, J. M. Dawes, D. Jin, and E. M. Goldys, “Upconversion luminescence with tunable lifetime in NaYF4:Yb,Er nanocrystals: role of nanocrystal size,” Nanoscale 5, 944–952 (2013).
[Crossref]

2012 (4)

D. Gao, X. Zhang, and W. Gao, “Tuning upconversion emission by controlling particle shape in NaYF4:Yb3+/Er3+ nanocrystals,” J. Appl. Phys. 111, 033505 (2012).
[Crossref]

B. Zhou, L. Tao, W. Jin, and Y. H. Tsang, “Intense near-uv upconversion luminescence in Tm3+/Yb3+ co-doped low-phonon-energy lithium gallogermanate oxide glass,” IEEE Photonics Technol. Lett. 24, 1726–1729 (2012).
[Crossref]

X. Xue, M. Liao, R. N. Tiwari, M. Yoshimura, T. Suzuki, and Y. Ohishi, “Intense ultraviolet and blue upconverison emissions in Tb3+/Yb3+ codoped KY3F10 nanocrystals,” Appl. Phys. Express 5, 092601 (2012).
[Crossref]

A. Gnach and A. Bednarkiewicz, “Lanthanide-doped up-converting nanoparticles: Merits and challenges,” Nano Today 7, 532–563 (2012).
[Crossref]

2011 (4)

F. Wang, R. Deng, J. Wang, Q. Wang, Y. Han, H. Zhu, X. Chen, and X. Liu, “Tuning upconversion through energy migration in core–shell nanoparticles,” Nat. Mater. 10, 968–973 (2011).
[Crossref] [PubMed]

S. F. León-Luis, U. R. Rodríguez-Mendoza, E. Lalla, and V. Lavín, “Temperature sensor based on the Er3+ green upconverted emission in a fluorotellurite glass,” Sens. Actuators B 158, 208–213 (2011).
[Crossref]

N. Ishiwada, S. Fujioka, T. Ueda, and T. Yokomori, “Co-doped Y2O3:Tb3+/Tm3+ multicolor emitting phosphors for thermometry,” Opt. Lett. 36, 760–762 (2011).
[Crossref] [PubMed]

L. Wang, D. Zhang, D. Zhao, G. Qin, and W. Qin, “Sensitized upconversion emissions of Tb3+ by Tm3+ in YF3 and NaYF4 nanocrystals,” J. Nanosci. Nanotechnol. 11, 9580–9583 (2011).
[Crossref]

2010 (1)

L. Wang, X. Xue, H. Chen, D. Zhao, and W. Qin, “Unusual radiative transitions of Eu3+ ions in Yb/Er/Eu tri-doped NaYF4 nanocrystals under infrared excitation,” Chem. Phys. Lett. 485, 183–186 (2010).
[Crossref]

2009 (4)

L. Wang, X. Xue, F. Shi, D. Zhao, D. Zhang, K. Zheng, G. Wang, C. He, R. Kim, and W. Qin, “Ultraviolet and violet upconversion fluorescence of europium (III) doped in YF3 nanocrystals,” Opt. Lett. 34, 2781–2783 (2009).
[Crossref] [PubMed]

H. Liang, G. Chen, L. Li, Y. Liu, F. Qin, and Z. Zhang, “Upconversion luminescence in Yb3+/Tb3+-codoped monodisperse NaYF4 nanocrystals,” Opt. Commun. 282, 3028–3031 (2009).
[Crossref]

J. Zhang, Z. Hao, X. Zhang, Y. Luo, X. Ren, X.-j. Wang, and J. Zhang, “Color tunable phosphorescence in KY3F10:Tb3+ for x-ray or cathode-ray tubes,” J. Appl. Phys. 106, 034915 (2009).
[Crossref]

N. M. Sangeetha and F. C. J. M. van Veggel, “Lanthanum silicate and lanthanum zirconate nanoparticles co-doped with Ho3+ and Yb3+: Matrix-dependent red and green upconversion emissions,” J. Phys. Chem. C 113, 14702–14707 (2009).
[Crossref]

2008 (1)

2007 (2)

D. Chen, Y. Wang, Y. Yu, and P. Huang, “Intense ultraviolet upconversion luminescence from Tm3+/Yb3+:β-YF3 nanocrystals embedded glass ceramic,” Appl. Phys. Lett. 91, 051920 (2007).
[Crossref]

X. Chen and Z. Song, “Study on six-photon and five-photon ultraviolet upconversion luminescence,” J. Opt. Soc. Am. B 24, 965–971 (2007).
[Crossref]

2006 (1)

J. Suyver, J. Grimm, M. van Veen, D. Biner, K. Krämer, and H. Güdel, “Upconversion spectroscopy and properties of NaYF4 doped with Er3+, Tm3+ and/or Yb3+,” J. Lumin. 117, 1–12 (2006).
[Crossref]

2005 (3)

F. Pandozzi, F. Vetrone, J.-C. Boyer, R. Naccache, J. A. Capobianco, A. Speghini, and M. Bettinelli, “A spectroscopic analysis of blue and ultraviolet upconverted emissions from Gd3Ga5O12:Tm3+, Yb3+ nanocrystals,” J. Phys. Chem. B 109, 17400–17405 (2005).
[Crossref]

J. Suyver, A. Aebischer, D. Biner, P. Gerner, J. Grimm, S. Heer, K. Krämer, C. Reinhard, and H. Güdel, “Novel materials doped with trivalent lanthanides and transition metal ions showing near-infrared to visible photon upconversion,” Opt. Mater. 27, 1111–1130 (2005).
[Crossref]

J. Suyver, J. Grimm, K. Krämer, and H. Güdel, “Highly efficient near-infrared to visible up-conversion process in NaYF4:Er3+,Yb3+,” J. Lumin. 114, 53–59 (2005).
[Crossref]

2004 (2)

F. Auzel, “Upconversion and anti-stokes processes with f and d ions in solids,” Chem. Rev. 104, 139–174 (2004).
[Crossref] [PubMed]

K. W. Krämer, D. Biner, G. Frei, H. U. Güdel, M. P. Hehlen, and S. R. Lüthi, “Hexagonal sodium yttrium fluoride based green and blue emitting upconversion phosphors,” Chem. Mater. 16, 1244–1251 (2004).
[Crossref]

2000 (1)

M. Pollnau, D. R. Gamelin, S. R. Lüthi, H. U. Güdel, and M. P. Hehlen, “Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems,” Phys. Rev. B 61, 3337–3346 (2000).
[Crossref]

1998 (1)

A. Sillen and Y. Engelborghs, “The correct use of “average” fluorescence parameters,” Photochem. Photobiol. 67, 475–486 (1998).

1996 (1)

T. Sakamoto, M. Shimizu, M. Yamada, T. Kanamori, Y. Ohishi, Y. Terunuma, and S. Sudo, “35-db gain Tm-doped ZBLYAN fiber amplifier operating at 1.65 µ m,” IEEE Photonics Technol. Lett. 8, 349–351 (1996).
[Crossref]

1982 (1)

H. Toratani, T. Izumitani, and H. Kuroda, “Compositional dependence of nonradiative decay rate in nd laser glasses,” J. Non-Cryst. Solids 52, 303–313 (1982).
[Crossref]

1970 (1)

T. Miyakawa and D. L. Dexter, “Phonon sidebands, multiphonon relaxation of excited states, and phonon-assisted energy transfer between ions in solids,” Phys. Rev. B 1, 2961–2969 (1970).
[Crossref]

1967 (1)

E. Nakazawa and S. Shionoya, “Energy transfer between trivalent rare-earth ions in inorganic solids,” J. Chem. Phys. 47, 3211–3219 (1967).
[Crossref]

Aebischer, A.

J. Suyver, A. Aebischer, D. Biner, P. Gerner, J. Grimm, S. Heer, K. Krämer, C. Reinhard, and H. Güdel, “Novel materials doped with trivalent lanthanides and transition metal ions showing near-infrared to visible photon upconversion,” Opt. Mater. 27, 1111–1130 (2005).
[Crossref]

Aidilibike, T.

Auzel, F.

F. Auzel, “Upconversion and anti-stokes processes with f and d ions in solids,” Chem. Rev. 104, 139–174 (2004).
[Crossref] [PubMed]

Bednarkiewicz, A.

A. Gnach and A. Bednarkiewicz, “Lanthanide-doped up-converting nanoparticles: Merits and challenges,” Nano Today 7, 532–563 (2012).
[Crossref]

Bettinelli, M.

F. Pandozzi, F. Vetrone, J.-C. Boyer, R. Naccache, J. A. Capobianco, A. Speghini, and M. Bettinelli, “A spectroscopic analysis of blue and ultraviolet upconverted emissions from Gd3Ga5O12:Tm3+, Yb3+ nanocrystals,” J. Phys. Chem. B 109, 17400–17405 (2005).
[Crossref]

Biner, D.

J. Suyver, J. Grimm, M. van Veen, D. Biner, K. Krämer, and H. Güdel, “Upconversion spectroscopy and properties of NaYF4 doped with Er3+, Tm3+ and/or Yb3+,” J. Lumin. 117, 1–12 (2006).
[Crossref]

J. Suyver, A. Aebischer, D. Biner, P. Gerner, J. Grimm, S. Heer, K. Krämer, C. Reinhard, and H. Güdel, “Novel materials doped with trivalent lanthanides and transition metal ions showing near-infrared to visible photon upconversion,” Opt. Mater. 27, 1111–1130 (2005).
[Crossref]

K. W. Krämer, D. Biner, G. Frei, H. U. Güdel, M. P. Hehlen, and S. R. Lüthi, “Hexagonal sodium yttrium fluoride based green and blue emitting upconversion phosphors,” Chem. Mater. 16, 1244–1251 (2004).
[Crossref]

Boyer, J.-C.

F. Pandozzi, F. Vetrone, J.-C. Boyer, R. Naccache, J. A. Capobianco, A. Speghini, and M. Bettinelli, “A spectroscopic analysis of blue and ultraviolet upconverted emissions from Gd3Ga5O12:Tm3+, Yb3+ nanocrystals,” J. Phys. Chem. B 109, 17400–17405 (2005).
[Crossref]

Capobianco, J. A.

F. Pandozzi, F. Vetrone, J.-C. Boyer, R. Naccache, J. A. Capobianco, A. Speghini, and M. Bettinelli, “A spectroscopic analysis of blue and ultraviolet upconverted emissions from Gd3Ga5O12:Tm3+, Yb3+ nanocrystals,” J. Phys. Chem. B 109, 17400–17405 (2005).
[Crossref]

Carnall, W.

W. Carnall, H. Crosswhite, and H. M. Crosswhite, “Energy level structure and transition probabilities in the spectra of the trivalent lanthanides in LaF3,” Tech. Rep. (1978).

Chen, B.

H. Zheng, B. Chen, H. Yu, X. Li, J. Zhang, J. Sun, L. Tong, Z. Wu, H. Zhong, and R. Hua, “Rod-shaped NaY(MoO4)2:Sm3+/Yb3+ nanoheaters for photothermal conversion: Influence of doping concentration and excitation power density,” Sens. Actuators B 234, 286–293 (2016).
[Crossref]

H. Zheng, B. Chen, H. Yu, J. Zhang, J. Sun, X. Li, M. Sun, B. Tian, S. Fu, and H. Zhong, “Microwave-assisted hydrothermal synthesis and temperature sensing application of Er3+/Yb3+ doped NaY(WO4)2 microstructures,” J. Colloid Interface Sci. 420, 27–34 (2014).
[Crossref] [PubMed]

Chen, D.

D. Chen, Y. Wang, Y. Yu, and P. Huang, “Intense ultraviolet upconversion luminescence from Tm3+/Yb3+:β-YF3 nanocrystals embedded glass ceramic,” Appl. Phys. Lett. 91, 051920 (2007).
[Crossref]

Chen, G.

H. Liang, G. Chen, L. Li, Y. Liu, F. Qin, and Z. Zhang, “Upconversion luminescence in Yb3+/Tb3+-codoped monodisperse NaYF4 nanocrystals,” Opt. Commun. 282, 3028–3031 (2009).
[Crossref]

Chen, H.

D. Li, W. Qin, D. Zhao, T. Aidilibike, H. Chen, S. Liu, P. Zhang, and L. Wang, “Tunable green to red upconversion fluorescence of water-soluble hexagonal-phase core-shell CaF2@NaYF4 nanocrystals,” Opt. Mater. Express 6, 270–278 (2016).
[Crossref]

L. Wang, X. Xue, H. Chen, D. Zhao, and W. Qin, “Unusual radiative transitions of Eu3+ ions in Yb/Er/Eu tri-doped NaYF4 nanocrystals under infrared excitation,” Chem. Phys. Lett. 485, 183–186 (2010).
[Crossref]

Chen, X.

F. Wang, R. Deng, J. Wang, Q. Wang, Y. Han, H. Zhu, X. Chen, and X. Liu, “Tuning upconversion through energy migration in core–shell nanoparticles,” Nat. Mater. 10, 968–973 (2011).
[Crossref] [PubMed]

X. Chen and Z. Song, “Study on six-photon and five-photon ultraviolet upconversion luminescence,” J. Opt. Soc. Am. B 24, 965–971 (2007).
[Crossref]

Chen, Y.

S. Zhou, K. Deng, X. Wei, G. Jiang, C. Duan, Y. Chen, and M. Yin, “Upconversion luminescence of NaYF4: Yb3+, Er3+ for temperature sensing,” Opt. Commun. 291, 138–142 (2013).
[Crossref]

Cheng, T.

Crosswhite, H.

W. Carnall, H. Crosswhite, and H. M. Crosswhite, “Energy level structure and transition probabilities in the spectra of the trivalent lanthanides in LaF3,” Tech. Rep. (1978).

Crosswhite, H. M.

W. Carnall, H. Crosswhite, and H. M. Crosswhite, “Energy level structure and transition probabilities in the spectra of the trivalent lanthanides in LaF3,” Tech. Rep. (1978).

Dawes, J. M.

J. Zhao, D. Jin, E. P. Schartner, Y. Lu, Y. Liu, A. V. Zvyagin, L. Zhang, J. M. Dawes, P. Xi, J. A. Piper, E. M. Goldys, and T. M. Monro, “Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence,” Nat. Nanotechnol. 8, 729–734 (2013).
[Crossref] [PubMed]

J. Zhao, Z. Lu, Y. Yin, C. McRae, J. A. Piper, J. M. Dawes, D. Jin, and E. M. Goldys, “Upconversion luminescence with tunable lifetime in NaYF4:Yb,Er nanocrystals: role of nanocrystal size,” Nanoscale 5, 944–952 (2013).
[Crossref]

Deng, K.

S. Zhou, K. Deng, X. Wei, G. Jiang, C. Duan, Y. Chen, and M. Yin, “Upconversion luminescence of NaYF4: Yb3+, Er3+ for temperature sensing,” Opt. Commun. 291, 138–142 (2013).
[Crossref]

Deng, R.

F. Wang, R. Deng, J. Wang, Q. Wang, Y. Han, H. Zhu, X. Chen, and X. Liu, “Tuning upconversion through energy migration in core–shell nanoparticles,” Nat. Mater. 10, 968–973 (2011).
[Crossref] [PubMed]

Dexter, D. L.

T. Miyakawa and D. L. Dexter, “Phonon sidebands, multiphonon relaxation of excited states, and phonon-assisted energy transfer between ions in solids,” Phys. Rev. B 1, 2961–2969 (1970).
[Crossref]

Dong, J.

W. Gao, R. Wang, Q. Han, J. Dong, L. Yan, and H. Zheng, “Tuning red upconversion emission in single LiYF4:Yb3+/Ho3+ microparticle,” J. Phys. Chem. C 119, 2349–2355 (2015).

Duan, C.

S. Zhou, K. Deng, X. Wei, G. Jiang, C. Duan, Y. Chen, and M. Yin, “Upconversion luminescence of NaYF4: Yb3+, Er3+ for temperature sensing,” Opt. Commun. 291, 138–142 (2013).
[Crossref]

Duan, Z.

Engelborghs, Y.

A. Sillen and Y. Engelborghs, “The correct use of “average” fluorescence parameters,” Photochem. Photobiol. 67, 475–486 (1998).

Frei, G.

K. W. Krämer, D. Biner, G. Frei, H. U. Güdel, M. P. Hehlen, and S. R. Lüthi, “Hexagonal sodium yttrium fluoride based green and blue emitting upconversion phosphors,” Chem. Mater. 16, 1244–1251 (2004).
[Crossref]

Fu, S.

H. Zheng, B. Chen, H. Yu, J. Zhang, J. Sun, X. Li, M. Sun, B. Tian, S. Fu, and H. Zhong, “Microwave-assisted hydrothermal synthesis and temperature sensing application of Er3+/Yb3+ doped NaY(WO4)2 microstructures,” J. Colloid Interface Sci. 420, 27–34 (2014).
[Crossref] [PubMed]

Fujioka, S.

Gamelin, D. R.

M. Pollnau, D. R. Gamelin, S. R. Lüthi, H. U. Güdel, and M. P. Hehlen, “Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems,” Phys. Rev. B 61, 3337–3346 (2000).
[Crossref]

Gao, D.

D. Gao, X. Zhang, and W. Gao, “Tuning upconversion emission by controlling particle shape in NaYF4:Yb3+/Er3+ nanocrystals,” J. Appl. Phys. 111, 033505 (2012).
[Crossref]

Gao, W.

W. Gao, R. Wang, Q. Han, J. Dong, L. Yan, and H. Zheng, “Tuning red upconversion emission in single LiYF4:Yb3+/Ho3+ microparticle,” J. Phys. Chem. C 119, 2349–2355 (2015).

D. Gao, X. Zhang, and W. Gao, “Tuning upconversion emission by controlling particle shape in NaYF4:Yb3+/Er3+ nanocrystals,” J. Appl. Phys. 111, 033505 (2012).
[Crossref]

Gerner, P.

J. Suyver, A. Aebischer, D. Biner, P. Gerner, J. Grimm, S. Heer, K. Krämer, C. Reinhard, and H. Güdel, “Novel materials doped with trivalent lanthanides and transition metal ions showing near-infrared to visible photon upconversion,” Opt. Mater. 27, 1111–1130 (2005).
[Crossref]

Gnach, A.

A. Gnach and A. Bednarkiewicz, “Lanthanide-doped up-converting nanoparticles: Merits and challenges,” Nano Today 7, 532–563 (2012).
[Crossref]

Goldys, E. M.

J. Zhao, D. Jin, E. P. Schartner, Y. Lu, Y. Liu, A. V. Zvyagin, L. Zhang, J. M. Dawes, P. Xi, J. A. Piper, E. M. Goldys, and T. M. Monro, “Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence,” Nat. Nanotechnol. 8, 729–734 (2013).
[Crossref] [PubMed]

J. Zhao, Z. Lu, Y. Yin, C. McRae, J. A. Piper, J. M. Dawes, D. Jin, and E. M. Goldys, “Upconversion luminescence with tunable lifetime in NaYF4:Yb,Er nanocrystals: role of nanocrystal size,” Nanoscale 5, 944–952 (2013).
[Crossref]

Gorris, H. H.

H. H. Gorris and O. S. Wolfbeis, “Photon-upconverting nanoparticles for optical encoding and multiplexing of cells, biomolecules, and microspheres,” Angew. Chem., Int. Ed. 52, 3584–3600 (2013).
[Crossref]

Grimm, J.

J. Suyver, J. Grimm, M. van Veen, D. Biner, K. Krämer, and H. Güdel, “Upconversion spectroscopy and properties of NaYF4 doped with Er3+, Tm3+ and/or Yb3+,” J. Lumin. 117, 1–12 (2006).
[Crossref]

J. Suyver, J. Grimm, K. Krämer, and H. Güdel, “Highly efficient near-infrared to visible up-conversion process in NaYF4:Er3+,Yb3+,” J. Lumin. 114, 53–59 (2005).
[Crossref]

J. Suyver, A. Aebischer, D. Biner, P. Gerner, J. Grimm, S. Heer, K. Krämer, C. Reinhard, and H. Güdel, “Novel materials doped with trivalent lanthanides and transition metal ions showing near-infrared to visible photon upconversion,” Opt. Mater. 27, 1111–1130 (2005).
[Crossref]

Güdel, H.

J. Suyver, J. Grimm, M. van Veen, D. Biner, K. Krämer, and H. Güdel, “Upconversion spectroscopy and properties of NaYF4 doped with Er3+, Tm3+ and/or Yb3+,” J. Lumin. 117, 1–12 (2006).
[Crossref]

J. Suyver, J. Grimm, K. Krämer, and H. Güdel, “Highly efficient near-infrared to visible up-conversion process in NaYF4:Er3+,Yb3+,” J. Lumin. 114, 53–59 (2005).
[Crossref]

J. Suyver, A. Aebischer, D. Biner, P. Gerner, J. Grimm, S. Heer, K. Krämer, C. Reinhard, and H. Güdel, “Novel materials doped with trivalent lanthanides and transition metal ions showing near-infrared to visible photon upconversion,” Opt. Mater. 27, 1111–1130 (2005).
[Crossref]

Güdel, H. U.

K. W. Krämer, D. Biner, G. Frei, H. U. Güdel, M. P. Hehlen, and S. R. Lüthi, “Hexagonal sodium yttrium fluoride based green and blue emitting upconversion phosphors,” Chem. Mater. 16, 1244–1251 (2004).
[Crossref]

M. Pollnau, D. R. Gamelin, S. R. Lüthi, H. U. Güdel, and M. P. Hehlen, “Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems,” Phys. Rev. B 61, 3337–3346 (2000).
[Crossref]

Han, Q.

W. Gao, R. Wang, Q. Han, J. Dong, L. Yan, and H. Zheng, “Tuning red upconversion emission in single LiYF4:Yb3+/Ho3+ microparticle,” J. Phys. Chem. C 119, 2349–2355 (2015).

Han, Y.

F. Wang, R. Deng, J. Wang, Q. Wang, Y. Han, H. Zhu, X. Chen, and X. Liu, “Tuning upconversion through energy migration in core–shell nanoparticles,” Nat. Mater. 10, 968–973 (2011).
[Crossref] [PubMed]

Hao, Z.

J. Zhang, Z. Hao, X. Zhang, Y. Luo, X. Ren, X.-j. Wang, and J. Zhang, “Color tunable phosphorescence in KY3F10:Tb3+ for x-ray or cathode-ray tubes,” J. Appl. Phys. 106, 034915 (2009).
[Crossref]

He, C.

Heer, S.

J. Suyver, A. Aebischer, D. Biner, P. Gerner, J. Grimm, S. Heer, K. Krämer, C. Reinhard, and H. Güdel, “Novel materials doped with trivalent lanthanides and transition metal ions showing near-infrared to visible photon upconversion,” Opt. Mater. 27, 1111–1130 (2005).
[Crossref]

Hehlen, M. P.

K. W. Krämer, D. Biner, G. Frei, H. U. Güdel, M. P. Hehlen, and S. R. Lüthi, “Hexagonal sodium yttrium fluoride based green and blue emitting upconversion phosphors,” Chem. Mater. 16, 1244–1251 (2004).
[Crossref]

M. Pollnau, D. R. Gamelin, S. R. Lüthi, H. U. Güdel, and M. P. Hehlen, “Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems,” Phys. Rev. B 61, 3337–3346 (2000).
[Crossref]

Hua, R.

H. Zheng, B. Chen, H. Yu, X. Li, J. Zhang, J. Sun, L. Tong, Z. Wu, H. Zhong, and R. Hua, “Rod-shaped NaY(MoO4)2:Sm3+/Yb3+ nanoheaters for photothermal conversion: Influence of doping concentration and excitation power density,” Sens. Actuators B 234, 286–293 (2016).
[Crossref]

Huang, L.

X. Xue, L. Wang, L. Huang, D. Zhao, and W. Qin, “Effect of alkali ions on the formation of rare earth fluoride by hydrothermal synthesis: structure tuning and size controlling,” Cryst. Eng. Commun. 15, 2897–2903 (2013).
[Crossref]

Huang, P.

D. Chen, Y. Wang, Y. Yu, and P. Huang, “Intense ultraviolet upconversion luminescence from Tm3+/Yb3+:β-YF3 nanocrystals embedded glass ceramic,” Appl. Phys. Lett. 91, 051920 (2007).
[Crossref]

Ishiwada, N.

Izumitani, T.

H. Toratani, T. Izumitani, and H. Kuroda, “Compositional dependence of nonradiative decay rate in nd laser glasses,” J. Non-Cryst. Solids 52, 303–313 (1982).
[Crossref]

Jacquier, B.

G. Liu and B. Jacquier, Spectroscopic Properties of Rare Earths in Optical Materials (Springer, 2006).

Jiang, G.

S. Zhou, K. Deng, X. Wei, G. Jiang, C. Duan, Y. Chen, and M. Yin, “Upconversion luminescence of NaYF4: Yb3+, Er3+ for temperature sensing,” Opt. Commun. 291, 138–142 (2013).
[Crossref]

Jin, D.

J. Zhao, D. Jin, E. P. Schartner, Y. Lu, Y. Liu, A. V. Zvyagin, L. Zhang, J. M. Dawes, P. Xi, J. A. Piper, E. M. Goldys, and T. M. Monro, “Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence,” Nat. Nanotechnol. 8, 729–734 (2013).
[Crossref] [PubMed]

J. Zhao, Z. Lu, Y. Yin, C. McRae, J. A. Piper, J. M. Dawes, D. Jin, and E. M. Goldys, “Upconversion luminescence with tunable lifetime in NaYF4:Yb,Er nanocrystals: role of nanocrystal size,” Nanoscale 5, 944–952 (2013).
[Crossref]

Jin, W.

B. Zhou, L. Tao, W. Jin, and Y. H. Tsang, “Intense near-uv upconversion luminescence in Tm3+/Yb3+ co-doped low-phonon-energy lithium gallogermanate oxide glass,” IEEE Photonics Technol. Lett. 24, 1726–1729 (2012).
[Crossref]

Kanamori, T.

T. Sakamoto, M. Shimizu, M. Yamada, T. Kanamori, Y. Ohishi, Y. Terunuma, and S. Sudo, “35-db gain Tm-doped ZBLYAN fiber amplifier operating at 1.65 µ m,” IEEE Photonics Technol. Lett. 8, 349–351 (1996).
[Crossref]

Kim, R.

Krämer, K.

J. Suyver, J. Grimm, M. van Veen, D. Biner, K. Krämer, and H. Güdel, “Upconversion spectroscopy and properties of NaYF4 doped with Er3+, Tm3+ and/or Yb3+,” J. Lumin. 117, 1–12 (2006).
[Crossref]

J. Suyver, J. Grimm, K. Krämer, and H. Güdel, “Highly efficient near-infrared to visible up-conversion process in NaYF4:Er3+,Yb3+,” J. Lumin. 114, 53–59 (2005).
[Crossref]

J. Suyver, A. Aebischer, D. Biner, P. Gerner, J. Grimm, S. Heer, K. Krämer, C. Reinhard, and H. Güdel, “Novel materials doped with trivalent lanthanides and transition metal ions showing near-infrared to visible photon upconversion,” Opt. Mater. 27, 1111–1130 (2005).
[Crossref]

Krämer, K. W.

K. W. Krämer, D. Biner, G. Frei, H. U. Güdel, M. P. Hehlen, and S. R. Lüthi, “Hexagonal sodium yttrium fluoride based green and blue emitting upconversion phosphors,” Chem. Mater. 16, 1244–1251 (2004).
[Crossref]

Kuroda, H.

H. Toratani, T. Izumitani, and H. Kuroda, “Compositional dependence of nonradiative decay rate in nd laser glasses,” J. Non-Cryst. Solids 52, 303–313 (1982).
[Crossref]

Lalla, E.

S. F. León-Luis, U. R. Rodríguez-Mendoza, E. Lalla, and V. Lavín, “Temperature sensor based on the Er3+ green upconverted emission in a fluorotellurite glass,” Sens. Actuators B 158, 208–213 (2011).
[Crossref]

Lavín, V.

S. F. León-Luis, U. R. Rodríguez-Mendoza, E. Lalla, and V. Lavín, “Temperature sensor based on the Er3+ green upconverted emission in a fluorotellurite glass,” Sens. Actuators B 158, 208–213 (2011).
[Crossref]

León-Luis, S. F.

S. F. León-Luis, U. R. Rodríguez-Mendoza, E. Lalla, and V. Lavín, “Temperature sensor based on the Er3+ green upconverted emission in a fluorotellurite glass,” Sens. Actuators B 158, 208–213 (2011).
[Crossref]

Li, D.

Li, L.

H. Liang, G. Chen, L. Li, Y. Liu, F. Qin, and Z. Zhang, “Upconversion luminescence in Yb3+/Tb3+-codoped monodisperse NaYF4 nanocrystals,” Opt. Commun. 282, 3028–3031 (2009).
[Crossref]

Li, X.

H. Zheng, B. Chen, H. Yu, X. Li, J. Zhang, J. Sun, L. Tong, Z. Wu, H. Zhong, and R. Hua, “Rod-shaped NaY(MoO4)2:Sm3+/Yb3+ nanoheaters for photothermal conversion: Influence of doping concentration and excitation power density,” Sens. Actuators B 234, 286–293 (2016).
[Crossref]

H. Zheng, B. Chen, H. Yu, J. Zhang, J. Sun, X. Li, M. Sun, B. Tian, S. Fu, and H. Zhong, “Microwave-assisted hydrothermal synthesis and temperature sensing application of Er3+/Yb3+ doped NaY(WO4)2 microstructures,” J. Colloid Interface Sci. 420, 27–34 (2014).
[Crossref] [PubMed]

Liang, H.

H. Liang, G. Chen, L. Li, Y. Liu, F. Qin, and Z. Zhang, “Upconversion luminescence in Yb3+/Tb3+-codoped monodisperse NaYF4 nanocrystals,” Opt. Commun. 282, 3028–3031 (2009).
[Crossref]

Liao, M.

X. Xue, S. Uechi, R. N. Tiwari, Z. Duan, M. Liao, M. Yoshimura, T. Suzuki, and Y. Ohishi, “Size-dependent upconversion luminescence and quenching mechanism of LiYF4: Er3+/Yb3+ nanocrystals with oleate ligand adsorbed,” Opt. Mater. Express 3, 989–999 (2013).
[Crossref]

X. Xue, M. Liao, R. N. Tiwari, M. Yoshimura, T. Suzuki, and Y. Ohishi, “Intense ultraviolet and blue upconverison emissions in Tb3+/Yb3+ codoped KY3F10 nanocrystals,” Appl. Phys. Express 5, 092601 (2012).
[Crossref]

Liu, G.

G. Liu and B. Jacquier, Spectroscopic Properties of Rare Earths in Optical Materials (Springer, 2006).

Liu, S.

D. Li, W. Qin, D. Zhao, T. Aidilibike, H. Chen, S. Liu, P. Zhang, and L. Wang, “Tunable green to red upconversion fluorescence of water-soluble hexagonal-phase core-shell CaF2@NaYF4 nanocrystals,” Opt. Mater. Express 6, 270–278 (2016).
[Crossref]

X. Zhai, S. Liu, Y. Zhang, G. Qin, and W. Qin, “Controlled synthesis of ultrasmall hexagonal NaTm0.02Lu0.98–xYbxF4 nanocrystals with enhanced upconversion luminescence,” J. Mater. Chem. C 2, 2037–2044 (2014).
[Crossref]

Liu, X.

F. Wang, R. Deng, J. Wang, Q. Wang, Y. Han, H. Zhu, X. Chen, and X. Liu, “Tuning upconversion through energy migration in core–shell nanoparticles,” Nat. Mater. 10, 968–973 (2011).
[Crossref] [PubMed]

Liu, Y.

J. Zhao, D. Jin, E. P. Schartner, Y. Lu, Y. Liu, A. V. Zvyagin, L. Zhang, J. M. Dawes, P. Xi, J. A. Piper, E. M. Goldys, and T. M. Monro, “Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence,” Nat. Nanotechnol. 8, 729–734 (2013).
[Crossref] [PubMed]

H. Liang, G. Chen, L. Li, Y. Liu, F. Qin, and Z. Zhang, “Upconversion luminescence in Yb3+/Tb3+-codoped monodisperse NaYF4 nanocrystals,” Opt. Commun. 282, 3028–3031 (2009).
[Crossref]

Lu, Y.

J. Zhao, D. Jin, E. P. Schartner, Y. Lu, Y. Liu, A. V. Zvyagin, L. Zhang, J. M. Dawes, P. Xi, J. A. Piper, E. M. Goldys, and T. M. Monro, “Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence,” Nat. Nanotechnol. 8, 729–734 (2013).
[Crossref] [PubMed]

Lu, Z.

J. Zhao, Z. Lu, Y. Yin, C. McRae, J. A. Piper, J. M. Dawes, D. Jin, and E. M. Goldys, “Upconversion luminescence with tunable lifetime in NaYF4:Yb,Er nanocrystals: role of nanocrystal size,” Nanoscale 5, 944–952 (2013).
[Crossref]

Luo, Y.

J. Zhang, Z. Hao, X. Zhang, Y. Luo, X. Ren, X.-j. Wang, and J. Zhang, “Color tunable phosphorescence in KY3F10:Tb3+ for x-ray or cathode-ray tubes,” J. Appl. Phys. 106, 034915 (2009).
[Crossref]

Lüthi, S. R.

K. W. Krämer, D. Biner, G. Frei, H. U. Güdel, M. P. Hehlen, and S. R. Lüthi, “Hexagonal sodium yttrium fluoride based green and blue emitting upconversion phosphors,” Chem. Mater. 16, 1244–1251 (2004).
[Crossref]

M. Pollnau, D. R. Gamelin, S. R. Lüthi, H. U. Güdel, and M. P. Hehlen, “Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems,” Phys. Rev. B 61, 3337–3346 (2000).
[Crossref]

Maalej, R.

B. P. Singh, A. K. Parchur, R. S. Ningthoujam, P. V. Ramakrishna, S. Singh, P. Singh, S. B. Rai, and R. Maalej, “Enhanced up-conversion and temperature-sensing behaviour of Er3+ and Yb3+ co-doped Y2Ti2O7 by incorporation of Li+ ions,” Phys. Chem. Chem. Phys. 16, 22665–22676 (2014).
[Crossref] [PubMed]

McRae, C.

J. Zhao, Z. Lu, Y. Yin, C. McRae, J. A. Piper, J. M. Dawes, D. Jin, and E. M. Goldys, “Upconversion luminescence with tunable lifetime in NaYF4:Yb,Er nanocrystals: role of nanocrystal size,” Nanoscale 5, 944–952 (2013).
[Crossref]

Miyakawa, T.

T. Miyakawa and D. L. Dexter, “Phonon sidebands, multiphonon relaxation of excited states, and phonon-assisted energy transfer between ions in solids,” Phys. Rev. B 1, 2961–2969 (1970).
[Crossref]

Monro, T. M.

J. Zhao, D. Jin, E. P. Schartner, Y. Lu, Y. Liu, A. V. Zvyagin, L. Zhang, J. M. Dawes, P. Xi, J. A. Piper, E. M. Goldys, and T. M. Monro, “Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence,” Nat. Nanotechnol. 8, 729–734 (2013).
[Crossref] [PubMed]

Naccache, R.

F. Pandozzi, F. Vetrone, J.-C. Boyer, R. Naccache, J. A. Capobianco, A. Speghini, and M. Bettinelli, “A spectroscopic analysis of blue and ultraviolet upconverted emissions from Gd3Ga5O12:Tm3+, Yb3+ nanocrystals,” J. Phys. Chem. B 109, 17400–17405 (2005).
[Crossref]

Nakazawa, E.

E. Nakazawa and S. Shionoya, “Energy transfer between trivalent rare-earth ions in inorganic solids,” J. Chem. Phys. 47, 3211–3219 (1967).
[Crossref]

Ningthoujam, R. S.

B. P. Singh, A. K. Parchur, R. S. Ningthoujam, P. V. Ramakrishna, S. Singh, P. Singh, S. B. Rai, and R. Maalej, “Enhanced up-conversion and temperature-sensing behaviour of Er3+ and Yb3+ co-doped Y2Ti2O7 by incorporation of Li+ ions,” Phys. Chem. Chem. Phys. 16, 22665–22676 (2014).
[Crossref] [PubMed]

Ohishi, Y.

X. Xue, T. Cheng, T. Suzuki, and Y. Ohishi, “Upconversion emissions from high energy levels of Tb3+ under near-infrared laser excitation at 976 nm,” Opt. Mater. Express 5, 2768–2776 (2015).
[Crossref]

X. Xue, T. Suzuki, R. N. Tiwari, M. Yoshimura, and Y. Ohishi, “Quenching effect of surface adsorbed ligands on luminescence of α-NaYF4:Nd3+ nanocrystals,” Jpn. J. Appl. Phys. 53, 075001 (2014).
[Crossref]

X. Xue, S. Uechi, R. N. Tiwari, Z. Duan, M. Liao, M. Yoshimura, T. Suzuki, and Y. Ohishi, “Size-dependent upconversion luminescence and quenching mechanism of LiYF4: Er3+/Yb3+ nanocrystals with oleate ligand adsorbed,” Opt. Mater. Express 3, 989–999 (2013).
[Crossref]

X. Xue, M. Liao, R. N. Tiwari, M. Yoshimura, T. Suzuki, and Y. Ohishi, “Intense ultraviolet and blue upconverison emissions in Tb3+/Yb3+ codoped KY3F10 nanocrystals,” Appl. Phys. Express 5, 092601 (2012).
[Crossref]

T. Sakamoto, M. Shimizu, M. Yamada, T. Kanamori, Y. Ohishi, Y. Terunuma, and S. Sudo, “35-db gain Tm-doped ZBLYAN fiber amplifier operating at 1.65 µ m,” IEEE Photonics Technol. Lett. 8, 349–351 (1996).
[Crossref]

Pandozzi, F.

F. Pandozzi, F. Vetrone, J.-C. Boyer, R. Naccache, J. A. Capobianco, A. Speghini, and M. Bettinelli, “A spectroscopic analysis of blue and ultraviolet upconverted emissions from Gd3Ga5O12:Tm3+, Yb3+ nanocrystals,” J. Phys. Chem. B 109, 17400–17405 (2005).
[Crossref]

Parchur, A. K.

B. P. Singh, A. K. Parchur, R. S. Ningthoujam, P. V. Ramakrishna, S. Singh, P. Singh, S. B. Rai, and R. Maalej, “Enhanced up-conversion and temperature-sensing behaviour of Er3+ and Yb3+ co-doped Y2Ti2O7 by incorporation of Li+ ions,” Phys. Chem. Chem. Phys. 16, 22665–22676 (2014).
[Crossref] [PubMed]

Piper, J. A.

J. Zhao, D. Jin, E. P. Schartner, Y. Lu, Y. Liu, A. V. Zvyagin, L. Zhang, J. M. Dawes, P. Xi, J. A. Piper, E. M. Goldys, and T. M. Monro, “Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence,” Nat. Nanotechnol. 8, 729–734 (2013).
[Crossref] [PubMed]

J. Zhao, Z. Lu, Y. Yin, C. McRae, J. A. Piper, J. M. Dawes, D. Jin, and E. M. Goldys, “Upconversion luminescence with tunable lifetime in NaYF4:Yb,Er nanocrystals: role of nanocrystal size,” Nanoscale 5, 944–952 (2013).
[Crossref]

Pollnau, M.

M. Pollnau, D. R. Gamelin, S. R. Lüthi, H. U. Güdel, and M. P. Hehlen, “Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems,” Phys. Rev. B 61, 3337–3346 (2000).
[Crossref]

Qin, F.

H. Liang, G. Chen, L. Li, Y. Liu, F. Qin, and Z. Zhang, “Upconversion luminescence in Yb3+/Tb3+-codoped monodisperse NaYF4 nanocrystals,” Opt. Commun. 282, 3028–3031 (2009).
[Crossref]

Qin, G.

X. Zhai, S. Liu, Y. Zhang, G. Qin, and W. Qin, “Controlled synthesis of ultrasmall hexagonal NaTm0.02Lu0.98–xYbxF4 nanocrystals with enhanced upconversion luminescence,” J. Mater. Chem. C 2, 2037–2044 (2014).
[Crossref]

L. Wang, D. Zhang, D. Zhao, G. Qin, and W. Qin, “Sensitized upconversion emissions of Tb3+ by Tm3+ in YF3 and NaYF4 nanocrystals,” J. Nanosci. Nanotechnol. 11, 9580–9583 (2011).
[Crossref]

Qin, W.

D. Li, W. Qin, D. Zhao, T. Aidilibike, H. Chen, S. Liu, P. Zhang, and L. Wang, “Tunable green to red upconversion fluorescence of water-soluble hexagonal-phase core-shell CaF2@NaYF4 nanocrystals,” Opt. Mater. Express 6, 270–278 (2016).
[Crossref]

X. Zhai, S. Liu, Y. Zhang, G. Qin, and W. Qin, “Controlled synthesis of ultrasmall hexagonal NaTm0.02Lu0.98–xYbxF4 nanocrystals with enhanced upconversion luminescence,” J. Mater. Chem. C 2, 2037–2044 (2014).
[Crossref]

X. Xue, L. Wang, L. Huang, D. Zhao, and W. Qin, “Effect of alkali ions on the formation of rare earth fluoride by hydrothermal synthesis: structure tuning and size controlling,” Cryst. Eng. Commun. 15, 2897–2903 (2013).
[Crossref]

L. Wang, D. Zhang, D. Zhao, G. Qin, and W. Qin, “Sensitized upconversion emissions of Tb3+ by Tm3+ in YF3 and NaYF4 nanocrystals,” J. Nanosci. Nanotechnol. 11, 9580–9583 (2011).
[Crossref]

L. Wang, X. Xue, H. Chen, D. Zhao, and W. Qin, “Unusual radiative transitions of Eu3+ ions in Yb/Er/Eu tri-doped NaYF4 nanocrystals under infrared excitation,” Chem. Phys. Lett. 485, 183–186 (2010).
[Crossref]

L. Wang, X. Xue, F. Shi, D. Zhao, D. Zhang, K. Zheng, G. Wang, C. He, R. Kim, and W. Qin, “Ultraviolet and violet upconversion fluorescence of europium (III) doped in YF3 nanocrystals,” Opt. Lett. 34, 2781–2783 (2009).
[Crossref] [PubMed]

G. Wang, W. Qin, L. Wang, G. Wei, P. Zhu, and R. Kim, “Intense ultraviolet upconversion luminescence from hexagonal NaYF4:Yb3+/Tm3+ microcrystals,” Opt. Express 16, 11907–11914 (2008).
[Crossref] [PubMed]

Rai, S. B.

B. P. Singh, A. K. Parchur, R. S. Ningthoujam, P. V. Ramakrishna, S. Singh, P. Singh, S. B. Rai, and R. Maalej, “Enhanced up-conversion and temperature-sensing behaviour of Er3+ and Yb3+ co-doped Y2Ti2O7 by incorporation of Li+ ions,” Phys. Chem. Chem. Phys. 16, 22665–22676 (2014).
[Crossref] [PubMed]

Ramakrishna, P. V.

B. P. Singh, A. K. Parchur, R. S. Ningthoujam, P. V. Ramakrishna, S. Singh, P. Singh, S. B. Rai, and R. Maalej, “Enhanced up-conversion and temperature-sensing behaviour of Er3+ and Yb3+ co-doped Y2Ti2O7 by incorporation of Li+ ions,” Phys. Chem. Chem. Phys. 16, 22665–22676 (2014).
[Crossref] [PubMed]

Reinhard, C.

J. Suyver, A. Aebischer, D. Biner, P. Gerner, J. Grimm, S. Heer, K. Krämer, C. Reinhard, and H. Güdel, “Novel materials doped with trivalent lanthanides and transition metal ions showing near-infrared to visible photon upconversion,” Opt. Mater. 27, 1111–1130 (2005).
[Crossref]

Ren, X.

J. Zhang, Z. Hao, X. Zhang, Y. Luo, X. Ren, X.-j. Wang, and J. Zhang, “Color tunable phosphorescence in KY3F10:Tb3+ for x-ray or cathode-ray tubes,” J. Appl. Phys. 106, 034915 (2009).
[Crossref]

Rodríguez-Mendoza, U. R.

S. F. León-Luis, U. R. Rodríguez-Mendoza, E. Lalla, and V. Lavín, “Temperature sensor based on the Er3+ green upconverted emission in a fluorotellurite glass,” Sens. Actuators B 158, 208–213 (2011).
[Crossref]

Sakamoto, T.

T. Sakamoto, M. Shimizu, M. Yamada, T. Kanamori, Y. Ohishi, Y. Terunuma, and S. Sudo, “35-db gain Tm-doped ZBLYAN fiber amplifier operating at 1.65 µ m,” IEEE Photonics Technol. Lett. 8, 349–351 (1996).
[Crossref]

Sangeetha, N. M.

N. M. Sangeetha and F. C. J. M. van Veggel, “Lanthanum silicate and lanthanum zirconate nanoparticles co-doped with Ho3+ and Yb3+: Matrix-dependent red and green upconversion emissions,” J. Phys. Chem. C 113, 14702–14707 (2009).
[Crossref]

Schartner, E. P.

J. Zhao, D. Jin, E. P. Schartner, Y. Lu, Y. Liu, A. V. Zvyagin, L. Zhang, J. M. Dawes, P. Xi, J. A. Piper, E. M. Goldys, and T. M. Monro, “Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence,” Nat. Nanotechnol. 8, 729–734 (2013).
[Crossref] [PubMed]

Shi, F.

Shimizu, M.

T. Sakamoto, M. Shimizu, M. Yamada, T. Kanamori, Y. Ohishi, Y. Terunuma, and S. Sudo, “35-db gain Tm-doped ZBLYAN fiber amplifier operating at 1.65 µ m,” IEEE Photonics Technol. Lett. 8, 349–351 (1996).
[Crossref]

Shionoya, S.

E. Nakazawa and S. Shionoya, “Energy transfer between trivalent rare-earth ions in inorganic solids,” J. Chem. Phys. 47, 3211–3219 (1967).
[Crossref]

Sillen, A.

A. Sillen and Y. Engelborghs, “The correct use of “average” fluorescence parameters,” Photochem. Photobiol. 67, 475–486 (1998).

Singh, B. P.

B. P. Singh, A. K. Parchur, R. S. Ningthoujam, P. V. Ramakrishna, S. Singh, P. Singh, S. B. Rai, and R. Maalej, “Enhanced up-conversion and temperature-sensing behaviour of Er3+ and Yb3+ co-doped Y2Ti2O7 by incorporation of Li+ ions,” Phys. Chem. Chem. Phys. 16, 22665–22676 (2014).
[Crossref] [PubMed]

Singh, P.

B. P. Singh, A. K. Parchur, R. S. Ningthoujam, P. V. Ramakrishna, S. Singh, P. Singh, S. B. Rai, and R. Maalej, “Enhanced up-conversion and temperature-sensing behaviour of Er3+ and Yb3+ co-doped Y2Ti2O7 by incorporation of Li+ ions,” Phys. Chem. Chem. Phys. 16, 22665–22676 (2014).
[Crossref] [PubMed]

Singh, S.

B. P. Singh, A. K. Parchur, R. S. Ningthoujam, P. V. Ramakrishna, S. Singh, P. Singh, S. B. Rai, and R. Maalej, “Enhanced up-conversion and temperature-sensing behaviour of Er3+ and Yb3+ co-doped Y2Ti2O7 by incorporation of Li+ ions,” Phys. Chem. Chem. Phys. 16, 22665–22676 (2014).
[Crossref] [PubMed]

Song, Z.

Speghini, A.

F. Pandozzi, F. Vetrone, J.-C. Boyer, R. Naccache, J. A. Capobianco, A. Speghini, and M. Bettinelli, “A spectroscopic analysis of blue and ultraviolet upconverted emissions from Gd3Ga5O12:Tm3+, Yb3+ nanocrystals,” J. Phys. Chem. B 109, 17400–17405 (2005).
[Crossref]

Sudo, S.

T. Sakamoto, M. Shimizu, M. Yamada, T. Kanamori, Y. Ohishi, Y. Terunuma, and S. Sudo, “35-db gain Tm-doped ZBLYAN fiber amplifier operating at 1.65 µ m,” IEEE Photonics Technol. Lett. 8, 349–351 (1996).
[Crossref]

Sun, J.

H. Zheng, B. Chen, H. Yu, X. Li, J. Zhang, J. Sun, L. Tong, Z. Wu, H. Zhong, and R. Hua, “Rod-shaped NaY(MoO4)2:Sm3+/Yb3+ nanoheaters for photothermal conversion: Influence of doping concentration and excitation power density,” Sens. Actuators B 234, 286–293 (2016).
[Crossref]

H. Zheng, B. Chen, H. Yu, J. Zhang, J. Sun, X. Li, M. Sun, B. Tian, S. Fu, and H. Zhong, “Microwave-assisted hydrothermal synthesis and temperature sensing application of Er3+/Yb3+ doped NaY(WO4)2 microstructures,” J. Colloid Interface Sci. 420, 27–34 (2014).
[Crossref] [PubMed]

Sun, M.

H. Zheng, B. Chen, H. Yu, J. Zhang, J. Sun, X. Li, M. Sun, B. Tian, S. Fu, and H. Zhong, “Microwave-assisted hydrothermal synthesis and temperature sensing application of Er3+/Yb3+ doped NaY(WO4)2 microstructures,” J. Colloid Interface Sci. 420, 27–34 (2014).
[Crossref] [PubMed]

Suyver, J.

J. Suyver, J. Grimm, M. van Veen, D. Biner, K. Krämer, and H. Güdel, “Upconversion spectroscopy and properties of NaYF4 doped with Er3+, Tm3+ and/or Yb3+,” J. Lumin. 117, 1–12 (2006).
[Crossref]

J. Suyver, J. Grimm, K. Krämer, and H. Güdel, “Highly efficient near-infrared to visible up-conversion process in NaYF4:Er3+,Yb3+,” J. Lumin. 114, 53–59 (2005).
[Crossref]

J. Suyver, A. Aebischer, D. Biner, P. Gerner, J. Grimm, S. Heer, K. Krämer, C. Reinhard, and H. Güdel, “Novel materials doped with trivalent lanthanides and transition metal ions showing near-infrared to visible photon upconversion,” Opt. Mater. 27, 1111–1130 (2005).
[Crossref]

Suzuki, T.

X. Xue, T. Cheng, T. Suzuki, and Y. Ohishi, “Upconversion emissions from high energy levels of Tb3+ under near-infrared laser excitation at 976 nm,” Opt. Mater. Express 5, 2768–2776 (2015).
[Crossref]

X. Xue, T. Suzuki, R. N. Tiwari, M. Yoshimura, and Y. Ohishi, “Quenching effect of surface adsorbed ligands on luminescence of α-NaYF4:Nd3+ nanocrystals,” Jpn. J. Appl. Phys. 53, 075001 (2014).
[Crossref]

X. Xue, S. Uechi, R. N. Tiwari, Z. Duan, M. Liao, M. Yoshimura, T. Suzuki, and Y. Ohishi, “Size-dependent upconversion luminescence and quenching mechanism of LiYF4: Er3+/Yb3+ nanocrystals with oleate ligand adsorbed,” Opt. Mater. Express 3, 989–999 (2013).
[Crossref]

X. Xue, M. Liao, R. N. Tiwari, M. Yoshimura, T. Suzuki, and Y. Ohishi, “Intense ultraviolet and blue upconverison emissions in Tb3+/Yb3+ codoped KY3F10 nanocrystals,” Appl. Phys. Express 5, 092601 (2012).
[Crossref]

Tao, L.

B. Zhou, L. Tao, W. Jin, and Y. H. Tsang, “Intense near-uv upconversion luminescence in Tm3+/Yb3+ co-doped low-phonon-energy lithium gallogermanate oxide glass,” IEEE Photonics Technol. Lett. 24, 1726–1729 (2012).
[Crossref]

Terunuma, Y.

T. Sakamoto, M. Shimizu, M. Yamada, T. Kanamori, Y. Ohishi, Y. Terunuma, and S. Sudo, “35-db gain Tm-doped ZBLYAN fiber amplifier operating at 1.65 µ m,” IEEE Photonics Technol. Lett. 8, 349–351 (1996).
[Crossref]

Tian, B.

H. Zheng, B. Chen, H. Yu, J. Zhang, J. Sun, X. Li, M. Sun, B. Tian, S. Fu, and H. Zhong, “Microwave-assisted hydrothermal synthesis and temperature sensing application of Er3+/Yb3+ doped NaY(WO4)2 microstructures,” J. Colloid Interface Sci. 420, 27–34 (2014).
[Crossref] [PubMed]

Tiwari, R. N.

X. Xue, T. Suzuki, R. N. Tiwari, M. Yoshimura, and Y. Ohishi, “Quenching effect of surface adsorbed ligands on luminescence of α-NaYF4:Nd3+ nanocrystals,” Jpn. J. Appl. Phys. 53, 075001 (2014).
[Crossref]

X. Xue, S. Uechi, R. N. Tiwari, Z. Duan, M. Liao, M. Yoshimura, T. Suzuki, and Y. Ohishi, “Size-dependent upconversion luminescence and quenching mechanism of LiYF4: Er3+/Yb3+ nanocrystals with oleate ligand adsorbed,” Opt. Mater. Express 3, 989–999 (2013).
[Crossref]

X. Xue, M. Liao, R. N. Tiwari, M. Yoshimura, T. Suzuki, and Y. Ohishi, “Intense ultraviolet and blue upconverison emissions in Tb3+/Yb3+ codoped KY3F10 nanocrystals,” Appl. Phys. Express 5, 092601 (2012).
[Crossref]

Tong, L.

H. Zheng, B. Chen, H. Yu, X. Li, J. Zhang, J. Sun, L. Tong, Z. Wu, H. Zhong, and R. Hua, “Rod-shaped NaY(MoO4)2:Sm3+/Yb3+ nanoheaters for photothermal conversion: Influence of doping concentration and excitation power density,” Sens. Actuators B 234, 286–293 (2016).
[Crossref]

Toratani, H.

H. Toratani, T. Izumitani, and H. Kuroda, “Compositional dependence of nonradiative decay rate in nd laser glasses,” J. Non-Cryst. Solids 52, 303–313 (1982).
[Crossref]

Tsang, Y. H.

B. Zhou, L. Tao, W. Jin, and Y. H. Tsang, “Intense near-uv upconversion luminescence in Tm3+/Yb3+ co-doped low-phonon-energy lithium gallogermanate oxide glass,” IEEE Photonics Technol. Lett. 24, 1726–1729 (2012).
[Crossref]

Uechi, S.

Ueda, T.

van Veen, M.

J. Suyver, J. Grimm, M. van Veen, D. Biner, K. Krämer, and H. Güdel, “Upconversion spectroscopy and properties of NaYF4 doped with Er3+, Tm3+ and/or Yb3+,” J. Lumin. 117, 1–12 (2006).
[Crossref]

van Veggel, F. C. J. M.

N. M. Sangeetha and F. C. J. M. van Veggel, “Lanthanum silicate and lanthanum zirconate nanoparticles co-doped with Ho3+ and Yb3+: Matrix-dependent red and green upconversion emissions,” J. Phys. Chem. C 113, 14702–14707 (2009).
[Crossref]

Vetrone, F.

F. Pandozzi, F. Vetrone, J.-C. Boyer, R. Naccache, J. A. Capobianco, A. Speghini, and M. Bettinelli, “A spectroscopic analysis of blue and ultraviolet upconverted emissions from Gd3Ga5O12:Tm3+, Yb3+ nanocrystals,” J. Phys. Chem. B 109, 17400–17405 (2005).
[Crossref]

Wang, F.

F. Wang, R. Deng, J. Wang, Q. Wang, Y. Han, H. Zhu, X. Chen, and X. Liu, “Tuning upconversion through energy migration in core–shell nanoparticles,” Nat. Mater. 10, 968–973 (2011).
[Crossref] [PubMed]

Wang, G.

Wang, J.

F. Wang, R. Deng, J. Wang, Q. Wang, Y. Han, H. Zhu, X. Chen, and X. Liu, “Tuning upconversion through energy migration in core–shell nanoparticles,” Nat. Mater. 10, 968–973 (2011).
[Crossref] [PubMed]

Wang, L.

D. Li, W. Qin, D. Zhao, T. Aidilibike, H. Chen, S. Liu, P. Zhang, and L. Wang, “Tunable green to red upconversion fluorescence of water-soluble hexagonal-phase core-shell CaF2@NaYF4 nanocrystals,” Opt. Mater. Express 6, 270–278 (2016).
[Crossref]

X. Xue, L. Wang, L. Huang, D. Zhao, and W. Qin, “Effect of alkali ions on the formation of rare earth fluoride by hydrothermal synthesis: structure tuning and size controlling,” Cryst. Eng. Commun. 15, 2897–2903 (2013).
[Crossref]

L. Wang, D. Zhang, D. Zhao, G. Qin, and W. Qin, “Sensitized upconversion emissions of Tb3+ by Tm3+ in YF3 and NaYF4 nanocrystals,” J. Nanosci. Nanotechnol. 11, 9580–9583 (2011).
[Crossref]

L. Wang, X. Xue, H. Chen, D. Zhao, and W. Qin, “Unusual radiative transitions of Eu3+ ions in Yb/Er/Eu tri-doped NaYF4 nanocrystals under infrared excitation,” Chem. Phys. Lett. 485, 183–186 (2010).
[Crossref]

L. Wang, X. Xue, F. Shi, D. Zhao, D. Zhang, K. Zheng, G. Wang, C. He, R. Kim, and W. Qin, “Ultraviolet and violet upconversion fluorescence of europium (III) doped in YF3 nanocrystals,” Opt. Lett. 34, 2781–2783 (2009).
[Crossref] [PubMed]

G. Wang, W. Qin, L. Wang, G. Wei, P. Zhu, and R. Kim, “Intense ultraviolet upconversion luminescence from hexagonal NaYF4:Yb3+/Tm3+ microcrystals,” Opt. Express 16, 11907–11914 (2008).
[Crossref] [PubMed]

Wang, Q.

F. Wang, R. Deng, J. Wang, Q. Wang, Y. Han, H. Zhu, X. Chen, and X. Liu, “Tuning upconversion through energy migration in core–shell nanoparticles,” Nat. Mater. 10, 968–973 (2011).
[Crossref] [PubMed]

Wang, R.

W. Gao, R. Wang, Q. Han, J. Dong, L. Yan, and H. Zheng, “Tuning red upconversion emission in single LiYF4:Yb3+/Ho3+ microparticle,” J. Phys. Chem. C 119, 2349–2355 (2015).

Wang, X.-j.

J. Zhang, Z. Hao, X. Zhang, Y. Luo, X. Ren, X.-j. Wang, and J. Zhang, “Color tunable phosphorescence in KY3F10:Tb3+ for x-ray or cathode-ray tubes,” J. Appl. Phys. 106, 034915 (2009).
[Crossref]

Wang, Y.

D. Chen, Y. Wang, Y. Yu, and P. Huang, “Intense ultraviolet upconversion luminescence from Tm3+/Yb3+:β-YF3 nanocrystals embedded glass ceramic,” Appl. Phys. Lett. 91, 051920 (2007).
[Crossref]

Wei, G.

Wei, X.

S. Zhou, K. Deng, X. Wei, G. Jiang, C. Duan, Y. Chen, and M. Yin, “Upconversion luminescence of NaYF4: Yb3+, Er3+ for temperature sensing,” Opt. Commun. 291, 138–142 (2013).
[Crossref]

Wolfbeis, O. S.

H. H. Gorris and O. S. Wolfbeis, “Photon-upconverting nanoparticles for optical encoding and multiplexing of cells, biomolecules, and microspheres,” Angew. Chem., Int. Ed. 52, 3584–3600 (2013).
[Crossref]

Wu, Z.

H. Zheng, B. Chen, H. Yu, X. Li, J. Zhang, J. Sun, L. Tong, Z. Wu, H. Zhong, and R. Hua, “Rod-shaped NaY(MoO4)2:Sm3+/Yb3+ nanoheaters for photothermal conversion: Influence of doping concentration and excitation power density,” Sens. Actuators B 234, 286–293 (2016).
[Crossref]

Xi, P.

J. Zhao, D. Jin, E. P. Schartner, Y. Lu, Y. Liu, A. V. Zvyagin, L. Zhang, J. M. Dawes, P. Xi, J. A. Piper, E. M. Goldys, and T. M. Monro, “Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence,” Nat. Nanotechnol. 8, 729–734 (2013).
[Crossref] [PubMed]

Xue, X.

X. Xue, T. Cheng, T. Suzuki, and Y. Ohishi, “Upconversion emissions from high energy levels of Tb3+ under near-infrared laser excitation at 976 nm,” Opt. Mater. Express 5, 2768–2776 (2015).
[Crossref]

X. Xue, T. Suzuki, R. N. Tiwari, M. Yoshimura, and Y. Ohishi, “Quenching effect of surface adsorbed ligands on luminescence of α-NaYF4:Nd3+ nanocrystals,” Jpn. J. Appl. Phys. 53, 075001 (2014).
[Crossref]

X. Xue, S. Uechi, R. N. Tiwari, Z. Duan, M. Liao, M. Yoshimura, T. Suzuki, and Y. Ohishi, “Size-dependent upconversion luminescence and quenching mechanism of LiYF4: Er3+/Yb3+ nanocrystals with oleate ligand adsorbed,” Opt. Mater. Express 3, 989–999 (2013).
[Crossref]

X. Xue, L. Wang, L. Huang, D. Zhao, and W. Qin, “Effect of alkali ions on the formation of rare earth fluoride by hydrothermal synthesis: structure tuning and size controlling,” Cryst. Eng. Commun. 15, 2897–2903 (2013).
[Crossref]

X. Xue, M. Liao, R. N. Tiwari, M. Yoshimura, T. Suzuki, and Y. Ohishi, “Intense ultraviolet and blue upconverison emissions in Tb3+/Yb3+ codoped KY3F10 nanocrystals,” Appl. Phys. Express 5, 092601 (2012).
[Crossref]

L. Wang, X. Xue, H. Chen, D. Zhao, and W. Qin, “Unusual radiative transitions of Eu3+ ions in Yb/Er/Eu tri-doped NaYF4 nanocrystals under infrared excitation,” Chem. Phys. Lett. 485, 183–186 (2010).
[Crossref]

L. Wang, X. Xue, F. Shi, D. Zhao, D. Zhang, K. Zheng, G. Wang, C. He, R. Kim, and W. Qin, “Ultraviolet and violet upconversion fluorescence of europium (III) doped in YF3 nanocrystals,” Opt. Lett. 34, 2781–2783 (2009).
[Crossref] [PubMed]

Yamada, M.

T. Sakamoto, M. Shimizu, M. Yamada, T. Kanamori, Y. Ohishi, Y. Terunuma, and S. Sudo, “35-db gain Tm-doped ZBLYAN fiber amplifier operating at 1.65 µ m,” IEEE Photonics Technol. Lett. 8, 349–351 (1996).
[Crossref]

Yan, L.

W. Gao, R. Wang, Q. Han, J. Dong, L. Yan, and H. Zheng, “Tuning red upconversion emission in single LiYF4:Yb3+/Ho3+ microparticle,” J. Phys. Chem. C 119, 2349–2355 (2015).

Yin, M.

S. Zhou, K. Deng, X. Wei, G. Jiang, C. Duan, Y. Chen, and M. Yin, “Upconversion luminescence of NaYF4: Yb3+, Er3+ for temperature sensing,” Opt. Commun. 291, 138–142 (2013).
[Crossref]

Yin, Y.

J. Zhao, Z. Lu, Y. Yin, C. McRae, J. A. Piper, J. M. Dawes, D. Jin, and E. M. Goldys, “Upconversion luminescence with tunable lifetime in NaYF4:Yb,Er nanocrystals: role of nanocrystal size,” Nanoscale 5, 944–952 (2013).
[Crossref]

Yokomori, T.

Yoshimura, M.

X. Xue, T. Suzuki, R. N. Tiwari, M. Yoshimura, and Y. Ohishi, “Quenching effect of surface adsorbed ligands on luminescence of α-NaYF4:Nd3+ nanocrystals,” Jpn. J. Appl. Phys. 53, 075001 (2014).
[Crossref]

X. Xue, S. Uechi, R. N. Tiwari, Z. Duan, M. Liao, M. Yoshimura, T. Suzuki, and Y. Ohishi, “Size-dependent upconversion luminescence and quenching mechanism of LiYF4: Er3+/Yb3+ nanocrystals with oleate ligand adsorbed,” Opt. Mater. Express 3, 989–999 (2013).
[Crossref]

X. Xue, M. Liao, R. N. Tiwari, M. Yoshimura, T. Suzuki, and Y. Ohishi, “Intense ultraviolet and blue upconverison emissions in Tb3+/Yb3+ codoped KY3F10 nanocrystals,” Appl. Phys. Express 5, 092601 (2012).
[Crossref]

Yu, H.

H. Zheng, B. Chen, H. Yu, X. Li, J. Zhang, J. Sun, L. Tong, Z. Wu, H. Zhong, and R. Hua, “Rod-shaped NaY(MoO4)2:Sm3+/Yb3+ nanoheaters for photothermal conversion: Influence of doping concentration and excitation power density,” Sens. Actuators B 234, 286–293 (2016).
[Crossref]

H. Zheng, B. Chen, H. Yu, J. Zhang, J. Sun, X. Li, M. Sun, B. Tian, S. Fu, and H. Zhong, “Microwave-assisted hydrothermal synthesis and temperature sensing application of Er3+/Yb3+ doped NaY(WO4)2 microstructures,” J. Colloid Interface Sci. 420, 27–34 (2014).
[Crossref] [PubMed]

Yu, Y.

D. Chen, Y. Wang, Y. Yu, and P. Huang, “Intense ultraviolet upconversion luminescence from Tm3+/Yb3+:β-YF3 nanocrystals embedded glass ceramic,” Appl. Phys. Lett. 91, 051920 (2007).
[Crossref]

Zhai, X.

X. Zhai, S. Liu, Y. Zhang, G. Qin, and W. Qin, “Controlled synthesis of ultrasmall hexagonal NaTm0.02Lu0.98–xYbxF4 nanocrystals with enhanced upconversion luminescence,” J. Mater. Chem. C 2, 2037–2044 (2014).
[Crossref]

Zhang, D.

L. Wang, D. Zhang, D. Zhao, G. Qin, and W. Qin, “Sensitized upconversion emissions of Tb3+ by Tm3+ in YF3 and NaYF4 nanocrystals,” J. Nanosci. Nanotechnol. 11, 9580–9583 (2011).
[Crossref]

L. Wang, X. Xue, F. Shi, D. Zhao, D. Zhang, K. Zheng, G. Wang, C. He, R. Kim, and W. Qin, “Ultraviolet and violet upconversion fluorescence of europium (III) doped in YF3 nanocrystals,” Opt. Lett. 34, 2781–2783 (2009).
[Crossref] [PubMed]

Zhang, J.

H. Zheng, B. Chen, H. Yu, X. Li, J. Zhang, J. Sun, L. Tong, Z. Wu, H. Zhong, and R. Hua, “Rod-shaped NaY(MoO4)2:Sm3+/Yb3+ nanoheaters for photothermal conversion: Influence of doping concentration and excitation power density,” Sens. Actuators B 234, 286–293 (2016).
[Crossref]

H. Zheng, B. Chen, H. Yu, J. Zhang, J. Sun, X. Li, M. Sun, B. Tian, S. Fu, and H. Zhong, “Microwave-assisted hydrothermal synthesis and temperature sensing application of Er3+/Yb3+ doped NaY(WO4)2 microstructures,” J. Colloid Interface Sci. 420, 27–34 (2014).
[Crossref] [PubMed]

J. Zhang, Z. Hao, X. Zhang, Y. Luo, X. Ren, X.-j. Wang, and J. Zhang, “Color tunable phosphorescence in KY3F10:Tb3+ for x-ray or cathode-ray tubes,” J. Appl. Phys. 106, 034915 (2009).
[Crossref]

J. Zhang, Z. Hao, X. Zhang, Y. Luo, X. Ren, X.-j. Wang, and J. Zhang, “Color tunable phosphorescence in KY3F10:Tb3+ for x-ray or cathode-ray tubes,” J. Appl. Phys. 106, 034915 (2009).
[Crossref]

Zhang, L.

J. Zhao, D. Jin, E. P. Schartner, Y. Lu, Y. Liu, A. V. Zvyagin, L. Zhang, J. M. Dawes, P. Xi, J. A. Piper, E. M. Goldys, and T. M. Monro, “Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence,” Nat. Nanotechnol. 8, 729–734 (2013).
[Crossref] [PubMed]

Zhang, P.

Zhang, X.

D. Gao, X. Zhang, and W. Gao, “Tuning upconversion emission by controlling particle shape in NaYF4:Yb3+/Er3+ nanocrystals,” J. Appl. Phys. 111, 033505 (2012).
[Crossref]

J. Zhang, Z. Hao, X. Zhang, Y. Luo, X. Ren, X.-j. Wang, and J. Zhang, “Color tunable phosphorescence in KY3F10:Tb3+ for x-ray or cathode-ray tubes,” J. Appl. Phys. 106, 034915 (2009).
[Crossref]

Zhang, Y.

X. Zhai, S. Liu, Y. Zhang, G. Qin, and W. Qin, “Controlled synthesis of ultrasmall hexagonal NaTm0.02Lu0.98–xYbxF4 nanocrystals with enhanced upconversion luminescence,” J. Mater. Chem. C 2, 2037–2044 (2014).
[Crossref]

Zhang, Z.

H. Liang, G. Chen, L. Li, Y. Liu, F. Qin, and Z. Zhang, “Upconversion luminescence in Yb3+/Tb3+-codoped monodisperse NaYF4 nanocrystals,” Opt. Commun. 282, 3028–3031 (2009).
[Crossref]

Zhao, D.

D. Li, W. Qin, D. Zhao, T. Aidilibike, H. Chen, S. Liu, P. Zhang, and L. Wang, “Tunable green to red upconversion fluorescence of water-soluble hexagonal-phase core-shell CaF2@NaYF4 nanocrystals,” Opt. Mater. Express 6, 270–278 (2016).
[Crossref]

X. Xue, L. Wang, L. Huang, D. Zhao, and W. Qin, “Effect of alkali ions on the formation of rare earth fluoride by hydrothermal synthesis: structure tuning and size controlling,” Cryst. Eng. Commun. 15, 2897–2903 (2013).
[Crossref]

L. Wang, D. Zhang, D. Zhao, G. Qin, and W. Qin, “Sensitized upconversion emissions of Tb3+ by Tm3+ in YF3 and NaYF4 nanocrystals,” J. Nanosci. Nanotechnol. 11, 9580–9583 (2011).
[Crossref]

L. Wang, X. Xue, H. Chen, D. Zhao, and W. Qin, “Unusual radiative transitions of Eu3+ ions in Yb/Er/Eu tri-doped NaYF4 nanocrystals under infrared excitation,” Chem. Phys. Lett. 485, 183–186 (2010).
[Crossref]

L. Wang, X. Xue, F. Shi, D. Zhao, D. Zhang, K. Zheng, G. Wang, C. He, R. Kim, and W. Qin, “Ultraviolet and violet upconversion fluorescence of europium (III) doped in YF3 nanocrystals,” Opt. Lett. 34, 2781–2783 (2009).
[Crossref] [PubMed]

Zhao, J.

J. Zhao, Z. Lu, Y. Yin, C. McRae, J. A. Piper, J. M. Dawes, D. Jin, and E. M. Goldys, “Upconversion luminescence with tunable lifetime in NaYF4:Yb,Er nanocrystals: role of nanocrystal size,” Nanoscale 5, 944–952 (2013).
[Crossref]

J. Zhao, D. Jin, E. P. Schartner, Y. Lu, Y. Liu, A. V. Zvyagin, L. Zhang, J. M. Dawes, P. Xi, J. A. Piper, E. M. Goldys, and T. M. Monro, “Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence,” Nat. Nanotechnol. 8, 729–734 (2013).
[Crossref] [PubMed]

Zheng, H.

H. Zheng, B. Chen, H. Yu, X. Li, J. Zhang, J. Sun, L. Tong, Z. Wu, H. Zhong, and R. Hua, “Rod-shaped NaY(MoO4)2:Sm3+/Yb3+ nanoheaters for photothermal conversion: Influence of doping concentration and excitation power density,” Sens. Actuators B 234, 286–293 (2016).
[Crossref]

W. Gao, R. Wang, Q. Han, J. Dong, L. Yan, and H. Zheng, “Tuning red upconversion emission in single LiYF4:Yb3+/Ho3+ microparticle,” J. Phys. Chem. C 119, 2349–2355 (2015).

H. Zheng, B. Chen, H. Yu, J. Zhang, J. Sun, X. Li, M. Sun, B. Tian, S. Fu, and H. Zhong, “Microwave-assisted hydrothermal synthesis and temperature sensing application of Er3+/Yb3+ doped NaY(WO4)2 microstructures,” J. Colloid Interface Sci. 420, 27–34 (2014).
[Crossref] [PubMed]

Zheng, K.

Zhong, H.

H. Zheng, B. Chen, H. Yu, X. Li, J. Zhang, J. Sun, L. Tong, Z. Wu, H. Zhong, and R. Hua, “Rod-shaped NaY(MoO4)2:Sm3+/Yb3+ nanoheaters for photothermal conversion: Influence of doping concentration and excitation power density,” Sens. Actuators B 234, 286–293 (2016).
[Crossref]

H. Zheng, B. Chen, H. Yu, J. Zhang, J. Sun, X. Li, M. Sun, B. Tian, S. Fu, and H. Zhong, “Microwave-assisted hydrothermal synthesis and temperature sensing application of Er3+/Yb3+ doped NaY(WO4)2 microstructures,” J. Colloid Interface Sci. 420, 27–34 (2014).
[Crossref] [PubMed]

Zhou, B.

B. Zhou, L. Tao, W. Jin, and Y. H. Tsang, “Intense near-uv upconversion luminescence in Tm3+/Yb3+ co-doped low-phonon-energy lithium gallogermanate oxide glass,” IEEE Photonics Technol. Lett. 24, 1726–1729 (2012).
[Crossref]

Zhou, S.

S. Zhou, K. Deng, X. Wei, G. Jiang, C. Duan, Y. Chen, and M. Yin, “Upconversion luminescence of NaYF4: Yb3+, Er3+ for temperature sensing,” Opt. Commun. 291, 138–142 (2013).
[Crossref]

Zhu, H.

F. Wang, R. Deng, J. Wang, Q. Wang, Y. Han, H. Zhu, X. Chen, and X. Liu, “Tuning upconversion through energy migration in core–shell nanoparticles,” Nat. Mater. 10, 968–973 (2011).
[Crossref] [PubMed]

Zhu, P.

Zvyagin, A. V.

J. Zhao, D. Jin, E. P. Schartner, Y. Lu, Y. Liu, A. V. Zvyagin, L. Zhang, J. M. Dawes, P. Xi, J. A. Piper, E. M. Goldys, and T. M. Monro, “Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence,” Nat. Nanotechnol. 8, 729–734 (2013).
[Crossref] [PubMed]

Angew. Chem., Int. Ed. (1)

H. H. Gorris and O. S. Wolfbeis, “Photon-upconverting nanoparticles for optical encoding and multiplexing of cells, biomolecules, and microspheres,” Angew. Chem., Int. Ed. 52, 3584–3600 (2013).
[Crossref]

Appl. Phys. Express (1)

X. Xue, M. Liao, R. N. Tiwari, M. Yoshimura, T. Suzuki, and Y. Ohishi, “Intense ultraviolet and blue upconverison emissions in Tb3+/Yb3+ codoped KY3F10 nanocrystals,” Appl. Phys. Express 5, 092601 (2012).
[Crossref]

Appl. Phys. Lett. (1)

D. Chen, Y. Wang, Y. Yu, and P. Huang, “Intense ultraviolet upconversion luminescence from Tm3+/Yb3+:β-YF3 nanocrystals embedded glass ceramic,” Appl. Phys. Lett. 91, 051920 (2007).
[Crossref]

Chem. Mater. (1)

K. W. Krämer, D. Biner, G. Frei, H. U. Güdel, M. P. Hehlen, and S. R. Lüthi, “Hexagonal sodium yttrium fluoride based green and blue emitting upconversion phosphors,” Chem. Mater. 16, 1244–1251 (2004).
[Crossref]

Chem. Phys. Lett. (1)

L. Wang, X. Xue, H. Chen, D. Zhao, and W. Qin, “Unusual radiative transitions of Eu3+ ions in Yb/Er/Eu tri-doped NaYF4 nanocrystals under infrared excitation,” Chem. Phys. Lett. 485, 183–186 (2010).
[Crossref]

Chem. Rev. (1)

F. Auzel, “Upconversion and anti-stokes processes with f and d ions in solids,” Chem. Rev. 104, 139–174 (2004).
[Crossref] [PubMed]

Cryst. Eng. Commun. (1)

X. Xue, L. Wang, L. Huang, D. Zhao, and W. Qin, “Effect of alkali ions on the formation of rare earth fluoride by hydrothermal synthesis: structure tuning and size controlling,” Cryst. Eng. Commun. 15, 2897–2903 (2013).
[Crossref]

IEEE Photonics Technol. Lett. (2)

T. Sakamoto, M. Shimizu, M. Yamada, T. Kanamori, Y. Ohishi, Y. Terunuma, and S. Sudo, “35-db gain Tm-doped ZBLYAN fiber amplifier operating at 1.65 µ m,” IEEE Photonics Technol. Lett. 8, 349–351 (1996).
[Crossref]

B. Zhou, L. Tao, W. Jin, and Y. H. Tsang, “Intense near-uv upconversion luminescence in Tm3+/Yb3+ co-doped low-phonon-energy lithium gallogermanate oxide glass,” IEEE Photonics Technol. Lett. 24, 1726–1729 (2012).
[Crossref]

J. Appl. Phys. (2)

J. Zhang, Z. Hao, X. Zhang, Y. Luo, X. Ren, X.-j. Wang, and J. Zhang, “Color tunable phosphorescence in KY3F10:Tb3+ for x-ray or cathode-ray tubes,” J. Appl. Phys. 106, 034915 (2009).
[Crossref]

D. Gao, X. Zhang, and W. Gao, “Tuning upconversion emission by controlling particle shape in NaYF4:Yb3+/Er3+ nanocrystals,” J. Appl. Phys. 111, 033505 (2012).
[Crossref]

J. Chem. Phys. (1)

E. Nakazawa and S. Shionoya, “Energy transfer between trivalent rare-earth ions in inorganic solids,” J. Chem. Phys. 47, 3211–3219 (1967).
[Crossref]

J. Colloid Interface Sci. (1)

H. Zheng, B. Chen, H. Yu, J. Zhang, J. Sun, X. Li, M. Sun, B. Tian, S. Fu, and H. Zhong, “Microwave-assisted hydrothermal synthesis and temperature sensing application of Er3+/Yb3+ doped NaY(WO4)2 microstructures,” J. Colloid Interface Sci. 420, 27–34 (2014).
[Crossref] [PubMed]

J. Lumin. (2)

J. Suyver, J. Grimm, K. Krämer, and H. Güdel, “Highly efficient near-infrared to visible up-conversion process in NaYF4:Er3+,Yb3+,” J. Lumin. 114, 53–59 (2005).
[Crossref]

J. Suyver, J. Grimm, M. van Veen, D. Biner, K. Krämer, and H. Güdel, “Upconversion spectroscopy and properties of NaYF4 doped with Er3+, Tm3+ and/or Yb3+,” J. Lumin. 117, 1–12 (2006).
[Crossref]

J. Mater. Chem. C (1)

X. Zhai, S. Liu, Y. Zhang, G. Qin, and W. Qin, “Controlled synthesis of ultrasmall hexagonal NaTm0.02Lu0.98–xYbxF4 nanocrystals with enhanced upconversion luminescence,” J. Mater. Chem. C 2, 2037–2044 (2014).
[Crossref]

J. Nanosci. Nanotechnol. (1)

L. Wang, D. Zhang, D. Zhao, G. Qin, and W. Qin, “Sensitized upconversion emissions of Tb3+ by Tm3+ in YF3 and NaYF4 nanocrystals,” J. Nanosci. Nanotechnol. 11, 9580–9583 (2011).
[Crossref]

J. Non-Cryst. Solids (1)

H. Toratani, T. Izumitani, and H. Kuroda, “Compositional dependence of nonradiative decay rate in nd laser glasses,” J. Non-Cryst. Solids 52, 303–313 (1982).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. B (1)

F. Pandozzi, F. Vetrone, J.-C. Boyer, R. Naccache, J. A. Capobianco, A. Speghini, and M. Bettinelli, “A spectroscopic analysis of blue and ultraviolet upconverted emissions from Gd3Ga5O12:Tm3+, Yb3+ nanocrystals,” J. Phys. Chem. B 109, 17400–17405 (2005).
[Crossref]

J. Phys. Chem. C (2)

W. Gao, R. Wang, Q. Han, J. Dong, L. Yan, and H. Zheng, “Tuning red upconversion emission in single LiYF4:Yb3+/Ho3+ microparticle,” J. Phys. Chem. C 119, 2349–2355 (2015).

N. M. Sangeetha and F. C. J. M. van Veggel, “Lanthanum silicate and lanthanum zirconate nanoparticles co-doped with Ho3+ and Yb3+: Matrix-dependent red and green upconversion emissions,” J. Phys. Chem. C 113, 14702–14707 (2009).
[Crossref]

Jpn. J. Appl. Phys. (1)

X. Xue, T. Suzuki, R. N. Tiwari, M. Yoshimura, and Y. Ohishi, “Quenching effect of surface adsorbed ligands on luminescence of α-NaYF4:Nd3+ nanocrystals,” Jpn. J. Appl. Phys. 53, 075001 (2014).
[Crossref]

Nano Today (1)

A. Gnach and A. Bednarkiewicz, “Lanthanide-doped up-converting nanoparticles: Merits and challenges,” Nano Today 7, 532–563 (2012).
[Crossref]

Nanoscale (1)

J. Zhao, Z. Lu, Y. Yin, C. McRae, J. A. Piper, J. M. Dawes, D. Jin, and E. M. Goldys, “Upconversion luminescence with tunable lifetime in NaYF4:Yb,Er nanocrystals: role of nanocrystal size,” Nanoscale 5, 944–952 (2013).
[Crossref]

Nat. Mater. (1)

F. Wang, R. Deng, J. Wang, Q. Wang, Y. Han, H. Zhu, X. Chen, and X. Liu, “Tuning upconversion through energy migration in core–shell nanoparticles,” Nat. Mater. 10, 968–973 (2011).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

J. Zhao, D. Jin, E. P. Schartner, Y. Lu, Y. Liu, A. V. Zvyagin, L. Zhang, J. M. Dawes, P. Xi, J. A. Piper, E. M. Goldys, and T. M. Monro, “Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence,” Nat. Nanotechnol. 8, 729–734 (2013).
[Crossref] [PubMed]

Opt. Commun. (2)

H. Liang, G. Chen, L. Li, Y. Liu, F. Qin, and Z. Zhang, “Upconversion luminescence in Yb3+/Tb3+-codoped monodisperse NaYF4 nanocrystals,” Opt. Commun. 282, 3028–3031 (2009).
[Crossref]

S. Zhou, K. Deng, X. Wei, G. Jiang, C. Duan, Y. Chen, and M. Yin, “Upconversion luminescence of NaYF4: Yb3+, Er3+ for temperature sensing,” Opt. Commun. 291, 138–142 (2013).
[Crossref]

Opt. Express (1)

Opt. Lett. (2)

Opt. Mater. (1)

J. Suyver, A. Aebischer, D. Biner, P. Gerner, J. Grimm, S. Heer, K. Krämer, C. Reinhard, and H. Güdel, “Novel materials doped with trivalent lanthanides and transition metal ions showing near-infrared to visible photon upconversion,” Opt. Mater. 27, 1111–1130 (2005).
[Crossref]

Opt. Mater. Express (3)

Photochem. Photobiol. (1)

A. Sillen and Y. Engelborghs, “The correct use of “average” fluorescence parameters,” Photochem. Photobiol. 67, 475–486 (1998).

Phys. Chem. Chem. Phys. (1)

B. P. Singh, A. K. Parchur, R. S. Ningthoujam, P. V. Ramakrishna, S. Singh, P. Singh, S. B. Rai, and R. Maalej, “Enhanced up-conversion and temperature-sensing behaviour of Er3+ and Yb3+ co-doped Y2Ti2O7 by incorporation of Li+ ions,” Phys. Chem. Chem. Phys. 16, 22665–22676 (2014).
[Crossref] [PubMed]

Phys. Rev. B (2)

M. Pollnau, D. R. Gamelin, S. R. Lüthi, H. U. Güdel, and M. P. Hehlen, “Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems,” Phys. Rev. B 61, 3337–3346 (2000).
[Crossref]

T. Miyakawa and D. L. Dexter, “Phonon sidebands, multiphonon relaxation of excited states, and phonon-assisted energy transfer between ions in solids,” Phys. Rev. B 1, 2961–2969 (1970).
[Crossref]

Sens. Actuators B (2)

H. Zheng, B. Chen, H. Yu, X. Li, J. Zhang, J. Sun, L. Tong, Z. Wu, H. Zhong, and R. Hua, “Rod-shaped NaY(MoO4)2:Sm3+/Yb3+ nanoheaters for photothermal conversion: Influence of doping concentration and excitation power density,” Sens. Actuators B 234, 286–293 (2016).
[Crossref]

S. F. León-Luis, U. R. Rodríguez-Mendoza, E. Lalla, and V. Lavín, “Temperature sensor based on the Er3+ green upconverted emission in a fluorotellurite glass,” Sens. Actuators B 158, 208–213 (2011).
[Crossref]

Other (2)

W. Carnall, H. Crosswhite, and H. M. Crosswhite, “Energy level structure and transition probabilities in the spectra of the trivalent lanthanides in LaF3,” Tech. Rep. (1978).

G. Liu and B. Jacquier, Spectroscopic Properties of Rare Earths in Optical Materials (Springer, 2006).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 XRD patterns of Tb3+-Tm3+-Yb3+ doped NaYF4 microcrystals synthesized by a hydrothermal method: (a) TmYb, (b) 10TbTmYb, (c) 20TbTmYb, and (d) 20TbYb. Black sticks correspond to the diffraction peaks of hexagonal phase NaYF4 (JCPDS 16-0334).
Fig. 2
Fig. 2 SEM images of as-prepared Tb3+,Tm3+,Yb3+ doped NaYF4 microcrystals: (a) TmYb, (b) 10TbTmYb, (c) 20TbTmYb, and (d) 20TbYb.
Fig. 3
Fig. 3 (a) Emission spectra of as-prepared NaYF4 phosphors with various dopant (sample TmYb, 10TbTmYb, 20TbTmYb, and 20TbYb) in the visible and near-infrared region excited by 976 nm laser. (b) Energy level diagram and possible upconversion processes among Tb3+, Tm3+, and Yb3+.
Fig. 4
Fig. 4 Upconversion emission spectra of samples (a)TmYb, (b) 10TbTmYb, (c) 20TbTmYb, and (d) 20TbYb excited by 976-nm laser with various power density. The chromaticity diagrams of each sample were inset correspondingly. The black vertical arrows indicate the power density increasing from 3 to 122 W/cm2.
Fig. 5
Fig. 5 Emission spectra of samples (a) TmYb, (b) 10TbTmYb, (c) 20TbTmYb, and (d) 20TbYb in near-infrared region excited by 976-nm laser. The black vertical arrows indicate the power density increasing from 3 to 122 W/cm2.
Fig. 6
Fig. 6 (a) Energy level diagram, upconversion processes and possible energy transfer between Tb3+, Tm3+, and Yb3+. (b) Schematic illustration of energy transfer between Tm3+ and Tb3+ under low and high power density pumping.
Fig. 7
Fig. 7 Emission spectrum in the 1600–1700 nm range in TmYb excited by 976-nm laser, and absorption spectrum of 20TbYb in 1600–2400 nm range.
Fig. 8
Fig. 8 Dependence of integrated intensity ratio of (a) emission at 476 nm versus 544 nm, (b) Tm3+ versus Tb3+ emissions, (c) emissions from the 1I6 level versus those from the 1G4 level, (d) emissions from the 1D2 level versus those from the 1G4 level, (e) emissions from the 1G4 level versus those from the 3H4 level, and (f) emissions from the 5D3 level versus those from the 5D4 level on power density of pump laser.
Fig. 9
Fig. 9 Log-Log plot of upconversion emission intensity versus excitation power density for the (a) 1I63F4 (345 nm), (b) 1D23F4 (452 nm), (c) 1G43H6 (476 nm), and (d) 3H43H6 (803 nm) transition of Tm3+, the (e) 5D37F6 (381 nm) and (f) 5D47F6 (544 nm) transition of Tb3+ in TmYb, 10TbTmYb, 20TbTmYb, and 20TbYb samples.
Fig. 10
Fig. 10 Fluorescent lifetime of the emissions at (a) 345 nm, (b) 452 nm, (c) 476 nm, and (d) 803 nm, (e) 381 nm and (f) 544 nm versus excitation power density in TmYb, 10TbTmYb, 20TbTmYb, and 20TbYb samples.
Fig. 11
Fig. 11 Energy transfer efficiency between Tm3+ and Tb3+ calculated from fluorescent lifetime of emissions generated from various energy levels in (a) 10TbTmYb and (b) 20TbTmYb sample.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

  5 D 3 +   7 F 6   5 D 4 +   7 F 0 ( Tb 3 + Tm 3 + ) ,   5 D 4 +   3 H 6   4 F 0 +   3 F 2 ( Tb 3 + Tm 3 + ) ,   3 H 4 +   7 F 6   3 H 5 +   7 F 3 ( Tm 3 + Tb 3 + ) ,   5 F 2 +   7 F 6   3 H 4 +   7 F 5 ( Tm 3 + Tb 3 + ) .
  3 H 4 +   3 H 6   3 F 4 +   3 F 4 ( Tm 3 + Tm 3 + ) ,   5 D 3 +   7 F 6   5 D 4 +   7 F 0 ( Tb 3 + Tb 3 + ) .
τ a v = A i τ i 2 A i τ i ,
1 τ m = A R + W N R + W C R ,
η T b T m = 1 τ T m Y b T b τ T m Y b ,
η T m T b = 1 τ T b Y b T m τ T b Y b ,
Φ = τ m τ R ,
Φ = A R A m = A R A R + W N R + W C R .

Metrics