Abstract

Magnetic field sensing can be directly (i.e. without requiring magnetic fuilds or magnetostrictive materials) obtained from the estimation of the circular birefringence induced in optical fibers through the so-called Faraday effect. In standard telecommunication-grade optical fiber, the amount of induced circular birefringence is however of the same order of the intrinsic fiber linear birefringence or even below. Hence, whenever uniform fiber Bragg gratings (FBGs) are used to probe this evolution, the resulting accuracy is usually very poor, even in the case of polarization-assisted measurements based on polarization dependent loss (PDL) or differential group delay (DGD). In this work, we demonstrate that the rotation of the diattenuation vector computed from the Mueller matrix of an FBG in transmission mode can be efficiently used as a read-out technique to sense a magnetic field evolution with a resolution of 0.1T.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Polarization effects in polymer FBGs: study and use for transverse force sensing

Xuehao Hu, David Saez-Rodriguez, Carlos Marques, Ole Bang, David J Webb, Patrice Mégret, and Christophe Caucheteur
Opt. Express 23(4) 4581-4590 (2015)

In-fiber Fabry-Perot interferometer for strain and magnetic field sensing

Greice K. B. Costa, Paula M. P. Gouvêa, Larissa M. B. Soares, João M. B. Pereira, Fernando Favero, Arthur M. B. Braga, Peter Palffy-Muhoray, Antonio C. Bruno, and Isabel C. S. Carvalho
Opt. Express 24(13) 14690-14696 (2016)

Highly-sensitive magnetic field sensor based on fiber ring laser

Ming Deng, Danhui Liu, Wei Huang, and Tao Zhu
Opt. Express 24(1) 645-651 (2016)

References

  • View by:
  • |
  • |
  • |

  1. C. Caucheteur, T. Guo, and J. Albert, “Polarization-assisted fiber Bragg grating sensors: tutorial and review,” J. Lightwave Technol., doi:.
    [Crossref]
  2. C. Caucheteur, S. Bette, R. Garcia-Olcina, M. Wuilpart, S. Sales, J. Capmany, and P. Mégret, “Transverse strain measurement using the birefringence effect in fiber Bragg gratings,” IEEE Photonics Technol. Lett. 19(13), 966–968 (2007).
    [Crossref]
  3. Y. Wang, M. Wang, and X. Huang, “Spectral characterization of polarization dependent loss of locally pressed fiber Bragg grating,” Opt. Express 19(25), 25535–25544 (2011).
    [Crossref] [PubMed]
  4. F. Descamps, C. Caucheteur, P. Mégret, and S. Bette, “Distribution profiling of a transverse load using the DGD spectrum of chirped FBGs,” Opt. Express 23(14), 18203–18217 (2015).
    [Crossref] [PubMed]
  5. F. Descamps, S. Bette, D. Kinet, and C. Caucheteur, “Direct transverse load profile determination using the polarization-dependent loss spectral response of a chirped fiber Bragg grating,” Appl. Opt. 55(16), 4270–4276 (2016).
    [Crossref] [PubMed]
  6. J. L. Cruz, M. V. Andres, and M. A. Hernandez, “Faraday effect in standard optical fibers: dispersion of the effective Verdet constant,” Appl. Opt. 35(6), 922–927 (1996).
    [Crossref] [PubMed]
  7. A. D. Kersey and M. J. Marrone, “Fiber Bragg grating high-magnetic-field probe,” Proc. SPIE 2360, 53–56 (1994).
    [Crossref]
  8. L. I. Chong-Zhen and W. U. Bao-Jian, “Theory and experiment on polarization-dependent loss of magneto-optical fiber Bragg grating system with a polarization controller,” Microw. Opt. Technol. Lett. 53(10), 2224–2228 (2011).
    [Crossref]
  9. Y. Su, Y. Zhu, B. Zhang, J. Li, and Y. Li, “Use of the polarization properties of magneto-optic fiber Bragg gratings for magnetic field sensing purposes,” Opt. Fiber Technol. 17(3), 196–200 (2011).
    [Crossref]
  10. Y. Su, B. Zhang, Y. Zhu, and Y. Li, “Sensing circular birefringence by polarization-dependent parameters in fiber Bragg gratings and the influence of linear birefringence,” Opt. Fiber Technol. 18(1), 51–57 (2012).
    [Crossref]
  11. H. Peng, Y. Su, and Y. Li, “Evolution of polarization properties in circular birefringent fiber Bragg gratings and application for magnetic field sensing,” Opt. Fiber Technol. 18(4), 177–182 (2012).
    [Crossref]
  12. B. Wu, F. Wen, K. Qiu, R. Huan, and X. Lu, “Magnetically-induced circular-polarization-dependent loss of magneto-optic fiber Bragg gratings with linear birefringence,” Opt. Fiber Technol. 19(3), 219–222 (2013).
    [Crossref]
  13. P. Orr, P. Niewczas, M. Stevenson, and J. Canning, “Compound phase-shifted fiber Bragg structures as intrinsic magnetic field sensors,” J. Lightwave Technol. 28(18), 2667–2673 (2010).
    [Crossref]
  14. S. M. M. Quintero, A. M. B. Braga, H. I. Weber, A. C. Bruno, and J. F. D. F. Araújo, “A magnetostrictive composite-fiber Bragg Grating sensor,” Sensors (Basel) 10(9), 8119–8128 (2010).
    [Crossref] [PubMed]
  15. J. Zheng, X. Dong, P. Zu, J. Ji, H. Su, and P. Ping Shum, “Intensity-modulated magnetic field sensor based on magnetic fluid and optical fiber gratings,” Appl. Phys. Lett. 103(18), 183511 (2013).
    [Crossref]
  16. J. Albert, L.-Y. Shao, and C. Caucheteur, “Tilted fiber Bragg grating sensors,” Laser Photonics Rev. 7(1), 83–108 (2013).
    [Crossref]
  17. L. Sun, S. Jiang, and J. R. Marciante, “Compact all-fiber optical Faraday components using 65-wt%-terbium-doped fiber with a record Verdet constant of -32 rad/(Tm),” Opt. Express 18(12), 12191–12196 (2010).
    [Crossref] [PubMed]
  18. L. Sun, S. Jiang, and J. R. Marciante, “All-fiber optical magnetic-field sensor based on Faraday rotation in highly terbium-doped fiber,” Opt. Express 18(6), 5407–5412 (2010).
    [Crossref] [PubMed]
  19. S. Bette, C. Caucheteur, M. Wuilpart, and P. Mégret, “Theoretical and experimental study of differential group delay and polarization dependent loss of Bragg gratings written in birefringent fiber,” Opt. Commun. 269(2), 331–337 (2007).
    [Crossref]
  20. D. Goldstein, “The mathematics of the Mueller matrix,” in Polarized Light, Revised and Expanded, 2nd ed. (CRC Press 2003) Chap 9.
  21. D. B. Chenault and R. A. Chipman, “Measurements of linear diattenuation and linear retardance spectra with a rotating sample spectropolarimeter,” Appl. Opt. 32(19), 3513–3519 (1993).
    [Crossref] [PubMed]
  22. C. Caucheteur, K. Chah, F. Lhommé, P. Blondel, and P. Mégret, “Autocorrelation demodulation technique for fiber Bragg grating sensor,” IEEE Photonics Technol. Lett. 16(10), 2320–2322 (2004).
    [Crossref]
  23. F. Lhommé, C. Caucheteur, K. Chah, M. Blondel, and P. Mégret, “Synthesis of fiber Bragg grating parameters from experimental reflectivity: a simplex approach and its application to the determination of temperature-dependent properties,” Appl. Opt. 44(4), 493–497 (2005).
    [Crossref] [PubMed]
  24. P. A. Williams, A. H. Rose, G. W. Day, T. E. Milner, and M. N. Deeter, “Temperature dependence of the Verdet constant in several diamagnetic glasses,” Appl. Opt. 30(10), 1176–1178 (1991).
    [Crossref] [PubMed]

2016 (1)

2015 (1)

2013 (3)

B. Wu, F. Wen, K. Qiu, R. Huan, and X. Lu, “Magnetically-induced circular-polarization-dependent loss of magneto-optic fiber Bragg gratings with linear birefringence,” Opt. Fiber Technol. 19(3), 219–222 (2013).
[Crossref]

J. Zheng, X. Dong, P. Zu, J. Ji, H. Su, and P. Ping Shum, “Intensity-modulated magnetic field sensor based on magnetic fluid and optical fiber gratings,” Appl. Phys. Lett. 103(18), 183511 (2013).
[Crossref]

J. Albert, L.-Y. Shao, and C. Caucheteur, “Tilted fiber Bragg grating sensors,” Laser Photonics Rev. 7(1), 83–108 (2013).
[Crossref]

2012 (2)

Y. Su, B. Zhang, Y. Zhu, and Y. Li, “Sensing circular birefringence by polarization-dependent parameters in fiber Bragg gratings and the influence of linear birefringence,” Opt. Fiber Technol. 18(1), 51–57 (2012).
[Crossref]

H. Peng, Y. Su, and Y. Li, “Evolution of polarization properties in circular birefringent fiber Bragg gratings and application for magnetic field sensing,” Opt. Fiber Technol. 18(4), 177–182 (2012).
[Crossref]

2011 (3)

L. I. Chong-Zhen and W. U. Bao-Jian, “Theory and experiment on polarization-dependent loss of magneto-optical fiber Bragg grating system with a polarization controller,” Microw. Opt. Technol. Lett. 53(10), 2224–2228 (2011).
[Crossref]

Y. Su, Y. Zhu, B. Zhang, J. Li, and Y. Li, “Use of the polarization properties of magneto-optic fiber Bragg gratings for magnetic field sensing purposes,” Opt. Fiber Technol. 17(3), 196–200 (2011).
[Crossref]

Y. Wang, M. Wang, and X. Huang, “Spectral characterization of polarization dependent loss of locally pressed fiber Bragg grating,” Opt. Express 19(25), 25535–25544 (2011).
[Crossref] [PubMed]

2010 (4)

2007 (2)

S. Bette, C. Caucheteur, M. Wuilpart, and P. Mégret, “Theoretical and experimental study of differential group delay and polarization dependent loss of Bragg gratings written in birefringent fiber,” Opt. Commun. 269(2), 331–337 (2007).
[Crossref]

C. Caucheteur, S. Bette, R. Garcia-Olcina, M. Wuilpart, S. Sales, J. Capmany, and P. Mégret, “Transverse strain measurement using the birefringence effect in fiber Bragg gratings,” IEEE Photonics Technol. Lett. 19(13), 966–968 (2007).
[Crossref]

2005 (1)

2004 (1)

C. Caucheteur, K. Chah, F. Lhommé, P. Blondel, and P. Mégret, “Autocorrelation demodulation technique for fiber Bragg grating sensor,” IEEE Photonics Technol. Lett. 16(10), 2320–2322 (2004).
[Crossref]

1996 (1)

1994 (1)

A. D. Kersey and M. J. Marrone, “Fiber Bragg grating high-magnetic-field probe,” Proc. SPIE 2360, 53–56 (1994).
[Crossref]

1993 (1)

1991 (1)

Albert, J.

J. Albert, L.-Y. Shao, and C. Caucheteur, “Tilted fiber Bragg grating sensors,” Laser Photonics Rev. 7(1), 83–108 (2013).
[Crossref]

C. Caucheteur, T. Guo, and J. Albert, “Polarization-assisted fiber Bragg grating sensors: tutorial and review,” J. Lightwave Technol., doi:.
[Crossref]

Andres, M. V.

Araújo, J. F. D. F.

S. M. M. Quintero, A. M. B. Braga, H. I. Weber, A. C. Bruno, and J. F. D. F. Araújo, “A magnetostrictive composite-fiber Bragg Grating sensor,” Sensors (Basel) 10(9), 8119–8128 (2010).
[Crossref] [PubMed]

Bao-Jian, W. U.

L. I. Chong-Zhen and W. U. Bao-Jian, “Theory and experiment on polarization-dependent loss of magneto-optical fiber Bragg grating system with a polarization controller,” Microw. Opt. Technol. Lett. 53(10), 2224–2228 (2011).
[Crossref]

Bette, S.

F. Descamps, S. Bette, D. Kinet, and C. Caucheteur, “Direct transverse load profile determination using the polarization-dependent loss spectral response of a chirped fiber Bragg grating,” Appl. Opt. 55(16), 4270–4276 (2016).
[Crossref] [PubMed]

F. Descamps, C. Caucheteur, P. Mégret, and S. Bette, “Distribution profiling of a transverse load using the DGD spectrum of chirped FBGs,” Opt. Express 23(14), 18203–18217 (2015).
[Crossref] [PubMed]

C. Caucheteur, S. Bette, R. Garcia-Olcina, M. Wuilpart, S. Sales, J. Capmany, and P. Mégret, “Transverse strain measurement using the birefringence effect in fiber Bragg gratings,” IEEE Photonics Technol. Lett. 19(13), 966–968 (2007).
[Crossref]

S. Bette, C. Caucheteur, M. Wuilpart, and P. Mégret, “Theoretical and experimental study of differential group delay and polarization dependent loss of Bragg gratings written in birefringent fiber,” Opt. Commun. 269(2), 331–337 (2007).
[Crossref]

Blondel, M.

Blondel, P.

C. Caucheteur, K. Chah, F. Lhommé, P. Blondel, and P. Mégret, “Autocorrelation demodulation technique for fiber Bragg grating sensor,” IEEE Photonics Technol. Lett. 16(10), 2320–2322 (2004).
[Crossref]

Braga, A. M. B.

S. M. M. Quintero, A. M. B. Braga, H. I. Weber, A. C. Bruno, and J. F. D. F. Araújo, “A magnetostrictive composite-fiber Bragg Grating sensor,” Sensors (Basel) 10(9), 8119–8128 (2010).
[Crossref] [PubMed]

Bruno, A. C.

S. M. M. Quintero, A. M. B. Braga, H. I. Weber, A. C. Bruno, and J. F. D. F. Araújo, “A magnetostrictive composite-fiber Bragg Grating sensor,” Sensors (Basel) 10(9), 8119–8128 (2010).
[Crossref] [PubMed]

Canning, J.

Capmany, J.

C. Caucheteur, S. Bette, R. Garcia-Olcina, M. Wuilpart, S. Sales, J. Capmany, and P. Mégret, “Transverse strain measurement using the birefringence effect in fiber Bragg gratings,” IEEE Photonics Technol. Lett. 19(13), 966–968 (2007).
[Crossref]

Caucheteur, C.

F. Descamps, S. Bette, D. Kinet, and C. Caucheteur, “Direct transverse load profile determination using the polarization-dependent loss spectral response of a chirped fiber Bragg grating,” Appl. Opt. 55(16), 4270–4276 (2016).
[Crossref] [PubMed]

F. Descamps, C. Caucheteur, P. Mégret, and S. Bette, “Distribution profiling of a transverse load using the DGD spectrum of chirped FBGs,” Opt. Express 23(14), 18203–18217 (2015).
[Crossref] [PubMed]

J. Albert, L.-Y. Shao, and C. Caucheteur, “Tilted fiber Bragg grating sensors,” Laser Photonics Rev. 7(1), 83–108 (2013).
[Crossref]

S. Bette, C. Caucheteur, M. Wuilpart, and P. Mégret, “Theoretical and experimental study of differential group delay and polarization dependent loss of Bragg gratings written in birefringent fiber,” Opt. Commun. 269(2), 331–337 (2007).
[Crossref]

C. Caucheteur, S. Bette, R. Garcia-Olcina, M. Wuilpart, S. Sales, J. Capmany, and P. Mégret, “Transverse strain measurement using the birefringence effect in fiber Bragg gratings,” IEEE Photonics Technol. Lett. 19(13), 966–968 (2007).
[Crossref]

F. Lhommé, C. Caucheteur, K. Chah, M. Blondel, and P. Mégret, “Synthesis of fiber Bragg grating parameters from experimental reflectivity: a simplex approach and its application to the determination of temperature-dependent properties,” Appl. Opt. 44(4), 493–497 (2005).
[Crossref] [PubMed]

C. Caucheteur, K. Chah, F. Lhommé, P. Blondel, and P. Mégret, “Autocorrelation demodulation technique for fiber Bragg grating sensor,” IEEE Photonics Technol. Lett. 16(10), 2320–2322 (2004).
[Crossref]

C. Caucheteur, T. Guo, and J. Albert, “Polarization-assisted fiber Bragg grating sensors: tutorial and review,” J. Lightwave Technol., doi:.
[Crossref]

Chah, K.

Chenault, D. B.

Chipman, R. A.

Chong-Zhen, L. I.

L. I. Chong-Zhen and W. U. Bao-Jian, “Theory and experiment on polarization-dependent loss of magneto-optical fiber Bragg grating system with a polarization controller,” Microw. Opt. Technol. Lett. 53(10), 2224–2228 (2011).
[Crossref]

Cruz, J. L.

Day, G. W.

Deeter, M. N.

Descamps, F.

Dong, X.

J. Zheng, X. Dong, P. Zu, J. Ji, H. Su, and P. Ping Shum, “Intensity-modulated magnetic field sensor based on magnetic fluid and optical fiber gratings,” Appl. Phys. Lett. 103(18), 183511 (2013).
[Crossref]

Garcia-Olcina, R.

C. Caucheteur, S. Bette, R. Garcia-Olcina, M. Wuilpart, S. Sales, J. Capmany, and P. Mégret, “Transverse strain measurement using the birefringence effect in fiber Bragg gratings,” IEEE Photonics Technol. Lett. 19(13), 966–968 (2007).
[Crossref]

Guo, T.

C. Caucheteur, T. Guo, and J. Albert, “Polarization-assisted fiber Bragg grating sensors: tutorial and review,” J. Lightwave Technol., doi:.
[Crossref]

Hernandez, M. A.

Huan, R.

B. Wu, F. Wen, K. Qiu, R. Huan, and X. Lu, “Magnetically-induced circular-polarization-dependent loss of magneto-optic fiber Bragg gratings with linear birefringence,” Opt. Fiber Technol. 19(3), 219–222 (2013).
[Crossref]

Huang, X.

Ji, J.

J. Zheng, X. Dong, P. Zu, J. Ji, H. Su, and P. Ping Shum, “Intensity-modulated magnetic field sensor based on magnetic fluid and optical fiber gratings,” Appl. Phys. Lett. 103(18), 183511 (2013).
[Crossref]

Jiang, S.

Kersey, A. D.

A. D. Kersey and M. J. Marrone, “Fiber Bragg grating high-magnetic-field probe,” Proc. SPIE 2360, 53–56 (1994).
[Crossref]

Kinet, D.

Lhommé, F.

Li, J.

Y. Su, Y. Zhu, B. Zhang, J. Li, and Y. Li, “Use of the polarization properties of magneto-optic fiber Bragg gratings for magnetic field sensing purposes,” Opt. Fiber Technol. 17(3), 196–200 (2011).
[Crossref]

Li, Y.

Y. Su, B. Zhang, Y. Zhu, and Y. Li, “Sensing circular birefringence by polarization-dependent parameters in fiber Bragg gratings and the influence of linear birefringence,” Opt. Fiber Technol. 18(1), 51–57 (2012).
[Crossref]

H. Peng, Y. Su, and Y. Li, “Evolution of polarization properties in circular birefringent fiber Bragg gratings and application for magnetic field sensing,” Opt. Fiber Technol. 18(4), 177–182 (2012).
[Crossref]

Y. Su, Y. Zhu, B. Zhang, J. Li, and Y. Li, “Use of the polarization properties of magneto-optic fiber Bragg gratings for magnetic field sensing purposes,” Opt. Fiber Technol. 17(3), 196–200 (2011).
[Crossref]

Lu, X.

B. Wu, F. Wen, K. Qiu, R. Huan, and X. Lu, “Magnetically-induced circular-polarization-dependent loss of magneto-optic fiber Bragg gratings with linear birefringence,” Opt. Fiber Technol. 19(3), 219–222 (2013).
[Crossref]

Marciante, J. R.

Marrone, M. J.

A. D. Kersey and M. J. Marrone, “Fiber Bragg grating high-magnetic-field probe,” Proc. SPIE 2360, 53–56 (1994).
[Crossref]

Mégret, P.

F. Descamps, C. Caucheteur, P. Mégret, and S. Bette, “Distribution profiling of a transverse load using the DGD spectrum of chirped FBGs,” Opt. Express 23(14), 18203–18217 (2015).
[Crossref] [PubMed]

C. Caucheteur, S. Bette, R. Garcia-Olcina, M. Wuilpart, S. Sales, J. Capmany, and P. Mégret, “Transverse strain measurement using the birefringence effect in fiber Bragg gratings,” IEEE Photonics Technol. Lett. 19(13), 966–968 (2007).
[Crossref]

S. Bette, C. Caucheteur, M. Wuilpart, and P. Mégret, “Theoretical and experimental study of differential group delay and polarization dependent loss of Bragg gratings written in birefringent fiber,” Opt. Commun. 269(2), 331–337 (2007).
[Crossref]

F. Lhommé, C. Caucheteur, K. Chah, M. Blondel, and P. Mégret, “Synthesis of fiber Bragg grating parameters from experimental reflectivity: a simplex approach and its application to the determination of temperature-dependent properties,” Appl. Opt. 44(4), 493–497 (2005).
[Crossref] [PubMed]

C. Caucheteur, K. Chah, F. Lhommé, P. Blondel, and P. Mégret, “Autocorrelation demodulation technique for fiber Bragg grating sensor,” IEEE Photonics Technol. Lett. 16(10), 2320–2322 (2004).
[Crossref]

Milner, T. E.

Niewczas, P.

Orr, P.

Peng, H.

H. Peng, Y. Su, and Y. Li, “Evolution of polarization properties in circular birefringent fiber Bragg gratings and application for magnetic field sensing,” Opt. Fiber Technol. 18(4), 177–182 (2012).
[Crossref]

Ping Shum, P.

J. Zheng, X. Dong, P. Zu, J. Ji, H. Su, and P. Ping Shum, “Intensity-modulated magnetic field sensor based on magnetic fluid and optical fiber gratings,” Appl. Phys. Lett. 103(18), 183511 (2013).
[Crossref]

Qiu, K.

B. Wu, F. Wen, K. Qiu, R. Huan, and X. Lu, “Magnetically-induced circular-polarization-dependent loss of magneto-optic fiber Bragg gratings with linear birefringence,” Opt. Fiber Technol. 19(3), 219–222 (2013).
[Crossref]

Quintero, S. M. M.

S. M. M. Quintero, A. M. B. Braga, H. I. Weber, A. C. Bruno, and J. F. D. F. Araújo, “A magnetostrictive composite-fiber Bragg Grating sensor,” Sensors (Basel) 10(9), 8119–8128 (2010).
[Crossref] [PubMed]

Rose, A. H.

Sales, S.

C. Caucheteur, S. Bette, R. Garcia-Olcina, M. Wuilpart, S. Sales, J. Capmany, and P. Mégret, “Transverse strain measurement using the birefringence effect in fiber Bragg gratings,” IEEE Photonics Technol. Lett. 19(13), 966–968 (2007).
[Crossref]

Shao, L.-Y.

J. Albert, L.-Y. Shao, and C. Caucheteur, “Tilted fiber Bragg grating sensors,” Laser Photonics Rev. 7(1), 83–108 (2013).
[Crossref]

Stevenson, M.

Su, H.

J. Zheng, X. Dong, P. Zu, J. Ji, H. Su, and P. Ping Shum, “Intensity-modulated magnetic field sensor based on magnetic fluid and optical fiber gratings,” Appl. Phys. Lett. 103(18), 183511 (2013).
[Crossref]

Su, Y.

Y. Su, B. Zhang, Y. Zhu, and Y. Li, “Sensing circular birefringence by polarization-dependent parameters in fiber Bragg gratings and the influence of linear birefringence,” Opt. Fiber Technol. 18(1), 51–57 (2012).
[Crossref]

H. Peng, Y. Su, and Y. Li, “Evolution of polarization properties in circular birefringent fiber Bragg gratings and application for magnetic field sensing,” Opt. Fiber Technol. 18(4), 177–182 (2012).
[Crossref]

Y. Su, Y. Zhu, B. Zhang, J. Li, and Y. Li, “Use of the polarization properties of magneto-optic fiber Bragg gratings for magnetic field sensing purposes,” Opt. Fiber Technol. 17(3), 196–200 (2011).
[Crossref]

Sun, L.

Wang, M.

Wang, Y.

Weber, H. I.

S. M. M. Quintero, A. M. B. Braga, H. I. Weber, A. C. Bruno, and J. F. D. F. Araújo, “A magnetostrictive composite-fiber Bragg Grating sensor,” Sensors (Basel) 10(9), 8119–8128 (2010).
[Crossref] [PubMed]

Wen, F.

B. Wu, F. Wen, K. Qiu, R. Huan, and X. Lu, “Magnetically-induced circular-polarization-dependent loss of magneto-optic fiber Bragg gratings with linear birefringence,” Opt. Fiber Technol. 19(3), 219–222 (2013).
[Crossref]

Williams, P. A.

Wu, B.

B. Wu, F. Wen, K. Qiu, R. Huan, and X. Lu, “Magnetically-induced circular-polarization-dependent loss of magneto-optic fiber Bragg gratings with linear birefringence,” Opt. Fiber Technol. 19(3), 219–222 (2013).
[Crossref]

Wuilpart, M.

C. Caucheteur, S. Bette, R. Garcia-Olcina, M. Wuilpart, S. Sales, J. Capmany, and P. Mégret, “Transverse strain measurement using the birefringence effect in fiber Bragg gratings,” IEEE Photonics Technol. Lett. 19(13), 966–968 (2007).
[Crossref]

S. Bette, C. Caucheteur, M. Wuilpart, and P. Mégret, “Theoretical and experimental study of differential group delay and polarization dependent loss of Bragg gratings written in birefringent fiber,” Opt. Commun. 269(2), 331–337 (2007).
[Crossref]

Zhang, B.

Y. Su, B. Zhang, Y. Zhu, and Y. Li, “Sensing circular birefringence by polarization-dependent parameters in fiber Bragg gratings and the influence of linear birefringence,” Opt. Fiber Technol. 18(1), 51–57 (2012).
[Crossref]

Y. Su, Y. Zhu, B. Zhang, J. Li, and Y. Li, “Use of the polarization properties of magneto-optic fiber Bragg gratings for magnetic field sensing purposes,” Opt. Fiber Technol. 17(3), 196–200 (2011).
[Crossref]

Zheng, J.

J. Zheng, X. Dong, P. Zu, J. Ji, H. Su, and P. Ping Shum, “Intensity-modulated magnetic field sensor based on magnetic fluid and optical fiber gratings,” Appl. Phys. Lett. 103(18), 183511 (2013).
[Crossref]

Zhu, Y.

Y. Su, B. Zhang, Y. Zhu, and Y. Li, “Sensing circular birefringence by polarization-dependent parameters in fiber Bragg gratings and the influence of linear birefringence,” Opt. Fiber Technol. 18(1), 51–57 (2012).
[Crossref]

Y. Su, Y. Zhu, B. Zhang, J. Li, and Y. Li, “Use of the polarization properties of magneto-optic fiber Bragg gratings for magnetic field sensing purposes,” Opt. Fiber Technol. 17(3), 196–200 (2011).
[Crossref]

Zu, P.

J. Zheng, X. Dong, P. Zu, J. Ji, H. Su, and P. Ping Shum, “Intensity-modulated magnetic field sensor based on magnetic fluid and optical fiber gratings,” Appl. Phys. Lett. 103(18), 183511 (2013).
[Crossref]

Appl. Opt. (5)

Appl. Phys. Lett. (1)

J. Zheng, X. Dong, P. Zu, J. Ji, H. Su, and P. Ping Shum, “Intensity-modulated magnetic field sensor based on magnetic fluid and optical fiber gratings,” Appl. Phys. Lett. 103(18), 183511 (2013).
[Crossref]

IEEE Photonics Technol. Lett. (2)

C. Caucheteur, S. Bette, R. Garcia-Olcina, M. Wuilpart, S. Sales, J. Capmany, and P. Mégret, “Transverse strain measurement using the birefringence effect in fiber Bragg gratings,” IEEE Photonics Technol. Lett. 19(13), 966–968 (2007).
[Crossref]

C. Caucheteur, K. Chah, F. Lhommé, P. Blondel, and P. Mégret, “Autocorrelation demodulation technique for fiber Bragg grating sensor,” IEEE Photonics Technol. Lett. 16(10), 2320–2322 (2004).
[Crossref]

J. Lightwave Technol. (1)

Laser Photonics Rev. (1)

J. Albert, L.-Y. Shao, and C. Caucheteur, “Tilted fiber Bragg grating sensors,” Laser Photonics Rev. 7(1), 83–108 (2013).
[Crossref]

Microw. Opt. Technol. Lett. (1)

L. I. Chong-Zhen and W. U. Bao-Jian, “Theory and experiment on polarization-dependent loss of magneto-optical fiber Bragg grating system with a polarization controller,” Microw. Opt. Technol. Lett. 53(10), 2224–2228 (2011).
[Crossref]

Opt. Commun. (1)

S. Bette, C. Caucheteur, M. Wuilpart, and P. Mégret, “Theoretical and experimental study of differential group delay and polarization dependent loss of Bragg gratings written in birefringent fiber,” Opt. Commun. 269(2), 331–337 (2007).
[Crossref]

Opt. Express (4)

Opt. Fiber Technol. (4)

Y. Su, Y. Zhu, B. Zhang, J. Li, and Y. Li, “Use of the polarization properties of magneto-optic fiber Bragg gratings for magnetic field sensing purposes,” Opt. Fiber Technol. 17(3), 196–200 (2011).
[Crossref]

Y. Su, B. Zhang, Y. Zhu, and Y. Li, “Sensing circular birefringence by polarization-dependent parameters in fiber Bragg gratings and the influence of linear birefringence,” Opt. Fiber Technol. 18(1), 51–57 (2012).
[Crossref]

H. Peng, Y. Su, and Y. Li, “Evolution of polarization properties in circular birefringent fiber Bragg gratings and application for magnetic field sensing,” Opt. Fiber Technol. 18(4), 177–182 (2012).
[Crossref]

B. Wu, F. Wen, K. Qiu, R. Huan, and X. Lu, “Magnetically-induced circular-polarization-dependent loss of magneto-optic fiber Bragg gratings with linear birefringence,” Opt. Fiber Technol. 19(3), 219–222 (2013).
[Crossref]

Proc. SPIE (1)

A. D. Kersey and M. J. Marrone, “Fiber Bragg grating high-magnetic-field probe,” Proc. SPIE 2360, 53–56 (1994).
[Crossref]

Sensors (Basel) (1)

S. M. M. Quintero, A. M. B. Braga, H. I. Weber, A. C. Bruno, and J. F. D. F. Araújo, “A magnetostrictive composite-fiber Bragg Grating sensor,” Sensors (Basel) 10(9), 8119–8128 (2010).
[Crossref] [PubMed]

Other (2)

D. Goldstein, “The mathematics of the Mueller matrix,” in Polarized Light, Revised and Expanded, 2nd ed. (CRC Press 2003) Chap 9.

C. Caucheteur, T. Guo, and J. Albert, “Polarization-assisted fiber Bragg grating sensors: tutorial and review,” J. Lightwave Technol., doi:.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 DGD and PDL spectral evolutions when a magnetic field is applied to the FBG section in the absence of linear birefringence.
Fig. 2
Fig. 2 Evolution of the DGD and PDL maximum values when a magnetic field is applied to the FBG section for 3 different linear birefringence values (ΔnL = 0, 2.5 10−7 and 5 10−7).
Fig. 3
Fig. 3 Diattenuation vector elements evolution when a magnetic field is applied to the FBG section for a linear birefringence value of 5 10−7 (a) and evolution of the maximum of D(3) as a function of the magnetic field value (b).
Fig. 4
Fig. 4 Diattenuation vector elements evolution when a magnetic field is applied to the FBG section for a linear birefringence value of 5 10−7 in the presence of fiber links (a) and evolution of the maximum of D(3) as a function of the magnetic field value for different fiber links lengths (b).
Fig. 5
Fig. 5 Evolution of the diattenuation vector on the Poincaré sphere as a function of the magnetic field for a linear birefringence of 5 10−7.
Fig. 6
Fig. 6 Link between the circular birefringence, the linear one and the rotation angle.
Fig. 7
Fig. 7 Photograph showing the electromagnet and the optical fiber going through. The inset displays the top view, focusing on the gap of the electromagnet with the fiber in the middle.
Fig. 8
Fig. 8 Experimental and reconstructed transmitted amplitude spectrum and DGD curve for the uniform FBG used in this work.
Fig. 9
Fig. 9 Evolution of the orientation of the diattenuation vector on the Poincaré sphere for 14 different magnetic field values between 0 and 1 T.
Fig. 10
Fig. 10 Experimental reconstruction of the magnetic field value as a function of the applied one (a) and relative error with respect to the linear regression of the raw data (b).

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

α=VBl
Δ n c = VBλ π
PDL(λ)=10 log 10 ( T x (λ) T y (λ) )
DGD(λ)=| τ x (λ) τ y (λ) |
D (λ)= 1 M 00 (λ) ( M 01 (λ) M 02 (λ) M 03 (λ))
M(λ)=( M 00 (λ) M 01 (λ) M 02 (λ) M 03 (λ) M 10 (λ) M 11 (λ) M 12 (λ) M 13 (λ) M 20 (λ) M 21 (λ) M 22 (λ) M 23 (λ) M 30 (λ) M 31 (λ) M 32 (λ) M 33 (λ) )
D(λ)= D (λ) = T max (λ) T min (λ) T max (λ)+ T min (λ) = 1 M 00 (λ) M 01 (λ) 2 M 02 (λ) 2 M 03 (λ) 2
θ(λ)=acos( D 0 (λ) D (λ) norm( D 0 (λ))norm( D (λ)) )

Metrics