Abstract

Ghost imaging (GI) lidar, as a novel remote sensing technique, has been receiving increasing interest in recent years. By combining pulse-compression technique and coherent detection with GI, we propose a new lidar system called pulse-compression GI lidar. Our analytical results, which are backed up by numerical simulations, demonstrate that pulse-compression GI lidar can obtain the target’s spatial intensity distribution, range and moving velocity. Compared with conventional pulsed GI lidar system, pulse-compression GI lidar, without decreasing the range resolution, is easy to obtain high single pulse energy with the use of a long pulse, and the mechanism of coherent detection can eliminate the influence of the stray light, which is helpful to improve the detection sensitivity and detection range.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Performance analysis of ghost imaging lidar in background light environment

Chenjin Deng, Long Pan, Chenglong Wang, Xin Gao, Wenlin Gong, and Shensheng Han
Photon. Res. 5(5) 431-435 (2017)

Multiple-input ghost imaging via sparsity constraints

Wenlin Gong and Shensheng Han
J. Opt. Soc. Am. A 29(8) 1571-1579 (2012)

Structured image reconstruction for three-dimensional ghost imaging lidar

Hong Yu, Enrong Li, Wenlin Gong, and Shensheng Han
Opt. Express 23(11) 14541-14551 (2015)

References

  • View by:
  • |
  • |
  • |

  1. M. D. Angelo and Y. Shih, “Quantum imaging,” Laser. Phys. Lett. 2, 567–596 (2005).
    [Crossref]
  2. D. Z. Cao, J. Xiong, and K. Wang, “Geometrical optics in correlated imaging systems,” Phys. Rev. A 71, 013801 (2005).
    [Crossref]
  3. D. Zhang, Y. Zhai, L. Wu, and X. Chen, “Correlated two-photon imaging with true thermal light,” Opt. Lett. 30, 2354–2356 (2005).
    [Crossref] [PubMed]
  4. F. Ferri, D. Magatti, A. Gatti, M. Bache, E. Brambilla, and L. A. Lugiato, “High-resolution ghost image and ghost diffraction experiments with thermal light,” Phys. Rev. Lett. 94, 183602 (2005).
    [Crossref] [PubMed]
  5. A. Gatti, M. Bache, D. Magatti, E. Brambilla, F. Ferri, and L. A. Lugiato, “Coherent imaging with pseudo-thermal incoherent light,” J. Mod. Opt. 53, 739–760 (2006).
    [Crossref]
  6. W. Gong, P. Zhang, X. Shen, and S. Han, “Ghost “pinhole” imaging in Fraunhofer region,” Appl. Phys. Lett. 95, 071110 (2009).
    [Crossref]
  7. J. H. Shapiro and R. W. Boyd, “The physics of ghost imaging,” Quantum Inf. Process. 11, 949–993 (2012).
    [Crossref]
  8. W. Gong and S. Han, “The influence of axial correlation depth of light field on lensless ghost imaging,” J. Opt. Soc. Am. B 27, 675–678 (2010).
    [Crossref]
  9. C. Zhao, W. Gong, M. Chen, E. Li, H. Wang, W. Xu, and S. Han, “Ghost imaging lidar via sparsity constraints,” Appl. Phys. Lett. 101, 141123 (2012).
    [Crossref]
  10. M. Chen, E. Li, W. Gong, Z. Bo, X. Xu, C. Zhao, X. Shen, W. Xu, and S. Han, “Ghost imaging lidar via sparsity constraints in real atmosphere,” Opt. Photon. J. 3, 83–85 (2013).
    [Crossref]
  11. N. D. Hardy and J. H. Shapiro, “Computational ghost imaging versus imaging laser radar for three-dimensional imaging,” Phys. Rev. A. 87, 023820 (2013).
    [Crossref]
  12. Y. Zhu, J. Shi, H. Li, and G. Zeng, “Three-dimensional ghost imaging based on periodic diffraction correlation imaging,” Chin. Opt. Lett. 12, 071101 (2014).
    [Crossref]
  13. W. Gong, C. Zhao, H. Yu, M. Chen, H. Wang, W. Xu, and S. Han, “Three-dimensional ghost imaging lidar via sparsity constraint,” Sci. Rep. 6, 26133 (2013).
    [Crossref]
  14. B. Stann, B. C. Redman, W. Lawler, M. Giza, J. Dammann, and K. Krapels, “Chirped amplitude modulation ladar for range and Doppler measurements and 3-D imaging,” Proc. SPIE 6550, 655005 (2007).
    [Crossref]
  15. A. Peter, C. Allen, and R. Hui, “Chirped lidar using simplified homodyne detection,” lightwave Technol. 27, 3351 (2009).
    [Crossref]
  16. C. Allen, Y. Cobanoglu, S. K. Chong, and S. Gogineni, “Performance of a 1319 nm laser radar using RF pulse compression,” in Geoscience and Remote Sensing Symposium (IEEE, 2001), pp.997–999.
  17. X. Yu, G. Hong, Y. Ling, and R. Shu, “Research on range-Doppler homodyne detection system,” Proc. SPIE 8196, 819618 (2011).
    [Crossref]
  18. J. W. Strohbehn, Laser Beam Propagation in the Atmosphere (Springer, 1978).
    [Crossref]
  19. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1968).
  20. V. V. Protopopov, Laser Heterodyning (Springer, 2009).
    [Crossref]
  21. L. G. Kazovsky, L. Curtis, W. C. Young, and N. K. Cheung, “All-fiber 90 optical hybrid for coherent communications,” Appl. Opt. 26, 437 (1987).
    [Crossref] [PubMed]
  22. J. W. Goodman, Statistical Optics (Wiley, 1985).
  23. X. Li, C. Deng, M. Chen, W. Gong, and S. Han, “Ghost imaging for an axially moving target with an unknown constant speed,” Photon. Res. 3, 153–157 (2015).
    [Crossref]
  24. C. Wang, D. Zhang, Y. Bai, and B. Chen, “Ghost imaging for a reflected object with a rough surface,” Phys. Rev. A. 82, 063814 (2010).
    [Crossref]
  25. K. P. Chan and D. K. Killinger, “Enhanced detection of atmospheric-turbulence-distorted 1-μm coherent lidar returns using a two-dimensional heterodyne detector array,” Opt. Lett. 16, 1219 (1991).
    [Crossref] [PubMed]
  26. M. Zhang, Q. Wei, X. Shen, Y. Liu, H. Liu, and S. Han, “Statistical optics based numerical modeling of ghost imaging and its experimental approval,” Acta. Optica. Sinica. 27, 1858–1866 (2007).
  27. W. Gong and S. Han, “A method to improve the visibility of ghost images obtained by thermal light,” Phys. Lett. A. 374, 1005 (2010).
    [Crossref]
  28. F. Ferri, D. Magatti, L. A. Lugiato, and A. Gatti, “Differential ghost imaging,” Phys. Rev. Lett. 104, 253603 (2010).
    [Crossref] [PubMed]

2015 (1)

2014 (1)

2013 (3)

W. Gong, C. Zhao, H. Yu, M. Chen, H. Wang, W. Xu, and S. Han, “Three-dimensional ghost imaging lidar via sparsity constraint,” Sci. Rep. 6, 26133 (2013).
[Crossref]

M. Chen, E. Li, W. Gong, Z. Bo, X. Xu, C. Zhao, X. Shen, W. Xu, and S. Han, “Ghost imaging lidar via sparsity constraints in real atmosphere,” Opt. Photon. J. 3, 83–85 (2013).
[Crossref]

N. D. Hardy and J. H. Shapiro, “Computational ghost imaging versus imaging laser radar for three-dimensional imaging,” Phys. Rev. A. 87, 023820 (2013).
[Crossref]

2012 (2)

C. Zhao, W. Gong, M. Chen, E. Li, H. Wang, W. Xu, and S. Han, “Ghost imaging lidar via sparsity constraints,” Appl. Phys. Lett. 101, 141123 (2012).
[Crossref]

J. H. Shapiro and R. W. Boyd, “The physics of ghost imaging,” Quantum Inf. Process. 11, 949–993 (2012).
[Crossref]

2011 (1)

X. Yu, G. Hong, Y. Ling, and R. Shu, “Research on range-Doppler homodyne detection system,” Proc. SPIE 8196, 819618 (2011).
[Crossref]

2010 (4)

W. Gong and S. Han, “The influence of axial correlation depth of light field on lensless ghost imaging,” J. Opt. Soc. Am. B 27, 675–678 (2010).
[Crossref]

C. Wang, D. Zhang, Y. Bai, and B. Chen, “Ghost imaging for a reflected object with a rough surface,” Phys. Rev. A. 82, 063814 (2010).
[Crossref]

W. Gong and S. Han, “A method to improve the visibility of ghost images obtained by thermal light,” Phys. Lett. A. 374, 1005 (2010).
[Crossref]

F. Ferri, D. Magatti, L. A. Lugiato, and A. Gatti, “Differential ghost imaging,” Phys. Rev. Lett. 104, 253603 (2010).
[Crossref] [PubMed]

2009 (2)

W. Gong, P. Zhang, X. Shen, and S. Han, “Ghost “pinhole” imaging in Fraunhofer region,” Appl. Phys. Lett. 95, 071110 (2009).
[Crossref]

A. Peter, C. Allen, and R. Hui, “Chirped lidar using simplified homodyne detection,” lightwave Technol. 27, 3351 (2009).
[Crossref]

2007 (2)

B. Stann, B. C. Redman, W. Lawler, M. Giza, J. Dammann, and K. Krapels, “Chirped amplitude modulation ladar for range and Doppler measurements and 3-D imaging,” Proc. SPIE 6550, 655005 (2007).
[Crossref]

M. Zhang, Q. Wei, X. Shen, Y. Liu, H. Liu, and S. Han, “Statistical optics based numerical modeling of ghost imaging and its experimental approval,” Acta. Optica. Sinica. 27, 1858–1866 (2007).

2006 (1)

A. Gatti, M. Bache, D. Magatti, E. Brambilla, F. Ferri, and L. A. Lugiato, “Coherent imaging with pseudo-thermal incoherent light,” J. Mod. Opt. 53, 739–760 (2006).
[Crossref]

2005 (4)

M. D. Angelo and Y. Shih, “Quantum imaging,” Laser. Phys. Lett. 2, 567–596 (2005).
[Crossref]

D. Z. Cao, J. Xiong, and K. Wang, “Geometrical optics in correlated imaging systems,” Phys. Rev. A 71, 013801 (2005).
[Crossref]

D. Zhang, Y. Zhai, L. Wu, and X. Chen, “Correlated two-photon imaging with true thermal light,” Opt. Lett. 30, 2354–2356 (2005).
[Crossref] [PubMed]

F. Ferri, D. Magatti, A. Gatti, M. Bache, E. Brambilla, and L. A. Lugiato, “High-resolution ghost image and ghost diffraction experiments with thermal light,” Phys. Rev. Lett. 94, 183602 (2005).
[Crossref] [PubMed]

1991 (1)

1987 (1)

Allen, C.

A. Peter, C. Allen, and R. Hui, “Chirped lidar using simplified homodyne detection,” lightwave Technol. 27, 3351 (2009).
[Crossref]

C. Allen, Y. Cobanoglu, S. K. Chong, and S. Gogineni, “Performance of a 1319 nm laser radar using RF pulse compression,” in Geoscience and Remote Sensing Symposium (IEEE, 2001), pp.997–999.

Angelo, M. D.

M. D. Angelo and Y. Shih, “Quantum imaging,” Laser. Phys. Lett. 2, 567–596 (2005).
[Crossref]

Bache, M.

A. Gatti, M. Bache, D. Magatti, E. Brambilla, F. Ferri, and L. A. Lugiato, “Coherent imaging with pseudo-thermal incoherent light,” J. Mod. Opt. 53, 739–760 (2006).
[Crossref]

F. Ferri, D. Magatti, A. Gatti, M. Bache, E. Brambilla, and L. A. Lugiato, “High-resolution ghost image and ghost diffraction experiments with thermal light,” Phys. Rev. Lett. 94, 183602 (2005).
[Crossref] [PubMed]

Bai, Y.

C. Wang, D. Zhang, Y. Bai, and B. Chen, “Ghost imaging for a reflected object with a rough surface,” Phys. Rev. A. 82, 063814 (2010).
[Crossref]

Bo, Z.

M. Chen, E. Li, W. Gong, Z. Bo, X. Xu, C. Zhao, X. Shen, W. Xu, and S. Han, “Ghost imaging lidar via sparsity constraints in real atmosphere,” Opt. Photon. J. 3, 83–85 (2013).
[Crossref]

Boyd, R. W.

J. H. Shapiro and R. W. Boyd, “The physics of ghost imaging,” Quantum Inf. Process. 11, 949–993 (2012).
[Crossref]

Brambilla, E.

A. Gatti, M. Bache, D. Magatti, E. Brambilla, F. Ferri, and L. A. Lugiato, “Coherent imaging with pseudo-thermal incoherent light,” J. Mod. Opt. 53, 739–760 (2006).
[Crossref]

F. Ferri, D. Magatti, A. Gatti, M. Bache, E. Brambilla, and L. A. Lugiato, “High-resolution ghost image and ghost diffraction experiments with thermal light,” Phys. Rev. Lett. 94, 183602 (2005).
[Crossref] [PubMed]

Cao, D. Z.

D. Z. Cao, J. Xiong, and K. Wang, “Geometrical optics in correlated imaging systems,” Phys. Rev. A 71, 013801 (2005).
[Crossref]

Chan, K. P.

Chen, B.

C. Wang, D. Zhang, Y. Bai, and B. Chen, “Ghost imaging for a reflected object with a rough surface,” Phys. Rev. A. 82, 063814 (2010).
[Crossref]

Chen, M.

X. Li, C. Deng, M. Chen, W. Gong, and S. Han, “Ghost imaging for an axially moving target with an unknown constant speed,” Photon. Res. 3, 153–157 (2015).
[Crossref]

M. Chen, E. Li, W. Gong, Z. Bo, X. Xu, C. Zhao, X. Shen, W. Xu, and S. Han, “Ghost imaging lidar via sparsity constraints in real atmosphere,” Opt. Photon. J. 3, 83–85 (2013).
[Crossref]

W. Gong, C. Zhao, H. Yu, M. Chen, H. Wang, W. Xu, and S. Han, “Three-dimensional ghost imaging lidar via sparsity constraint,” Sci. Rep. 6, 26133 (2013).
[Crossref]

C. Zhao, W. Gong, M. Chen, E. Li, H. Wang, W. Xu, and S. Han, “Ghost imaging lidar via sparsity constraints,” Appl. Phys. Lett. 101, 141123 (2012).
[Crossref]

Chen, X.

Cheung, N. K.

Chong, S. K.

C. Allen, Y. Cobanoglu, S. K. Chong, and S. Gogineni, “Performance of a 1319 nm laser radar using RF pulse compression,” in Geoscience and Remote Sensing Symposium (IEEE, 2001), pp.997–999.

Cobanoglu, Y.

C. Allen, Y. Cobanoglu, S. K. Chong, and S. Gogineni, “Performance of a 1319 nm laser radar using RF pulse compression,” in Geoscience and Remote Sensing Symposium (IEEE, 2001), pp.997–999.

Curtis, L.

Dammann, J.

B. Stann, B. C. Redman, W. Lawler, M. Giza, J. Dammann, and K. Krapels, “Chirped amplitude modulation ladar for range and Doppler measurements and 3-D imaging,” Proc. SPIE 6550, 655005 (2007).
[Crossref]

Deng, C.

Ferri, F.

F. Ferri, D. Magatti, L. A. Lugiato, and A. Gatti, “Differential ghost imaging,” Phys. Rev. Lett. 104, 253603 (2010).
[Crossref] [PubMed]

A. Gatti, M. Bache, D. Magatti, E. Brambilla, F. Ferri, and L. A. Lugiato, “Coherent imaging with pseudo-thermal incoherent light,” J. Mod. Opt. 53, 739–760 (2006).
[Crossref]

F. Ferri, D. Magatti, A. Gatti, M. Bache, E. Brambilla, and L. A. Lugiato, “High-resolution ghost image and ghost diffraction experiments with thermal light,” Phys. Rev. Lett. 94, 183602 (2005).
[Crossref] [PubMed]

Gatti, A.

F. Ferri, D. Magatti, L. A. Lugiato, and A. Gatti, “Differential ghost imaging,” Phys. Rev. Lett. 104, 253603 (2010).
[Crossref] [PubMed]

A. Gatti, M. Bache, D. Magatti, E. Brambilla, F. Ferri, and L. A. Lugiato, “Coherent imaging with pseudo-thermal incoherent light,” J. Mod. Opt. 53, 739–760 (2006).
[Crossref]

F. Ferri, D. Magatti, A. Gatti, M. Bache, E. Brambilla, and L. A. Lugiato, “High-resolution ghost image and ghost diffraction experiments with thermal light,” Phys. Rev. Lett. 94, 183602 (2005).
[Crossref] [PubMed]

Giza, M.

B. Stann, B. C. Redman, W. Lawler, M. Giza, J. Dammann, and K. Krapels, “Chirped amplitude modulation ladar for range and Doppler measurements and 3-D imaging,” Proc. SPIE 6550, 655005 (2007).
[Crossref]

Gogineni, S.

C. Allen, Y. Cobanoglu, S. K. Chong, and S. Gogineni, “Performance of a 1319 nm laser radar using RF pulse compression,” in Geoscience and Remote Sensing Symposium (IEEE, 2001), pp.997–999.

Gong, W.

X. Li, C. Deng, M. Chen, W. Gong, and S. Han, “Ghost imaging for an axially moving target with an unknown constant speed,” Photon. Res. 3, 153–157 (2015).
[Crossref]

M. Chen, E. Li, W. Gong, Z. Bo, X. Xu, C. Zhao, X. Shen, W. Xu, and S. Han, “Ghost imaging lidar via sparsity constraints in real atmosphere,” Opt. Photon. J. 3, 83–85 (2013).
[Crossref]

W. Gong, C. Zhao, H. Yu, M. Chen, H. Wang, W. Xu, and S. Han, “Three-dimensional ghost imaging lidar via sparsity constraint,” Sci. Rep. 6, 26133 (2013).
[Crossref]

C. Zhao, W. Gong, M. Chen, E. Li, H. Wang, W. Xu, and S. Han, “Ghost imaging lidar via sparsity constraints,” Appl. Phys. Lett. 101, 141123 (2012).
[Crossref]

W. Gong and S. Han, “The influence of axial correlation depth of light field on lensless ghost imaging,” J. Opt. Soc. Am. B 27, 675–678 (2010).
[Crossref]

W. Gong and S. Han, “A method to improve the visibility of ghost images obtained by thermal light,” Phys. Lett. A. 374, 1005 (2010).
[Crossref]

W. Gong, P. Zhang, X. Shen, and S. Han, “Ghost “pinhole” imaging in Fraunhofer region,” Appl. Phys. Lett. 95, 071110 (2009).
[Crossref]

Goodman, J. W.

J. W. Goodman, Statistical Optics (Wiley, 1985).

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1968).

Han, S.

X. Li, C. Deng, M. Chen, W. Gong, and S. Han, “Ghost imaging for an axially moving target with an unknown constant speed,” Photon. Res. 3, 153–157 (2015).
[Crossref]

M. Chen, E. Li, W. Gong, Z. Bo, X. Xu, C. Zhao, X. Shen, W. Xu, and S. Han, “Ghost imaging lidar via sparsity constraints in real atmosphere,” Opt. Photon. J. 3, 83–85 (2013).
[Crossref]

W. Gong, C. Zhao, H. Yu, M. Chen, H. Wang, W. Xu, and S. Han, “Three-dimensional ghost imaging lidar via sparsity constraint,” Sci. Rep. 6, 26133 (2013).
[Crossref]

C. Zhao, W. Gong, M. Chen, E. Li, H. Wang, W. Xu, and S. Han, “Ghost imaging lidar via sparsity constraints,” Appl. Phys. Lett. 101, 141123 (2012).
[Crossref]

W. Gong and S. Han, “The influence of axial correlation depth of light field on lensless ghost imaging,” J. Opt. Soc. Am. B 27, 675–678 (2010).
[Crossref]

W. Gong and S. Han, “A method to improve the visibility of ghost images obtained by thermal light,” Phys. Lett. A. 374, 1005 (2010).
[Crossref]

W. Gong, P. Zhang, X. Shen, and S. Han, “Ghost “pinhole” imaging in Fraunhofer region,” Appl. Phys. Lett. 95, 071110 (2009).
[Crossref]

M. Zhang, Q. Wei, X. Shen, Y. Liu, H. Liu, and S. Han, “Statistical optics based numerical modeling of ghost imaging and its experimental approval,” Acta. Optica. Sinica. 27, 1858–1866 (2007).

Hardy, N. D.

N. D. Hardy and J. H. Shapiro, “Computational ghost imaging versus imaging laser radar for three-dimensional imaging,” Phys. Rev. A. 87, 023820 (2013).
[Crossref]

Hong, G.

X. Yu, G. Hong, Y. Ling, and R. Shu, “Research on range-Doppler homodyne detection system,” Proc. SPIE 8196, 819618 (2011).
[Crossref]

Hui, R.

A. Peter, C. Allen, and R. Hui, “Chirped lidar using simplified homodyne detection,” lightwave Technol. 27, 3351 (2009).
[Crossref]

Kazovsky, L. G.

Killinger, D. K.

Krapels, K.

B. Stann, B. C. Redman, W. Lawler, M. Giza, J. Dammann, and K. Krapels, “Chirped amplitude modulation ladar for range and Doppler measurements and 3-D imaging,” Proc. SPIE 6550, 655005 (2007).
[Crossref]

Lawler, W.

B. Stann, B. C. Redman, W. Lawler, M. Giza, J. Dammann, and K. Krapels, “Chirped amplitude modulation ladar for range and Doppler measurements and 3-D imaging,” Proc. SPIE 6550, 655005 (2007).
[Crossref]

Li, E.

M. Chen, E. Li, W. Gong, Z. Bo, X. Xu, C. Zhao, X. Shen, W. Xu, and S. Han, “Ghost imaging lidar via sparsity constraints in real atmosphere,” Opt. Photon. J. 3, 83–85 (2013).
[Crossref]

C. Zhao, W. Gong, M. Chen, E. Li, H. Wang, W. Xu, and S. Han, “Ghost imaging lidar via sparsity constraints,” Appl. Phys. Lett. 101, 141123 (2012).
[Crossref]

Li, H.

Li, X.

Ling, Y.

X. Yu, G. Hong, Y. Ling, and R. Shu, “Research on range-Doppler homodyne detection system,” Proc. SPIE 8196, 819618 (2011).
[Crossref]

Liu, H.

M. Zhang, Q. Wei, X. Shen, Y. Liu, H. Liu, and S. Han, “Statistical optics based numerical modeling of ghost imaging and its experimental approval,” Acta. Optica. Sinica. 27, 1858–1866 (2007).

Liu, Y.

M. Zhang, Q. Wei, X. Shen, Y. Liu, H. Liu, and S. Han, “Statistical optics based numerical modeling of ghost imaging and its experimental approval,” Acta. Optica. Sinica. 27, 1858–1866 (2007).

Lugiato, L. A.

F. Ferri, D. Magatti, L. A. Lugiato, and A. Gatti, “Differential ghost imaging,” Phys. Rev. Lett. 104, 253603 (2010).
[Crossref] [PubMed]

A. Gatti, M. Bache, D. Magatti, E. Brambilla, F. Ferri, and L. A. Lugiato, “Coherent imaging with pseudo-thermal incoherent light,” J. Mod. Opt. 53, 739–760 (2006).
[Crossref]

F. Ferri, D. Magatti, A. Gatti, M. Bache, E. Brambilla, and L. A. Lugiato, “High-resolution ghost image and ghost diffraction experiments with thermal light,” Phys. Rev. Lett. 94, 183602 (2005).
[Crossref] [PubMed]

Magatti, D.

F. Ferri, D. Magatti, L. A. Lugiato, and A. Gatti, “Differential ghost imaging,” Phys. Rev. Lett. 104, 253603 (2010).
[Crossref] [PubMed]

A. Gatti, M. Bache, D. Magatti, E. Brambilla, F. Ferri, and L. A. Lugiato, “Coherent imaging with pseudo-thermal incoherent light,” J. Mod. Opt. 53, 739–760 (2006).
[Crossref]

F. Ferri, D. Magatti, A. Gatti, M. Bache, E. Brambilla, and L. A. Lugiato, “High-resolution ghost image and ghost diffraction experiments with thermal light,” Phys. Rev. Lett. 94, 183602 (2005).
[Crossref] [PubMed]

Peter, A.

A. Peter, C. Allen, and R. Hui, “Chirped lidar using simplified homodyne detection,” lightwave Technol. 27, 3351 (2009).
[Crossref]

Protopopov, V. V.

V. V. Protopopov, Laser Heterodyning (Springer, 2009).
[Crossref]

Redman, B. C.

B. Stann, B. C. Redman, W. Lawler, M. Giza, J. Dammann, and K. Krapels, “Chirped amplitude modulation ladar for range and Doppler measurements and 3-D imaging,” Proc. SPIE 6550, 655005 (2007).
[Crossref]

Shapiro, J. H.

N. D. Hardy and J. H. Shapiro, “Computational ghost imaging versus imaging laser radar for three-dimensional imaging,” Phys. Rev. A. 87, 023820 (2013).
[Crossref]

J. H. Shapiro and R. W. Boyd, “The physics of ghost imaging,” Quantum Inf. Process. 11, 949–993 (2012).
[Crossref]

Shen, X.

M. Chen, E. Li, W. Gong, Z. Bo, X. Xu, C. Zhao, X. Shen, W. Xu, and S. Han, “Ghost imaging lidar via sparsity constraints in real atmosphere,” Opt. Photon. J. 3, 83–85 (2013).
[Crossref]

W. Gong, P. Zhang, X. Shen, and S. Han, “Ghost “pinhole” imaging in Fraunhofer region,” Appl. Phys. Lett. 95, 071110 (2009).
[Crossref]

M. Zhang, Q. Wei, X. Shen, Y. Liu, H. Liu, and S. Han, “Statistical optics based numerical modeling of ghost imaging and its experimental approval,” Acta. Optica. Sinica. 27, 1858–1866 (2007).

Shi, J.

Shih, Y.

M. D. Angelo and Y. Shih, “Quantum imaging,” Laser. Phys. Lett. 2, 567–596 (2005).
[Crossref]

Shu, R.

X. Yu, G. Hong, Y. Ling, and R. Shu, “Research on range-Doppler homodyne detection system,” Proc. SPIE 8196, 819618 (2011).
[Crossref]

Stann, B.

B. Stann, B. C. Redman, W. Lawler, M. Giza, J. Dammann, and K. Krapels, “Chirped amplitude modulation ladar for range and Doppler measurements and 3-D imaging,” Proc. SPIE 6550, 655005 (2007).
[Crossref]

Strohbehn, J. W.

J. W. Strohbehn, Laser Beam Propagation in the Atmosphere (Springer, 1978).
[Crossref]

Wang, C.

C. Wang, D. Zhang, Y. Bai, and B. Chen, “Ghost imaging for a reflected object with a rough surface,” Phys. Rev. A. 82, 063814 (2010).
[Crossref]

Wang, H.

W. Gong, C. Zhao, H. Yu, M. Chen, H. Wang, W. Xu, and S. Han, “Three-dimensional ghost imaging lidar via sparsity constraint,” Sci. Rep. 6, 26133 (2013).
[Crossref]

C. Zhao, W. Gong, M. Chen, E. Li, H. Wang, W. Xu, and S. Han, “Ghost imaging lidar via sparsity constraints,” Appl. Phys. Lett. 101, 141123 (2012).
[Crossref]

Wang, K.

D. Z. Cao, J. Xiong, and K. Wang, “Geometrical optics in correlated imaging systems,” Phys. Rev. A 71, 013801 (2005).
[Crossref]

Wei, Q.

M. Zhang, Q. Wei, X. Shen, Y. Liu, H. Liu, and S. Han, “Statistical optics based numerical modeling of ghost imaging and its experimental approval,” Acta. Optica. Sinica. 27, 1858–1866 (2007).

Wu, L.

Xiong, J.

D. Z. Cao, J. Xiong, and K. Wang, “Geometrical optics in correlated imaging systems,” Phys. Rev. A 71, 013801 (2005).
[Crossref]

Xu, W.

W. Gong, C. Zhao, H. Yu, M. Chen, H. Wang, W. Xu, and S. Han, “Three-dimensional ghost imaging lidar via sparsity constraint,” Sci. Rep. 6, 26133 (2013).
[Crossref]

M. Chen, E. Li, W. Gong, Z. Bo, X. Xu, C. Zhao, X. Shen, W. Xu, and S. Han, “Ghost imaging lidar via sparsity constraints in real atmosphere,” Opt. Photon. J. 3, 83–85 (2013).
[Crossref]

C. Zhao, W. Gong, M. Chen, E. Li, H. Wang, W. Xu, and S. Han, “Ghost imaging lidar via sparsity constraints,” Appl. Phys. Lett. 101, 141123 (2012).
[Crossref]

Xu, X.

M. Chen, E. Li, W. Gong, Z. Bo, X. Xu, C. Zhao, X. Shen, W. Xu, and S. Han, “Ghost imaging lidar via sparsity constraints in real atmosphere,” Opt. Photon. J. 3, 83–85 (2013).
[Crossref]

Young, W. C.

Yu, H.

W. Gong, C. Zhao, H. Yu, M. Chen, H. Wang, W. Xu, and S. Han, “Three-dimensional ghost imaging lidar via sparsity constraint,” Sci. Rep. 6, 26133 (2013).
[Crossref]

Yu, X.

X. Yu, G. Hong, Y. Ling, and R. Shu, “Research on range-Doppler homodyne detection system,” Proc. SPIE 8196, 819618 (2011).
[Crossref]

Zeng, G.

Zhai, Y.

Zhang, D.

C. Wang, D. Zhang, Y. Bai, and B. Chen, “Ghost imaging for a reflected object with a rough surface,” Phys. Rev. A. 82, 063814 (2010).
[Crossref]

D. Zhang, Y. Zhai, L. Wu, and X. Chen, “Correlated two-photon imaging with true thermal light,” Opt. Lett. 30, 2354–2356 (2005).
[Crossref] [PubMed]

Zhang, M.

M. Zhang, Q. Wei, X. Shen, Y. Liu, H. Liu, and S. Han, “Statistical optics based numerical modeling of ghost imaging and its experimental approval,” Acta. Optica. Sinica. 27, 1858–1866 (2007).

Zhang, P.

W. Gong, P. Zhang, X. Shen, and S. Han, “Ghost “pinhole” imaging in Fraunhofer region,” Appl. Phys. Lett. 95, 071110 (2009).
[Crossref]

Zhao, C.

W. Gong, C. Zhao, H. Yu, M. Chen, H. Wang, W. Xu, and S. Han, “Three-dimensional ghost imaging lidar via sparsity constraint,” Sci. Rep. 6, 26133 (2013).
[Crossref]

M. Chen, E. Li, W. Gong, Z. Bo, X. Xu, C. Zhao, X. Shen, W. Xu, and S. Han, “Ghost imaging lidar via sparsity constraints in real atmosphere,” Opt. Photon. J. 3, 83–85 (2013).
[Crossref]

C. Zhao, W. Gong, M. Chen, E. Li, H. Wang, W. Xu, and S. Han, “Ghost imaging lidar via sparsity constraints,” Appl. Phys. Lett. 101, 141123 (2012).
[Crossref]

Zhu, Y.

Acta. Optica. Sinica. (1)

M. Zhang, Q. Wei, X. Shen, Y. Liu, H. Liu, and S. Han, “Statistical optics based numerical modeling of ghost imaging and its experimental approval,” Acta. Optica. Sinica. 27, 1858–1866 (2007).

Appl. Opt. (1)

Appl. Phys. Lett. (2)

W. Gong, P. Zhang, X. Shen, and S. Han, “Ghost “pinhole” imaging in Fraunhofer region,” Appl. Phys. Lett. 95, 071110 (2009).
[Crossref]

C. Zhao, W. Gong, M. Chen, E. Li, H. Wang, W. Xu, and S. Han, “Ghost imaging lidar via sparsity constraints,” Appl. Phys. Lett. 101, 141123 (2012).
[Crossref]

Chin. Opt. Lett. (1)

J. Mod. Opt. (1)

A. Gatti, M. Bache, D. Magatti, E. Brambilla, F. Ferri, and L. A. Lugiato, “Coherent imaging with pseudo-thermal incoherent light,” J. Mod. Opt. 53, 739–760 (2006).
[Crossref]

J. Opt. Soc. Am. B (1)

Laser. Phys. Lett. (1)

M. D. Angelo and Y. Shih, “Quantum imaging,” Laser. Phys. Lett. 2, 567–596 (2005).
[Crossref]

lightwave Technol. (1)

A. Peter, C. Allen, and R. Hui, “Chirped lidar using simplified homodyne detection,” lightwave Technol. 27, 3351 (2009).
[Crossref]

Opt. Lett. (2)

Opt. Photon. J. (1)

M. Chen, E. Li, W. Gong, Z. Bo, X. Xu, C. Zhao, X. Shen, W. Xu, and S. Han, “Ghost imaging lidar via sparsity constraints in real atmosphere,” Opt. Photon. J. 3, 83–85 (2013).
[Crossref]

Photon. Res. (1)

Phys. Lett. A. (1)

W. Gong and S. Han, “A method to improve the visibility of ghost images obtained by thermal light,” Phys. Lett. A. 374, 1005 (2010).
[Crossref]

Phys. Rev. A (1)

D. Z. Cao, J. Xiong, and K. Wang, “Geometrical optics in correlated imaging systems,” Phys. Rev. A 71, 013801 (2005).
[Crossref]

Phys. Rev. A. (2)

N. D. Hardy and J. H. Shapiro, “Computational ghost imaging versus imaging laser radar for three-dimensional imaging,” Phys. Rev. A. 87, 023820 (2013).
[Crossref]

C. Wang, D. Zhang, Y. Bai, and B. Chen, “Ghost imaging for a reflected object with a rough surface,” Phys. Rev. A. 82, 063814 (2010).
[Crossref]

Phys. Rev. Lett. (2)

F. Ferri, D. Magatti, L. A. Lugiato, and A. Gatti, “Differential ghost imaging,” Phys. Rev. Lett. 104, 253603 (2010).
[Crossref] [PubMed]

F. Ferri, D. Magatti, A. Gatti, M. Bache, E. Brambilla, and L. A. Lugiato, “High-resolution ghost image and ghost diffraction experiments with thermal light,” Phys. Rev. Lett. 94, 183602 (2005).
[Crossref] [PubMed]

Proc. SPIE (2)

X. Yu, G. Hong, Y. Ling, and R. Shu, “Research on range-Doppler homodyne detection system,” Proc. SPIE 8196, 819618 (2011).
[Crossref]

B. Stann, B. C. Redman, W. Lawler, M. Giza, J. Dammann, and K. Krapels, “Chirped amplitude modulation ladar for range and Doppler measurements and 3-D imaging,” Proc. SPIE 6550, 655005 (2007).
[Crossref]

Quantum Inf. Process. (1)

J. H. Shapiro and R. W. Boyd, “The physics of ghost imaging,” Quantum Inf. Process. 11, 949–993 (2012).
[Crossref]

Sci. Rep. (1)

W. Gong, C. Zhao, H. Yu, M. Chen, H. Wang, W. Xu, and S. Han, “Three-dimensional ghost imaging lidar via sparsity constraint,” Sci. Rep. 6, 26133 (2013).
[Crossref]

Other (5)

J. W. Strohbehn, Laser Beam Propagation in the Atmosphere (Springer, 1978).
[Crossref]

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1968).

V. V. Protopopov, Laser Heterodyning (Springer, 2009).
[Crossref]

J. W. Goodman, Statistical Optics (Wiley, 1985).

C. Allen, Y. Cobanoglu, S. K. Chong, and S. Gogineni, “Performance of a 1319 nm laser radar using RF pulse compression,” in Geoscience and Remote Sensing Symposium (IEEE, 2001), pp.997–999.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 The schematic of pulse-compression ghost imaging lidar via coherent detection.
Fig. 2
Fig. 2 Schematic of simulation and process.
Fig. 3
Fig. 3 Simulation results of pulse-compression GI lidar for a static scenario (the target consists of three planar objects). (a), (b) and (c) are the intensity spectrum and image reconstruction results by using 1, 25, and 100 coherent receivers, respectively (averaged 20000 measurements); Column (1)–(3) present the intensity spectrum of the 20000 pulse, the intensity spectrum of a single pulse, GI reconstruction results for peak frequency component Line1 and Line2, respectively. The different colors presents the tomographic images at different ranges. In addition, the frequency of Line1 and Line2 are fLine1 ≈ 3.331 MHz and fLine2 ≈ 3.338 MHz, and the corresponding distance are zLine1 ≈ 199.86 m and zLine2 ≈ 200.29 m.
Fig. 4
Fig. 4 Simulation results of pulse-compression GI lidar for a scenario with moving objects. The setup of the target is the same as Fig. 3 except for that planar object 1 and 2 has a radial velocity 0.1m/s and 1m/s, respectively. (a) and (b) are the Doppler domain and range-Doppler region of the intensity spectrum of the random sparse detection array with 100 detectors, respectively. (c)–(g) are GI reconstruction results for the peak frequency components Line1–Line5 (averaged 20000 measurements); (h)–(j) are the reconstruction image of the object 1, object 3 and object 2, respectively; (k) is the reconstruction image for the 3D target. The different colors presents the tomographic images at different ranges.
Fig. 5
Fig. 5 Simulation results of conventional pulsed 3D GI lidar and pulse-compression GI lidar in different level of stray light (with 25 random sparse detectors and averaged 5000 measurements). The upper line is the reconstruction results of conventional pulsed 3D GI lidar and the bottom line is the reconstruction results obtained by pulse-compression GI lidar. (a) SN R = 1 dB; (b) SN R = 3 dB; (c) SN R = 5 dB; (d) SN R = 10 dB. The signal-to-noise ratio for image δ is given upon each reconstruction results.

Equations (24)

Equations on this page are rendered with MathJax. Learn more.

Δ G ( 2 , 2 ) ( x r , x t , f ) = I r ( x r ) I t ( x t , f ) I r ( x r ) I t ( x t , f ) ,
E s , n ( x s , t ) = [ 1 + m s ( t n T ) ] P ( t n T ) E s , n ( x s ) ,
P ( t ) = { 1 , 0 < t T 0 0 , e l s e
E s , n ( x s ) E s , n ( x s ) = I 0 δ ( x s x s ) ,
s ( t ) = cos ( 2 π f 0 t + π β t 2 ) .
I n ( x r ) d t | d x s E s , n ( x s , t 2 f r c ) exp ( j 2 π x r x s λ f r ) | 2 = d t [ 1 + m s ( t 2 f r c n T ) ] 2 P 2 ( t 2 f r c n T ) | d x s E s , n ( x s ) exp ( j 2 π x r x s λ f r ) | 2 | d x s E s , n ( x s ) exp ( j 2 π x r x s λ f r ) | 2 ,
E o , z i , n ( x o , t ) = exp ( j k z i ) j λ z i d x s E s , n ( x s , t z i c ) exp [ j π ( x o x s ) 2 λ z i ] ,
E t , z i , n ( x t , t ) = exp ( j k z i ) j λ z i d x o E o , z i , n ( x o , t z i c ) o z i ( x o ) exp [ j π ( x t x o ) 2 λ z i ] ,
E t , n ( x t , t ) = i E t , z i , n ( x t , t ) = i exp ( j 2 k z i ) ( j λ z i ) 2 × d x s d x o E s , n ( x s , t 2 z i c ) exp [ j π ( x o x s ) 2 λ z i ] o z i ( x o ) exp [ j π ( x t x o ) 2 λ z i ] .
E t , n ( x t , t ) = i { 1 + m s [ t 2 z i , n c n T ] } P [ t 2 z i , n c n T ] exp [ j 2 π f d i t ] E t , i , n ( x t ) ,
E t , i , n ( x t ) = A t , i , n ( x t ) exp [ j ϕ t , i , n ( x t ) ] exp ( j 2 k z i 0 ) ( j λ z i , n ) 2 d x s d x o E s , n ( x s ) exp [ j π ( x o x s ) 2 λ z i , n ] o z i , n ( x o ) exp [ j π ( x t x o ) 2 λ z i , n ] .
E L O , n ( x t , t ) = [ 1 + m s ( t n T ) ] P ( t n T ) A L O exp [ j ϕ L O , n ] ,
E t , n ( x t , t ) + E s t , n ( x t , t ) + E L O , n ( x t , t ) E t , n ( x t , t ) + E s t , n ( x t , t ) E L O , n ( x t , t ) E t , n ( x t , t ) + E s t , n ( x t , t ) + E L O , n ( x t , t ) exp ( j π / 2 ) E t , n ( x t , t ) + E s t , n ( x t , t ) E L O , n ( x t , t ) exp ( j π / 2 )
I : | E t , n ( x t , t ) + E s t , n ( x t , t ) + E L O , n ( x t , t ) | 2 | E t , n ( x t , t ) + E s t , n ( x t , t ) E L O , n ( x t , t ) | 2 Q : | E t , n ( x t , t ) + E s t , n ( x t , t ) + E L O , n ( x t , t ) exp ( j π / 2 ) | 2 | E t , n ( x t , t ) + E s t , n ( x t , t ) E L O , n ( x t , t ) exp ( j π / 2 ) | 2 .
I : 2 [ E t , n ( x t , t ) + E L O , n ( x t , t ) + E t , n ( x t , t ) E L O , n ( x t , t ) ] Q : 2 [ E t , n ( x t , t ) + E L O , n ( x t , t ) exp ( j π / 2 ) + E t , n ( x t , t ) E L O , n ( x t , t ) exp ( j π / 2 ) ] ,
i I , n ( x t , t ) i { 1 + m 2 cos ( 4 π β z i , n t / c + α i , n ) + m s ( t 2 z i , n / c n T ) + m s ( t n T ) } × P ( t n T ) A L O A t , i , n ( x t ) cos [ 2 π f d i t + ϕ t , i , n ( x t ) φ L O , n ] i Q , n ( x t , t ) i { 1 + m 2 cos ( 4 π β z i , n t / c + α i , n ) + m s ( t 2 z i , n / c n T ) + m s ( t n T ) } × P ( t n T ) A L O A t , i , n ( x t ) sin [ 2 π f d i t + ϕ t , i , n ( x t ) φ L O , n ] ,
i ˜ n ( x t , t ) = B P F [ i I , n ( x t , t ) ] + j B P F [ i Q , n ( x t , t ) ] = i m 2 cos [ 4 π β z i , n t / c + α i , n ] P ( t n T ) × A L O A t , i , n ( x t ) exp { j [ 2 π f d i t + ϕ t , i , n ( x t ) φ L O , n ] } .
I t , n ( x t , f ) i { sin c 2 [ T 0 ( f f d i ) ] + m 2 4 sin c 2 [ T 0 ( f f d i 2 z i , n β c ) ] } | A L O | 2 | A t , i , n ( x t ) | 2 ,
I t , n ( x t , f ) i m 2 4 sin c 2 [ T 0 ( f 2 z i 0 β c ) ] | A L O | 2 | A t , i , n ( x t ) | 2 .
Δ G ( 2 , 2 ) ( x r , x t , f = 2 z i 0 β / c } ) m 2 4 | A L O | 2 d x o O z i 0 ( x o ) sin c 2 [ D s λ f r ( x r f r z i 0 x o ) ] .
Δ G ( 2 , 2 ) ( x r , x t , f = f d i ) | A L O | 2 d x o O z i , n ( x o ) sin c 2 [ D s λ f r ( x r f r z i , n x o ) ] .
Δ G ( 2 , 2 ) ( x r , x t , f = f b i , n ) m 2 4 | A L O | 2 d x o O z i , n ( x o ) sin c 2 [ D s λ f r ( x r f r z i , n x o ) ] .
z i , n = c ( f b i , n f d i ) / 2 β v i = λ f d i / 2
Δ G ( 2 , 2 ) ( x r , f ) = 1 N n I r , n ( x r ) [ k I t , n , k ( f ) γ x r I r , n ( x r ) ]

Metrics