Abstract

A highly sensitive ultraviolet A (UVA) and violet photodetector based on p-type single-layer graphene (SLG)-TiO2 heterostructure was fabricated by transferring chemical vapor deposition derived SLG on the surface of commercial single-crystal TiO2 wafer. Optoelectronic analysis reveals the as-fabricated Schottky junction PD was highly sensitive to light illumination in UVA and violet range, with peak sensitivity at 410 nm and excellent stability and reproducibility, but virtually blind to illumination with wavelength less than 350 nm or more than 460 nm. The on/off ratio of the device was calculated to be 6.8 × 104, which is better than the majority of previously reported TiO2 based PDs. What is more, the rise/fall time were estimated to be 0.74/1.18 ms, much faster than other TiO2 based counterparts. The totality of the above result signifies that the present SLG-TiO2 Schottky junction photodetector may have promising application in future high-speed, high-sensitivity optoelectronic nanodevices and systems.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Single-layer graphene electrode enhanced sensitivity and response speed of β-Ga2O3 solar-blind photodetector

Han Wu, Yuanqi Huang, Yusong Zhi, Xia Wang, Xulong Chu, Zhengwei Chen, Peigang Li, Zhenping Wu, and Weihua Tang
Opt. Mater. Express 9(3) 1394-1403 (2019)

Tungsten-disulphide-based heterojunction photodetector

Harith Ahmad, Haroon Rashid, Mohammad Faizal Ismail, and Kavintheran Thambiratnam
Appl. Opt. 58(15) 4014-4019 (2019)

Bilayer graphene based surface passivation enhanced nano structured self-powered near-infrared photodetector

Longhui Zeng, Chao Xie, Lili Tao, Hui Long, Chunyin Tang, Yuen H. Tsang, and Jiansheng Jie
Opt. Express 23(4) 4839-4846 (2015)

References

  • View by:
  • |
  • |
  • |

  1. X. Yu, Z. Zhao, J. Zhang, W. Guo, J. Qiu, D. Li, Z. Li, X. Mou, L. Li, A. Li, and H. Liu, “Rutile nanorod/anatase nanowire junction array as both sensor and power supplier for high-performance, self-Powered, wireless UV photodetector,” Small 12(20), 2759–2767 (2016).
    [Crossref] [PubMed]
  2. M. Peng, Y. Liu, A. Yu, Y. Zhang, C. Liu, J. Liu, W. Wu, K. Zhang, X. Shi, J. Kou, J. Zhai, and Z. L. Wang, “Flexible self-powered GaN ultraviolet photoswitch with piezo-phototronic effect enhanced on/off ratio,” ACS Nano 10(1), 1572–1579 (2016).
    [Crossref] [PubMed]
  3. Q. Wang, J. J. Li, and C. Z. Gu, “Enhanced UV response of single anodic TiO2 nanotube: effect of water-modified microstructures,” J. Phys. Chem. C 116(32), 16864–16869 (2012).
    [Crossref]
  4. Y. Han, G. Wu, H. Li, M. Wang, and H. Chen, “Highly efficient ultraviolet photodetectors based on TiO2 nanocrystal-polymer composites via wet processing,” Nanotechnology 21(18), 185708 (2010).
    [Crossref] [PubMed]
  5. L. B. Wang, W. Y. Yang, H. N. Chong, L. Wang, F. M. Gao, L. H. Tian, and Z. B. Yang, “Efficient ultraviolet photodetectors based on TiO2 nanotube arrays with tailored structures,” RSC Advances 5(65), 52388–52394 (2015).
    [Crossref]
  6. H. L. Xue, X. Z. Kong, Z. R. Liu, C. X. Liu, J. R. Zhou, W. Y. Chen, S. P. Ruan, and Q. Xu, “TiO2 based metal-semiconductor-metal ultraviolet photodetectors,” Appl. Phys. Lett. 90(20), 201118 (2007).
    [Crossref]
  7. D. I. Son, H. Y. Yang, T. W. Kim, and W. I. Park, “Photoresponse mechanisms of ultraviolet photodetectors based on colloidal ZnO quantum dot-graphene nanocomposites,” Appl. Phys. Lett. 102(2), 021105 (2013).
    [Crossref]
  8. Y. Liang, H. Liang, X. D. Xiao, and S. K. Hark, “The epitaxial growth of ZnS nanowire arrays and their applications in UV-light detection,” J. Mater. Chem. 22(3), 1199–1205 (2012).
    [Crossref]
  9. K. Zheng, F. Meng, L. Jiang, Q. Yan, H. H. Hng, and X. Chen, “Visible photoresponse of single-layer graphene decorated with TiO2 nanoparticles,” Small 9(12), 2076–2080 (2013).
    [Crossref] [PubMed]
  10. Y. Xie, L. Wei, G. Wei, Q. Li, D. Wang, Y. Chen, S. Yan, G. Liu, L. Mei, and J. Jiao, “A self-powered UV photodetector based on TiO2 nanorod arrays,” Nanoscale Res. Lett. 8(1), 188 (2013).
    [Crossref] [PubMed]
  11. E. Hosono, S. Fujihara, K. Kakiuchi, and H. Imai, “Growth of submicrometer-scale rectangular parallelepiped rutile TiO2 films in aqueous TiCl3 solutions under hydrothermal conditions,” J. Am. Chem. Soc. 126(25), 7790–7791 (2004).
    [Crossref] [PubMed]
  12. C. Lee, X. Wei, J. W. Kysar, and J. Hone, “Measurement of the elastic properties and intrinsic strength of monolayer graphene,” Science 321(5887), 385–388 (2008).
    [Crossref] [PubMed]
  13. K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature 457(7230), 706–710 (2009).
    [Crossref] [PubMed]
  14. X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo, and R. S. Ruoff, “Transfer of large-area graphene films for high-performance transparent conductive electrodes,” Nano Lett. 9(12), 4359–4363 (2009).
    [Crossref] [PubMed]
  15. X. Li, H. Zhu, K. Wang, A. Cao, J. Wei, C. Li, Y. Jia, Z. Li, X. Li, and D. Wu, “Graphene-on-silicon Schottky junction solar cells,” Adv. Mater. 22(25), 2743–2748 (2010).
    [Crossref] [PubMed]
  16. G. Eda and M. Chhowalla, “Chemically derived graphene oxide: towards large-area thin-film electronics and optoelectronics,” Adv. Mater. 22(22), 2392–2415 (2010).
    [Crossref] [PubMed]
  17. F. Lin, S. W. Chen, J. Meng, G. Tse, X. W. Fu, F. J. Xu, B. Shen, Z. M. Liao, and D. P. Yu, “Graphene/GaN diodes for ultraviolet and visible photodetectors,” Appl. Phys. Lett. 105(7), 073103 (2014).
    [Crossref]
  18. T. Mueller, F. N. Xia, and P. Avouris, “Graphene photodetectors for high-speed optical communications,” Nat. Photonics 4(5), 297–301 (2010).
    [Crossref]
  19. X. W. Fu, Z. M. Liao, Y. B. Zhou, H. C. Wu, Y. Q. Bie, J. Xu, and D. P. Yu, “Graphene/ZnO nanowire/graphene vertical structure based fast-response ultraviolet photodetector,” Appl. Phys. Lett. 100(22), 223114 (2012).
    [Crossref]
  20. B. Nie, J. G. Hu, L. B. Luo, C. Xie, L. H. Zeng, P. Lv, F. Z. Li, J. S. Jie, M. Feng, C. Y. Wu, Y. Q. Yu, and S. H. Yu, “Monolayer graphene film on ZnO nanorod array for high-performance Schottky junction ultraviolet photodetectors,” Small 9(17), 2872–2879 (2013).
    [Crossref] [PubMed]
  21. J. Miao, W. Hu, N. Guo, Z. Lu, X. Liu, L. Liao, P. Chen, T. Jiang, S. Wu, J. C. Ho, L. Wang, X. Chen, and W. Lu, “High-responsivity graphene/InAs nanowire heterojunction near-infrared photodetectors with distinct photocurrent on/off ratios,” Small 11(8), 936–942 (2015).
    [Crossref] [PubMed]
  22. L. Zeng, C. Xie, L. Tao, H. Long, C. Tang, Y. H. Tsang, and J. Jie, “Bilayer graphene based surface passivation enhanced nano structured self-powered near-infrared photodetector,” Opt. Express 23(4), 4839–4846 (2015).
    [Crossref] [PubMed]
  23. A. I. Nusir and M. O. Manasreh, “Self-powered near-infrared photodetector based on asymmetrical Schottky interdigital contacts,” IEEE Electron Device Lett. 36(11), 1172–1175 (2015).
    [Crossref]
  24. Y. Wang, C. W. Ge, Y. F. Zou, R. Lu, K. Zheng, T. F. Zhang, Y.-Q. Yu, and L.-B. Luo, “Plasmonic indium nanoparticle-induced high-performance photoswitch for blue light detection,” Adv. Opt. Mater. 4(2), 291–296 (2016).
    [Crossref]
  25. E. Enache-Pommer, B. Liu, and E. S. Aydil, “Electron transport and recombination in dye-sensitized solar cells made from single-crystal rutile TiO2 nanowires,” Phys. Chem. Chem. Phys. 11(42), 9648–9652 (2009).
    [Crossref] [PubMed]
  26. A. Kumar, A. R. Madaria, and C. W. Zhou, “Growth of aligned single-crystalline rutile TiO2 nanowires on arbitrary substrates and their application in dye-sensitized solar cells,” J. Phys. Chem. C 114(17), 7787–7792 (2010).
    [Crossref]
  27. Y. An, A. Behnam, E. Pop, and A. Ural, “Metal-semiconductor-metal photodetectors based on graphene/p-type silicon Schottky junctions,” Appl. Phys. Lett. 102(1), 013110 (2013).
    [Crossref]
  28. S. Chand and S. Bala, “Analysis of current–voltage characteristics of inhomogeneous Schottky diodes at low temperatures,” Appl. Surf. Sci. 252(2), 358–363 (2005).
    [Crossref]
  29. Y. Takanashi, N. Oyama, K. Momiyama, Y. Kimura, M. Niwano, and F. Hirose, “Alpha-sexthiophene/n-Si heterojunction diodes and solar cells investigated by I-V and C-V measurements,” Synth. Met. 161(23–24), 2792–2797 (2012).
    [Crossref]
  30. L. B. Luo, J. J. Chen, M. Z. Wang, H. Hu, C. Y. Wu, Q. Li, L. Wang, J. A. Huang, and F. X. Liang, “Near-infrared light photovoltaic detector based on GaAs nanocone array/monolayer graphene Schottky junction,” Adv. Funct. Mater. 24(19), 2794–2800 (2014).
    [Crossref]
  31. Y. L. Cao, Z. T. Liu, L. M. Chen, Y. B. Tang, L. B. Luo, J. S. Jie, W. J. Zhang, S. T. Lee, and C. S. Lee, “Single-crystalline ZnTe nanowires for application as high-performance green/ultraviolet photodetector,” Opt. Express 19(7), 6100–6108 (2011).
    [Crossref] [PubMed]
  32. J. Miao, W. Hu, N. Guo, Z. Lu, X. Liu, L. Liao, P. Chen, T. Jiang, S. Wu, J. C. Ho, L. Wang, X. Chen, and W. Lu, “High-responsivity graphene/InAs nanowire heterojunction near-infrared photodetectors with distinct photocurrent on/off ratios,” Small 11(8), 936–942 (2015).
    [Crossref] [PubMed]
  33. Y. Q. Yu, J. S. Jie, Q. Jiang, L. Wang, C. Y. Wu, Q. Peng, X. W. Zhang, Z. Wang, C. Xie, D. Wu, and Y. Jiang, “High-gain visible-blind UV photodetectors based on chlorine-doped n-type ZnS nanoribbons with tunable optoelectronic properties,” J. Mater. Chem. 21(34), 12632–12638 (2011).
    [Crossref]
  34. C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y. Bao, Y. H. Lo, and D. Wang, “ZnO nanowire UV photodetectors with high internal gain,” Nano Lett. 7(4), 1003–1009 (2007).
    [Crossref] [PubMed]
  35. J. G. Ok, J. Y. Lee, H. W. Baac, S. H. Tawfick, L. J. Guo, and A. J. Hart, “Rapid anisotropic photoconductive response of ZnO-coated aligned carbon nanotube sheets,” ACS Appl. Mater. Interfaces 6(2), 874–881 (2014).
    [Crossref] [PubMed]
  36. J. S. Jie, W. J. Zhang, Y. Jiang, X. M. Meng, Y. Q. Li, and S. T. Lee, “Photoconductive characteristics of single-crystal CdS nanoribbons,” Nano Lett. 6(9), 1887–1892 (2006).
    [Crossref] [PubMed]
  37. L. B. Luo, L. H. Zeng, C. Xie, Y. Q. Yu, F. X. Liang, C. Y. Wu, L. Wang, and J. G. Hu, “Light trapping and surface plasmon enhanced high-performance NIR photodetector,” Sci. Rep. 4, 3914 (2014).
    [Crossref] [PubMed]
  38. S. Bae, H. Kim, Y. Lee, X. Xu, J. S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y. J. Kim, K. S. Kim, B. Ozyilmaz, J. H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5(8), 574–578 (2010).
    [Crossref] [PubMed]

2016 (3)

X. Yu, Z. Zhao, J. Zhang, W. Guo, J. Qiu, D. Li, Z. Li, X. Mou, L. Li, A. Li, and H. Liu, “Rutile nanorod/anatase nanowire junction array as both sensor and power supplier for high-performance, self-Powered, wireless UV photodetector,” Small 12(20), 2759–2767 (2016).
[Crossref] [PubMed]

M. Peng, Y. Liu, A. Yu, Y. Zhang, C. Liu, J. Liu, W. Wu, K. Zhang, X. Shi, J. Kou, J. Zhai, and Z. L. Wang, “Flexible self-powered GaN ultraviolet photoswitch with piezo-phototronic effect enhanced on/off ratio,” ACS Nano 10(1), 1572–1579 (2016).
[Crossref] [PubMed]

Y. Wang, C. W. Ge, Y. F. Zou, R. Lu, K. Zheng, T. F. Zhang, Y.-Q. Yu, and L.-B. Luo, “Plasmonic indium nanoparticle-induced high-performance photoswitch for blue light detection,” Adv. Opt. Mater. 4(2), 291–296 (2016).
[Crossref]

2015 (5)

J. Miao, W. Hu, N. Guo, Z. Lu, X. Liu, L. Liao, P. Chen, T. Jiang, S. Wu, J. C. Ho, L. Wang, X. Chen, and W. Lu, “High-responsivity graphene/InAs nanowire heterojunction near-infrared photodetectors with distinct photocurrent on/off ratios,” Small 11(8), 936–942 (2015).
[Crossref] [PubMed]

L. Zeng, C. Xie, L. Tao, H. Long, C. Tang, Y. H. Tsang, and J. Jie, “Bilayer graphene based surface passivation enhanced nano structured self-powered near-infrared photodetector,” Opt. Express 23(4), 4839–4846 (2015).
[Crossref] [PubMed]

A. I. Nusir and M. O. Manasreh, “Self-powered near-infrared photodetector based on asymmetrical Schottky interdigital contacts,” IEEE Electron Device Lett. 36(11), 1172–1175 (2015).
[Crossref]

J. Miao, W. Hu, N. Guo, Z. Lu, X. Liu, L. Liao, P. Chen, T. Jiang, S. Wu, J. C. Ho, L. Wang, X. Chen, and W. Lu, “High-responsivity graphene/InAs nanowire heterojunction near-infrared photodetectors with distinct photocurrent on/off ratios,” Small 11(8), 936–942 (2015).
[Crossref] [PubMed]

L. B. Wang, W. Y. Yang, H. N. Chong, L. Wang, F. M. Gao, L. H. Tian, and Z. B. Yang, “Efficient ultraviolet photodetectors based on TiO2 nanotube arrays with tailored structures,” RSC Advances 5(65), 52388–52394 (2015).
[Crossref]

2014 (4)

F. Lin, S. W. Chen, J. Meng, G. Tse, X. W. Fu, F. J. Xu, B. Shen, Z. M. Liao, and D. P. Yu, “Graphene/GaN diodes for ultraviolet and visible photodetectors,” Appl. Phys. Lett. 105(7), 073103 (2014).
[Crossref]

J. G. Ok, J. Y. Lee, H. W. Baac, S. H. Tawfick, L. J. Guo, and A. J. Hart, “Rapid anisotropic photoconductive response of ZnO-coated aligned carbon nanotube sheets,” ACS Appl. Mater. Interfaces 6(2), 874–881 (2014).
[Crossref] [PubMed]

L. B. Luo, J. J. Chen, M. Z. Wang, H. Hu, C. Y. Wu, Q. Li, L. Wang, J. A. Huang, and F. X. Liang, “Near-infrared light photovoltaic detector based on GaAs nanocone array/monolayer graphene Schottky junction,” Adv. Funct. Mater. 24(19), 2794–2800 (2014).
[Crossref]

L. B. Luo, L. H. Zeng, C. Xie, Y. Q. Yu, F. X. Liang, C. Y. Wu, L. Wang, and J. G. Hu, “Light trapping and surface plasmon enhanced high-performance NIR photodetector,” Sci. Rep. 4, 3914 (2014).
[Crossref] [PubMed]

2013 (5)

Y. An, A. Behnam, E. Pop, and A. Ural, “Metal-semiconductor-metal photodetectors based on graphene/p-type silicon Schottky junctions,” Appl. Phys. Lett. 102(1), 013110 (2013).
[Crossref]

B. Nie, J. G. Hu, L. B. Luo, C. Xie, L. H. Zeng, P. Lv, F. Z. Li, J. S. Jie, M. Feng, C. Y. Wu, Y. Q. Yu, and S. H. Yu, “Monolayer graphene film on ZnO nanorod array for high-performance Schottky junction ultraviolet photodetectors,” Small 9(17), 2872–2879 (2013).
[Crossref] [PubMed]

K. Zheng, F. Meng, L. Jiang, Q. Yan, H. H. Hng, and X. Chen, “Visible photoresponse of single-layer graphene decorated with TiO2 nanoparticles,” Small 9(12), 2076–2080 (2013).
[Crossref] [PubMed]

Y. Xie, L. Wei, G. Wei, Q. Li, D. Wang, Y. Chen, S. Yan, G. Liu, L. Mei, and J. Jiao, “A self-powered UV photodetector based on TiO2 nanorod arrays,” Nanoscale Res. Lett. 8(1), 188 (2013).
[Crossref] [PubMed]

D. I. Son, H. Y. Yang, T. W. Kim, and W. I. Park, “Photoresponse mechanisms of ultraviolet photodetectors based on colloidal ZnO quantum dot-graphene nanocomposites,” Appl. Phys. Lett. 102(2), 021105 (2013).
[Crossref]

2012 (4)

Y. Liang, H. Liang, X. D. Xiao, and S. K. Hark, “The epitaxial growth of ZnS nanowire arrays and their applications in UV-light detection,” J. Mater. Chem. 22(3), 1199–1205 (2012).
[Crossref]

Q. Wang, J. J. Li, and C. Z. Gu, “Enhanced UV response of single anodic TiO2 nanotube: effect of water-modified microstructures,” J. Phys. Chem. C 116(32), 16864–16869 (2012).
[Crossref]

X. W. Fu, Z. M. Liao, Y. B. Zhou, H. C. Wu, Y. Q. Bie, J. Xu, and D. P. Yu, “Graphene/ZnO nanowire/graphene vertical structure based fast-response ultraviolet photodetector,” Appl. Phys. Lett. 100(22), 223114 (2012).
[Crossref]

Y. Takanashi, N. Oyama, K. Momiyama, Y. Kimura, M. Niwano, and F. Hirose, “Alpha-sexthiophene/n-Si heterojunction diodes and solar cells investigated by I-V and C-V measurements,” Synth. Met. 161(23–24), 2792–2797 (2012).
[Crossref]

2011 (2)

Y. L. Cao, Z. T. Liu, L. M. Chen, Y. B. Tang, L. B. Luo, J. S. Jie, W. J. Zhang, S. T. Lee, and C. S. Lee, “Single-crystalline ZnTe nanowires for application as high-performance green/ultraviolet photodetector,” Opt. Express 19(7), 6100–6108 (2011).
[Crossref] [PubMed]

Y. Q. Yu, J. S. Jie, Q. Jiang, L. Wang, C. Y. Wu, Q. Peng, X. W. Zhang, Z. Wang, C. Xie, D. Wu, and Y. Jiang, “High-gain visible-blind UV photodetectors based on chlorine-doped n-type ZnS nanoribbons with tunable optoelectronic properties,” J. Mater. Chem. 21(34), 12632–12638 (2011).
[Crossref]

2010 (6)

A. Kumar, A. R. Madaria, and C. W. Zhou, “Growth of aligned single-crystalline rutile TiO2 nanowires on arbitrary substrates and their application in dye-sensitized solar cells,” J. Phys. Chem. C 114(17), 7787–7792 (2010).
[Crossref]

Y. Han, G. Wu, H. Li, M. Wang, and H. Chen, “Highly efficient ultraviolet photodetectors based on TiO2 nanocrystal-polymer composites via wet processing,” Nanotechnology 21(18), 185708 (2010).
[Crossref] [PubMed]

T. Mueller, F. N. Xia, and P. Avouris, “Graphene photodetectors for high-speed optical communications,” Nat. Photonics 4(5), 297–301 (2010).
[Crossref]

X. Li, H. Zhu, K. Wang, A. Cao, J. Wei, C. Li, Y. Jia, Z. Li, X. Li, and D. Wu, “Graphene-on-silicon Schottky junction solar cells,” Adv. Mater. 22(25), 2743–2748 (2010).
[Crossref] [PubMed]

G. Eda and M. Chhowalla, “Chemically derived graphene oxide: towards large-area thin-film electronics and optoelectronics,” Adv. Mater. 22(22), 2392–2415 (2010).
[Crossref] [PubMed]

S. Bae, H. Kim, Y. Lee, X. Xu, J. S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y. J. Kim, K. S. Kim, B. Ozyilmaz, J. H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5(8), 574–578 (2010).
[Crossref] [PubMed]

2009 (3)

K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature 457(7230), 706–710 (2009).
[Crossref] [PubMed]

X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo, and R. S. Ruoff, “Transfer of large-area graphene films for high-performance transparent conductive electrodes,” Nano Lett. 9(12), 4359–4363 (2009).
[Crossref] [PubMed]

E. Enache-Pommer, B. Liu, and E. S. Aydil, “Electron transport and recombination in dye-sensitized solar cells made from single-crystal rutile TiO2 nanowires,” Phys. Chem. Chem. Phys. 11(42), 9648–9652 (2009).
[Crossref] [PubMed]

2008 (1)

C. Lee, X. Wei, J. W. Kysar, and J. Hone, “Measurement of the elastic properties and intrinsic strength of monolayer graphene,” Science 321(5887), 385–388 (2008).
[Crossref] [PubMed]

2007 (2)

C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y. Bao, Y. H. Lo, and D. Wang, “ZnO nanowire UV photodetectors with high internal gain,” Nano Lett. 7(4), 1003–1009 (2007).
[Crossref] [PubMed]

H. L. Xue, X. Z. Kong, Z. R. Liu, C. X. Liu, J. R. Zhou, W. Y. Chen, S. P. Ruan, and Q. Xu, “TiO2 based metal-semiconductor-metal ultraviolet photodetectors,” Appl. Phys. Lett. 90(20), 201118 (2007).
[Crossref]

2006 (1)

J. S. Jie, W. J. Zhang, Y. Jiang, X. M. Meng, Y. Q. Li, and S. T. Lee, “Photoconductive characteristics of single-crystal CdS nanoribbons,” Nano Lett. 6(9), 1887–1892 (2006).
[Crossref] [PubMed]

2005 (1)

S. Chand and S. Bala, “Analysis of current–voltage characteristics of inhomogeneous Schottky diodes at low temperatures,” Appl. Surf. Sci. 252(2), 358–363 (2005).
[Crossref]

2004 (1)

E. Hosono, S. Fujihara, K. Kakiuchi, and H. Imai, “Growth of submicrometer-scale rectangular parallelepiped rutile TiO2 films in aqueous TiCl3 solutions under hydrothermal conditions,” J. Am. Chem. Soc. 126(25), 7790–7791 (2004).
[Crossref] [PubMed]

Ahn, J. H.

S. Bae, H. Kim, Y. Lee, X. Xu, J. S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y. J. Kim, K. S. Kim, B. Ozyilmaz, J. H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5(8), 574–578 (2010).
[Crossref] [PubMed]

K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature 457(7230), 706–710 (2009).
[Crossref] [PubMed]

An, Y.

Y. An, A. Behnam, E. Pop, and A. Ural, “Metal-semiconductor-metal photodetectors based on graphene/p-type silicon Schottky junctions,” Appl. Phys. Lett. 102(1), 013110 (2013).
[Crossref]

Aplin, D. P. R.

C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y. Bao, Y. H. Lo, and D. Wang, “ZnO nanowire UV photodetectors with high internal gain,” Nano Lett. 7(4), 1003–1009 (2007).
[Crossref] [PubMed]

Avouris, P.

T. Mueller, F. N. Xia, and P. Avouris, “Graphene photodetectors for high-speed optical communications,” Nat. Photonics 4(5), 297–301 (2010).
[Crossref]

Aydil, E. S.

E. Enache-Pommer, B. Liu, and E. S. Aydil, “Electron transport and recombination in dye-sensitized solar cells made from single-crystal rutile TiO2 nanowires,” Phys. Chem. Chem. Phys. 11(42), 9648–9652 (2009).
[Crossref] [PubMed]

Baac, H. W.

J. G. Ok, J. Y. Lee, H. W. Baac, S. H. Tawfick, L. J. Guo, and A. J. Hart, “Rapid anisotropic photoconductive response of ZnO-coated aligned carbon nanotube sheets,” ACS Appl. Mater. Interfaces 6(2), 874–881 (2014).
[Crossref] [PubMed]

Bae, S.

S. Bae, H. Kim, Y. Lee, X. Xu, J. S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y. J. Kim, K. S. Kim, B. Ozyilmaz, J. H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5(8), 574–578 (2010).
[Crossref] [PubMed]

Bala, S.

S. Chand and S. Bala, “Analysis of current–voltage characteristics of inhomogeneous Schottky diodes at low temperatures,” Appl. Surf. Sci. 252(2), 358–363 (2005).
[Crossref]

Balakrishnan, J.

S. Bae, H. Kim, Y. Lee, X. Xu, J. S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y. J. Kim, K. S. Kim, B. Ozyilmaz, J. H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5(8), 574–578 (2010).
[Crossref] [PubMed]

Bao, X. Y.

C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y. Bao, Y. H. Lo, and D. Wang, “ZnO nanowire UV photodetectors with high internal gain,” Nano Lett. 7(4), 1003–1009 (2007).
[Crossref] [PubMed]

Behnam, A.

Y. An, A. Behnam, E. Pop, and A. Ural, “Metal-semiconductor-metal photodetectors based on graphene/p-type silicon Schottky junctions,” Appl. Phys. Lett. 102(1), 013110 (2013).
[Crossref]

Bie, Y. Q.

X. W. Fu, Z. M. Liao, Y. B. Zhou, H. C. Wu, Y. Q. Bie, J. Xu, and D. P. Yu, “Graphene/ZnO nanowire/graphene vertical structure based fast-response ultraviolet photodetector,” Appl. Phys. Lett. 100(22), 223114 (2012).
[Crossref]

Borysiak, M.

X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo, and R. S. Ruoff, “Transfer of large-area graphene films for high-performance transparent conductive electrodes,” Nano Lett. 9(12), 4359–4363 (2009).
[Crossref] [PubMed]

Cai, W.

X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo, and R. S. Ruoff, “Transfer of large-area graphene films for high-performance transparent conductive electrodes,” Nano Lett. 9(12), 4359–4363 (2009).
[Crossref] [PubMed]

Cao, A.

X. Li, H. Zhu, K. Wang, A. Cao, J. Wei, C. Li, Y. Jia, Z. Li, X. Li, and D. Wu, “Graphene-on-silicon Schottky junction solar cells,” Adv. Mater. 22(25), 2743–2748 (2010).
[Crossref] [PubMed]

Cao, Y. L.

Chand, S.

S. Chand and S. Bala, “Analysis of current–voltage characteristics of inhomogeneous Schottky diodes at low temperatures,” Appl. Surf. Sci. 252(2), 358–363 (2005).
[Crossref]

Chen, D.

X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo, and R. S. Ruoff, “Transfer of large-area graphene films for high-performance transparent conductive electrodes,” Nano Lett. 9(12), 4359–4363 (2009).
[Crossref] [PubMed]

Chen, H.

Y. Han, G. Wu, H. Li, M. Wang, and H. Chen, “Highly efficient ultraviolet photodetectors based on TiO2 nanocrystal-polymer composites via wet processing,” Nanotechnology 21(18), 185708 (2010).
[Crossref] [PubMed]

Chen, J. J.

L. B. Luo, J. J. Chen, M. Z. Wang, H. Hu, C. Y. Wu, Q. Li, L. Wang, J. A. Huang, and F. X. Liang, “Near-infrared light photovoltaic detector based on GaAs nanocone array/monolayer graphene Schottky junction,” Adv. Funct. Mater. 24(19), 2794–2800 (2014).
[Crossref]

Chen, L. M.

Chen, P.

J. Miao, W. Hu, N. Guo, Z. Lu, X. Liu, L. Liao, P. Chen, T. Jiang, S. Wu, J. C. Ho, L. Wang, X. Chen, and W. Lu, “High-responsivity graphene/InAs nanowire heterojunction near-infrared photodetectors with distinct photocurrent on/off ratios,” Small 11(8), 936–942 (2015).
[Crossref] [PubMed]

J. Miao, W. Hu, N. Guo, Z. Lu, X. Liu, L. Liao, P. Chen, T. Jiang, S. Wu, J. C. Ho, L. Wang, X. Chen, and W. Lu, “High-responsivity graphene/InAs nanowire heterojunction near-infrared photodetectors with distinct photocurrent on/off ratios,” Small 11(8), 936–942 (2015).
[Crossref] [PubMed]

Chen, S. W.

F. Lin, S. W. Chen, J. Meng, G. Tse, X. W. Fu, F. J. Xu, B. Shen, Z. M. Liao, and D. P. Yu, “Graphene/GaN diodes for ultraviolet and visible photodetectors,” Appl. Phys. Lett. 105(7), 073103 (2014).
[Crossref]

Chen, W. Y.

H. L. Xue, X. Z. Kong, Z. R. Liu, C. X. Liu, J. R. Zhou, W. Y. Chen, S. P. Ruan, and Q. Xu, “TiO2 based metal-semiconductor-metal ultraviolet photodetectors,” Appl. Phys. Lett. 90(20), 201118 (2007).
[Crossref]

Chen, X.

J. Miao, W. Hu, N. Guo, Z. Lu, X. Liu, L. Liao, P. Chen, T. Jiang, S. Wu, J. C. Ho, L. Wang, X. Chen, and W. Lu, “High-responsivity graphene/InAs nanowire heterojunction near-infrared photodetectors with distinct photocurrent on/off ratios,” Small 11(8), 936–942 (2015).
[Crossref] [PubMed]

J. Miao, W. Hu, N. Guo, Z. Lu, X. Liu, L. Liao, P. Chen, T. Jiang, S. Wu, J. C. Ho, L. Wang, X. Chen, and W. Lu, “High-responsivity graphene/InAs nanowire heterojunction near-infrared photodetectors with distinct photocurrent on/off ratios,” Small 11(8), 936–942 (2015).
[Crossref] [PubMed]

K. Zheng, F. Meng, L. Jiang, Q. Yan, H. H. Hng, and X. Chen, “Visible photoresponse of single-layer graphene decorated with TiO2 nanoparticles,” Small 9(12), 2076–2080 (2013).
[Crossref] [PubMed]

Chen, Y.

Y. Xie, L. Wei, G. Wei, Q. Li, D. Wang, Y. Chen, S. Yan, G. Liu, L. Mei, and J. Jiao, “A self-powered UV photodetector based on TiO2 nanorod arrays,” Nanoscale Res. Lett. 8(1), 188 (2013).
[Crossref] [PubMed]

Chhowalla, M.

G. Eda and M. Chhowalla, “Chemically derived graphene oxide: towards large-area thin-film electronics and optoelectronics,” Adv. Mater. 22(22), 2392–2415 (2010).
[Crossref] [PubMed]

Choi, J. Y.

K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature 457(7230), 706–710 (2009).
[Crossref] [PubMed]

Chong, H. N.

L. B. Wang, W. Y. Yang, H. N. Chong, L. Wang, F. M. Gao, L. H. Tian, and Z. B. Yang, “Efficient ultraviolet photodetectors based on TiO2 nanotube arrays with tailored structures,” RSC Advances 5(65), 52388–52394 (2015).
[Crossref]

Colombo, L.

X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo, and R. S. Ruoff, “Transfer of large-area graphene films for high-performance transparent conductive electrodes,” Nano Lett. 9(12), 4359–4363 (2009).
[Crossref] [PubMed]

Dayeh, S. A.

C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y. Bao, Y. H. Lo, and D. Wang, “ZnO nanowire UV photodetectors with high internal gain,” Nano Lett. 7(4), 1003–1009 (2007).
[Crossref] [PubMed]

Eda, G.

G. Eda and M. Chhowalla, “Chemically derived graphene oxide: towards large-area thin-film electronics and optoelectronics,” Adv. Mater. 22(22), 2392–2415 (2010).
[Crossref] [PubMed]

Enache-Pommer, E.

E. Enache-Pommer, B. Liu, and E. S. Aydil, “Electron transport and recombination in dye-sensitized solar cells made from single-crystal rutile TiO2 nanowires,” Phys. Chem. Chem. Phys. 11(42), 9648–9652 (2009).
[Crossref] [PubMed]

Feng, M.

B. Nie, J. G. Hu, L. B. Luo, C. Xie, L. H. Zeng, P. Lv, F. Z. Li, J. S. Jie, M. Feng, C. Y. Wu, Y. Q. Yu, and S. H. Yu, “Monolayer graphene film on ZnO nanorod array for high-performance Schottky junction ultraviolet photodetectors,” Small 9(17), 2872–2879 (2013).
[Crossref] [PubMed]

Fu, X. W.

F. Lin, S. W. Chen, J. Meng, G. Tse, X. W. Fu, F. J. Xu, B. Shen, Z. M. Liao, and D. P. Yu, “Graphene/GaN diodes for ultraviolet and visible photodetectors,” Appl. Phys. Lett. 105(7), 073103 (2014).
[Crossref]

X. W. Fu, Z. M. Liao, Y. B. Zhou, H. C. Wu, Y. Q. Bie, J. Xu, and D. P. Yu, “Graphene/ZnO nanowire/graphene vertical structure based fast-response ultraviolet photodetector,” Appl. Phys. Lett. 100(22), 223114 (2012).
[Crossref]

Fujihara, S.

E. Hosono, S. Fujihara, K. Kakiuchi, and H. Imai, “Growth of submicrometer-scale rectangular parallelepiped rutile TiO2 films in aqueous TiCl3 solutions under hydrothermal conditions,” J. Am. Chem. Soc. 126(25), 7790–7791 (2004).
[Crossref] [PubMed]

Gao, F. M.

L. B. Wang, W. Y. Yang, H. N. Chong, L. Wang, F. M. Gao, L. H. Tian, and Z. B. Yang, “Efficient ultraviolet photodetectors based on TiO2 nanotube arrays with tailored structures,” RSC Advances 5(65), 52388–52394 (2015).
[Crossref]

Ge, C. W.

Y. Wang, C. W. Ge, Y. F. Zou, R. Lu, K. Zheng, T. F. Zhang, Y.-Q. Yu, and L.-B. Luo, “Plasmonic indium nanoparticle-induced high-performance photoswitch for blue light detection,” Adv. Opt. Mater. 4(2), 291–296 (2016).
[Crossref]

Gu, C. Z.

Q. Wang, J. J. Li, and C. Z. Gu, “Enhanced UV response of single anodic TiO2 nanotube: effect of water-modified microstructures,” J. Phys. Chem. C 116(32), 16864–16869 (2012).
[Crossref]

Guo, L. J.

J. G. Ok, J. Y. Lee, H. W. Baac, S. H. Tawfick, L. J. Guo, and A. J. Hart, “Rapid anisotropic photoconductive response of ZnO-coated aligned carbon nanotube sheets,” ACS Appl. Mater. Interfaces 6(2), 874–881 (2014).
[Crossref] [PubMed]

Guo, N.

J. Miao, W. Hu, N. Guo, Z. Lu, X. Liu, L. Liao, P. Chen, T. Jiang, S. Wu, J. C. Ho, L. Wang, X. Chen, and W. Lu, “High-responsivity graphene/InAs nanowire heterojunction near-infrared photodetectors with distinct photocurrent on/off ratios,” Small 11(8), 936–942 (2015).
[Crossref] [PubMed]

J. Miao, W. Hu, N. Guo, Z. Lu, X. Liu, L. Liao, P. Chen, T. Jiang, S. Wu, J. C. Ho, L. Wang, X. Chen, and W. Lu, “High-responsivity graphene/InAs nanowire heterojunction near-infrared photodetectors with distinct photocurrent on/off ratios,” Small 11(8), 936–942 (2015).
[Crossref] [PubMed]

Guo, W.

X. Yu, Z. Zhao, J. Zhang, W. Guo, J. Qiu, D. Li, Z. Li, X. Mou, L. Li, A. Li, and H. Liu, “Rutile nanorod/anatase nanowire junction array as both sensor and power supplier for high-performance, self-Powered, wireless UV photodetector,” Small 12(20), 2759–2767 (2016).
[Crossref] [PubMed]

Han, B.

X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo, and R. S. Ruoff, “Transfer of large-area graphene films for high-performance transparent conductive electrodes,” Nano Lett. 9(12), 4359–4363 (2009).
[Crossref] [PubMed]

Han, Y.

Y. Han, G. Wu, H. Li, M. Wang, and H. Chen, “Highly efficient ultraviolet photodetectors based on TiO2 nanocrystal-polymer composites via wet processing,” Nanotechnology 21(18), 185708 (2010).
[Crossref] [PubMed]

Hark, S. K.

Y. Liang, H. Liang, X. D. Xiao, and S. K. Hark, “The epitaxial growth of ZnS nanowire arrays and their applications in UV-light detection,” J. Mater. Chem. 22(3), 1199–1205 (2012).
[Crossref]

Hart, A. J.

J. G. Ok, J. Y. Lee, H. W. Baac, S. H. Tawfick, L. J. Guo, and A. J. Hart, “Rapid anisotropic photoconductive response of ZnO-coated aligned carbon nanotube sheets,” ACS Appl. Mater. Interfaces 6(2), 874–881 (2014).
[Crossref] [PubMed]

Hirose, F.

Y. Takanashi, N. Oyama, K. Momiyama, Y. Kimura, M. Niwano, and F. Hirose, “Alpha-sexthiophene/n-Si heterojunction diodes and solar cells investigated by I-V and C-V measurements,” Synth. Met. 161(23–24), 2792–2797 (2012).
[Crossref]

Hng, H. H.

K. Zheng, F. Meng, L. Jiang, Q. Yan, H. H. Hng, and X. Chen, “Visible photoresponse of single-layer graphene decorated with TiO2 nanoparticles,” Small 9(12), 2076–2080 (2013).
[Crossref] [PubMed]

Ho, J. C.

J. Miao, W. Hu, N. Guo, Z. Lu, X. Liu, L. Liao, P. Chen, T. Jiang, S. Wu, J. C. Ho, L. Wang, X. Chen, and W. Lu, “High-responsivity graphene/InAs nanowire heterojunction near-infrared photodetectors with distinct photocurrent on/off ratios,” Small 11(8), 936–942 (2015).
[Crossref] [PubMed]

J. Miao, W. Hu, N. Guo, Z. Lu, X. Liu, L. Liao, P. Chen, T. Jiang, S. Wu, J. C. Ho, L. Wang, X. Chen, and W. Lu, “High-responsivity graphene/InAs nanowire heterojunction near-infrared photodetectors with distinct photocurrent on/off ratios,” Small 11(8), 936–942 (2015).
[Crossref] [PubMed]

Hone, J.

C. Lee, X. Wei, J. W. Kysar, and J. Hone, “Measurement of the elastic properties and intrinsic strength of monolayer graphene,” Science 321(5887), 385–388 (2008).
[Crossref] [PubMed]

Hong, B. H.

S. Bae, H. Kim, Y. Lee, X. Xu, J. S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y. J. Kim, K. S. Kim, B. Ozyilmaz, J. H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5(8), 574–578 (2010).
[Crossref] [PubMed]

K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature 457(7230), 706–710 (2009).
[Crossref] [PubMed]

Hosono, E.

E. Hosono, S. Fujihara, K. Kakiuchi, and H. Imai, “Growth of submicrometer-scale rectangular parallelepiped rutile TiO2 films in aqueous TiCl3 solutions under hydrothermal conditions,” J. Am. Chem. Soc. 126(25), 7790–7791 (2004).
[Crossref] [PubMed]

Hu, H.

L. B. Luo, J. J. Chen, M. Z. Wang, H. Hu, C. Y. Wu, Q. Li, L. Wang, J. A. Huang, and F. X. Liang, “Near-infrared light photovoltaic detector based on GaAs nanocone array/monolayer graphene Schottky junction,” Adv. Funct. Mater. 24(19), 2794–2800 (2014).
[Crossref]

Hu, J. G.

L. B. Luo, L. H. Zeng, C. Xie, Y. Q. Yu, F. X. Liang, C. Y. Wu, L. Wang, and J. G. Hu, “Light trapping and surface plasmon enhanced high-performance NIR photodetector,” Sci. Rep. 4, 3914 (2014).
[Crossref] [PubMed]

B. Nie, J. G. Hu, L. B. Luo, C. Xie, L. H. Zeng, P. Lv, F. Z. Li, J. S. Jie, M. Feng, C. Y. Wu, Y. Q. Yu, and S. H. Yu, “Monolayer graphene film on ZnO nanorod array for high-performance Schottky junction ultraviolet photodetectors,” Small 9(17), 2872–2879 (2013).
[Crossref] [PubMed]

Hu, W.

J. Miao, W. Hu, N. Guo, Z. Lu, X. Liu, L. Liao, P. Chen, T. Jiang, S. Wu, J. C. Ho, L. Wang, X. Chen, and W. Lu, “High-responsivity graphene/InAs nanowire heterojunction near-infrared photodetectors with distinct photocurrent on/off ratios,” Small 11(8), 936–942 (2015).
[Crossref] [PubMed]

J. Miao, W. Hu, N. Guo, Z. Lu, X. Liu, L. Liao, P. Chen, T. Jiang, S. Wu, J. C. Ho, L. Wang, X. Chen, and W. Lu, “High-responsivity graphene/InAs nanowire heterojunction near-infrared photodetectors with distinct photocurrent on/off ratios,” Small 11(8), 936–942 (2015).
[Crossref] [PubMed]

Huang, J. A.

L. B. Luo, J. J. Chen, M. Z. Wang, H. Hu, C. Y. Wu, Q. Li, L. Wang, J. A. Huang, and F. X. Liang, “Near-infrared light photovoltaic detector based on GaAs nanocone array/monolayer graphene Schottky junction,” Adv. Funct. Mater. 24(19), 2794–2800 (2014).
[Crossref]

Iijima, S.

S. Bae, H. Kim, Y. Lee, X. Xu, J. S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y. J. Kim, K. S. Kim, B. Ozyilmaz, J. H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5(8), 574–578 (2010).
[Crossref] [PubMed]

Imai, H.

E. Hosono, S. Fujihara, K. Kakiuchi, and H. Imai, “Growth of submicrometer-scale rectangular parallelepiped rutile TiO2 films in aqueous TiCl3 solutions under hydrothermal conditions,” J. Am. Chem. Soc. 126(25), 7790–7791 (2004).
[Crossref] [PubMed]

Jang, H.

K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature 457(7230), 706–710 (2009).
[Crossref] [PubMed]

Jia, Y.

X. Li, H. Zhu, K. Wang, A. Cao, J. Wei, C. Li, Y. Jia, Z. Li, X. Li, and D. Wu, “Graphene-on-silicon Schottky junction solar cells,” Adv. Mater. 22(25), 2743–2748 (2010).
[Crossref] [PubMed]

Jiang, L.

K. Zheng, F. Meng, L. Jiang, Q. Yan, H. H. Hng, and X. Chen, “Visible photoresponse of single-layer graphene decorated with TiO2 nanoparticles,” Small 9(12), 2076–2080 (2013).
[Crossref] [PubMed]

Jiang, Q.

Y. Q. Yu, J. S. Jie, Q. Jiang, L. Wang, C. Y. Wu, Q. Peng, X. W. Zhang, Z. Wang, C. Xie, D. Wu, and Y. Jiang, “High-gain visible-blind UV photodetectors based on chlorine-doped n-type ZnS nanoribbons with tunable optoelectronic properties,” J. Mater. Chem. 21(34), 12632–12638 (2011).
[Crossref]

Jiang, T.

J. Miao, W. Hu, N. Guo, Z. Lu, X. Liu, L. Liao, P. Chen, T. Jiang, S. Wu, J. C. Ho, L. Wang, X. Chen, and W. Lu, “High-responsivity graphene/InAs nanowire heterojunction near-infrared photodetectors with distinct photocurrent on/off ratios,” Small 11(8), 936–942 (2015).
[Crossref] [PubMed]

J. Miao, W. Hu, N. Guo, Z. Lu, X. Liu, L. Liao, P. Chen, T. Jiang, S. Wu, J. C. Ho, L. Wang, X. Chen, and W. Lu, “High-responsivity graphene/InAs nanowire heterojunction near-infrared photodetectors with distinct photocurrent on/off ratios,” Small 11(8), 936–942 (2015).
[Crossref] [PubMed]

Jiang, Y.

Y. Q. Yu, J. S. Jie, Q. Jiang, L. Wang, C. Y. Wu, Q. Peng, X. W. Zhang, Z. Wang, C. Xie, D. Wu, and Y. Jiang, “High-gain visible-blind UV photodetectors based on chlorine-doped n-type ZnS nanoribbons with tunable optoelectronic properties,” J. Mater. Chem. 21(34), 12632–12638 (2011).
[Crossref]

J. S. Jie, W. J. Zhang, Y. Jiang, X. M. Meng, Y. Q. Li, and S. T. Lee, “Photoconductive characteristics of single-crystal CdS nanoribbons,” Nano Lett. 6(9), 1887–1892 (2006).
[Crossref] [PubMed]

Jiao, J.

Y. Xie, L. Wei, G. Wei, Q. Li, D. Wang, Y. Chen, S. Yan, G. Liu, L. Mei, and J. Jiao, “A self-powered UV photodetector based on TiO2 nanorod arrays,” Nanoscale Res. Lett. 8(1), 188 (2013).
[Crossref] [PubMed]

Jie, J.

Jie, J. S.

B. Nie, J. G. Hu, L. B. Luo, C. Xie, L. H. Zeng, P. Lv, F. Z. Li, J. S. Jie, M. Feng, C. Y. Wu, Y. Q. Yu, and S. H. Yu, “Monolayer graphene film on ZnO nanorod array for high-performance Schottky junction ultraviolet photodetectors,” Small 9(17), 2872–2879 (2013).
[Crossref] [PubMed]

Y. L. Cao, Z. T. Liu, L. M. Chen, Y. B. Tang, L. B. Luo, J. S. Jie, W. J. Zhang, S. T. Lee, and C. S. Lee, “Single-crystalline ZnTe nanowires for application as high-performance green/ultraviolet photodetector,” Opt. Express 19(7), 6100–6108 (2011).
[Crossref] [PubMed]

Y. Q. Yu, J. S. Jie, Q. Jiang, L. Wang, C. Y. Wu, Q. Peng, X. W. Zhang, Z. Wang, C. Xie, D. Wu, and Y. Jiang, “High-gain visible-blind UV photodetectors based on chlorine-doped n-type ZnS nanoribbons with tunable optoelectronic properties,” J. Mater. Chem. 21(34), 12632–12638 (2011).
[Crossref]

J. S. Jie, W. J. Zhang, Y. Jiang, X. M. Meng, Y. Q. Li, and S. T. Lee, “Photoconductive characteristics of single-crystal CdS nanoribbons,” Nano Lett. 6(9), 1887–1892 (2006).
[Crossref] [PubMed]

Kakiuchi, K.

E. Hosono, S. Fujihara, K. Kakiuchi, and H. Imai, “Growth of submicrometer-scale rectangular parallelepiped rutile TiO2 films in aqueous TiCl3 solutions under hydrothermal conditions,” J. Am. Chem. Soc. 126(25), 7790–7791 (2004).
[Crossref] [PubMed]

Kim, H.

S. Bae, H. Kim, Y. Lee, X. Xu, J. S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y. J. Kim, K. S. Kim, B. Ozyilmaz, J. H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5(8), 574–578 (2010).
[Crossref] [PubMed]

Kim, H. R.

S. Bae, H. Kim, Y. Lee, X. Xu, J. S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y. J. Kim, K. S. Kim, B. Ozyilmaz, J. H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5(8), 574–578 (2010).
[Crossref] [PubMed]

Kim, J. M.

K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature 457(7230), 706–710 (2009).
[Crossref] [PubMed]

Kim, K. S.

S. Bae, H. Kim, Y. Lee, X. Xu, J. S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y. J. Kim, K. S. Kim, B. Ozyilmaz, J. H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5(8), 574–578 (2010).
[Crossref] [PubMed]

K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature 457(7230), 706–710 (2009).
[Crossref] [PubMed]

K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature 457(7230), 706–710 (2009).
[Crossref] [PubMed]

Kim, P.

K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature 457(7230), 706–710 (2009).
[Crossref] [PubMed]

Kim, T. W.

D. I. Son, H. Y. Yang, T. W. Kim, and W. I. Park, “Photoresponse mechanisms of ultraviolet photodetectors based on colloidal ZnO quantum dot-graphene nanocomposites,” Appl. Phys. Lett. 102(2), 021105 (2013).
[Crossref]

Kim, Y. J.

S. Bae, H. Kim, Y. Lee, X. Xu, J. S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y. J. Kim, K. S. Kim, B. Ozyilmaz, J. H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5(8), 574–578 (2010).
[Crossref] [PubMed]

Kimura, Y.

Y. Takanashi, N. Oyama, K. Momiyama, Y. Kimura, M. Niwano, and F. Hirose, “Alpha-sexthiophene/n-Si heterojunction diodes and solar cells investigated by I-V and C-V measurements,” Synth. Met. 161(23–24), 2792–2797 (2012).
[Crossref]

Kong, X. Z.

H. L. Xue, X. Z. Kong, Z. R. Liu, C. X. Liu, J. R. Zhou, W. Y. Chen, S. P. Ruan, and Q. Xu, “TiO2 based metal-semiconductor-metal ultraviolet photodetectors,” Appl. Phys. Lett. 90(20), 201118 (2007).
[Crossref]

Kou, J.

M. Peng, Y. Liu, A. Yu, Y. Zhang, C. Liu, J. Liu, W. Wu, K. Zhang, X. Shi, J. Kou, J. Zhai, and Z. L. Wang, “Flexible self-powered GaN ultraviolet photoswitch with piezo-phototronic effect enhanced on/off ratio,” ACS Nano 10(1), 1572–1579 (2016).
[Crossref] [PubMed]

Kumar, A.

A. Kumar, A. R. Madaria, and C. W. Zhou, “Growth of aligned single-crystalline rutile TiO2 nanowires on arbitrary substrates and their application in dye-sensitized solar cells,” J. Phys. Chem. C 114(17), 7787–7792 (2010).
[Crossref]

Kysar, J. W.

C. Lee, X. Wei, J. W. Kysar, and J. Hone, “Measurement of the elastic properties and intrinsic strength of monolayer graphene,” Science 321(5887), 385–388 (2008).
[Crossref] [PubMed]

Lee, C.

C. Lee, X. Wei, J. W. Kysar, and J. Hone, “Measurement of the elastic properties and intrinsic strength of monolayer graphene,” Science 321(5887), 385–388 (2008).
[Crossref] [PubMed]

Lee, C. S.

Lee, J. Y.

J. G. Ok, J. Y. Lee, H. W. Baac, S. H. Tawfick, L. J. Guo, and A. J. Hart, “Rapid anisotropic photoconductive response of ZnO-coated aligned carbon nanotube sheets,” ACS Appl. Mater. Interfaces 6(2), 874–881 (2014).
[Crossref] [PubMed]

Lee, S. T.

Lee, S. Y.

K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature 457(7230), 706–710 (2009).
[Crossref] [PubMed]

Lee, Y.

S. Bae, H. Kim, Y. Lee, X. Xu, J. S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y. J. Kim, K. S. Kim, B. Ozyilmaz, J. H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5(8), 574–578 (2010).
[Crossref] [PubMed]

Lei, T.

S. Bae, H. Kim, Y. Lee, X. Xu, J. S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y. J. Kim, K. S. Kim, B. Ozyilmaz, J. H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5(8), 574–578 (2010).
[Crossref] [PubMed]

Li, A.

X. Yu, Z. Zhao, J. Zhang, W. Guo, J. Qiu, D. Li, Z. Li, X. Mou, L. Li, A. Li, and H. Liu, “Rutile nanorod/anatase nanowire junction array as both sensor and power supplier for high-performance, self-Powered, wireless UV photodetector,” Small 12(20), 2759–2767 (2016).
[Crossref] [PubMed]

Li, C.

X. Li, H. Zhu, K. Wang, A. Cao, J. Wei, C. Li, Y. Jia, Z. Li, X. Li, and D. Wu, “Graphene-on-silicon Schottky junction solar cells,” Adv. Mater. 22(25), 2743–2748 (2010).
[Crossref] [PubMed]

Li, D.

X. Yu, Z. Zhao, J. Zhang, W. Guo, J. Qiu, D. Li, Z. Li, X. Mou, L. Li, A. Li, and H. Liu, “Rutile nanorod/anatase nanowire junction array as both sensor and power supplier for high-performance, self-Powered, wireless UV photodetector,” Small 12(20), 2759–2767 (2016).
[Crossref] [PubMed]

Li, F. Z.

B. Nie, J. G. Hu, L. B. Luo, C. Xie, L. H. Zeng, P. Lv, F. Z. Li, J. S. Jie, M. Feng, C. Y. Wu, Y. Q. Yu, and S. H. Yu, “Monolayer graphene film on ZnO nanorod array for high-performance Schottky junction ultraviolet photodetectors,” Small 9(17), 2872–2879 (2013).
[Crossref] [PubMed]

Li, H.

Y. Han, G. Wu, H. Li, M. Wang, and H. Chen, “Highly efficient ultraviolet photodetectors based on TiO2 nanocrystal-polymer composites via wet processing,” Nanotechnology 21(18), 185708 (2010).
[Crossref] [PubMed]

Li, J. J.

Q. Wang, J. J. Li, and C. Z. Gu, “Enhanced UV response of single anodic TiO2 nanotube: effect of water-modified microstructures,” J. Phys. Chem. C 116(32), 16864–16869 (2012).
[Crossref]

Li, L.

X. Yu, Z. Zhao, J. Zhang, W. Guo, J. Qiu, D. Li, Z. Li, X. Mou, L. Li, A. Li, and H. Liu, “Rutile nanorod/anatase nanowire junction array as both sensor and power supplier for high-performance, self-Powered, wireless UV photodetector,” Small 12(20), 2759–2767 (2016).
[Crossref] [PubMed]

Li, Q.

L. B. Luo, J. J. Chen, M. Z. Wang, H. Hu, C. Y. Wu, Q. Li, L. Wang, J. A. Huang, and F. X. Liang, “Near-infrared light photovoltaic detector based on GaAs nanocone array/monolayer graphene Schottky junction,” Adv. Funct. Mater. 24(19), 2794–2800 (2014).
[Crossref]

Y. Xie, L. Wei, G. Wei, Q. Li, D. Wang, Y. Chen, S. Yan, G. Liu, L. Mei, and J. Jiao, “A self-powered UV photodetector based on TiO2 nanorod arrays,” Nanoscale Res. Lett. 8(1), 188 (2013).
[Crossref] [PubMed]

Li, X.

X. Li, H. Zhu, K. Wang, A. Cao, J. Wei, C. Li, Y. Jia, Z. Li, X. Li, and D. Wu, “Graphene-on-silicon Schottky junction solar cells,” Adv. Mater. 22(25), 2743–2748 (2010).
[Crossref] [PubMed]

X. Li, H. Zhu, K. Wang, A. Cao, J. Wei, C. Li, Y. Jia, Z. Li, X. Li, and D. Wu, “Graphene-on-silicon Schottky junction solar cells,” Adv. Mater. 22(25), 2743–2748 (2010).
[Crossref] [PubMed]

X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo, and R. S. Ruoff, “Transfer of large-area graphene films for high-performance transparent conductive electrodes,” Nano Lett. 9(12), 4359–4363 (2009).
[Crossref] [PubMed]

Li, Y. Q.

J. S. Jie, W. J. Zhang, Y. Jiang, X. M. Meng, Y. Q. Li, and S. T. Lee, “Photoconductive characteristics of single-crystal CdS nanoribbons,” Nano Lett. 6(9), 1887–1892 (2006).
[Crossref] [PubMed]

Li, Z.

X. Yu, Z. Zhao, J. Zhang, W. Guo, J. Qiu, D. Li, Z. Li, X. Mou, L. Li, A. Li, and H. Liu, “Rutile nanorod/anatase nanowire junction array as both sensor and power supplier for high-performance, self-Powered, wireless UV photodetector,” Small 12(20), 2759–2767 (2016).
[Crossref] [PubMed]

X. Li, H. Zhu, K. Wang, A. Cao, J. Wei, C. Li, Y. Jia, Z. Li, X. Li, and D. Wu, “Graphene-on-silicon Schottky junction solar cells,” Adv. Mater. 22(25), 2743–2748 (2010).
[Crossref] [PubMed]

Liang, F. X.

L. B. Luo, L. H. Zeng, C. Xie, Y. Q. Yu, F. X. Liang, C. Y. Wu, L. Wang, and J. G. Hu, “Light trapping and surface plasmon enhanced high-performance NIR photodetector,” Sci. Rep. 4, 3914 (2014).
[Crossref] [PubMed]

L. B. Luo, J. J. Chen, M. Z. Wang, H. Hu, C. Y. Wu, Q. Li, L. Wang, J. A. Huang, and F. X. Liang, “Near-infrared light photovoltaic detector based on GaAs nanocone array/monolayer graphene Schottky junction,” Adv. Funct. Mater. 24(19), 2794–2800 (2014).
[Crossref]

Liang, H.

Y. Liang, H. Liang, X. D. Xiao, and S. K. Hark, “The epitaxial growth of ZnS nanowire arrays and their applications in UV-light detection,” J. Mater. Chem. 22(3), 1199–1205 (2012).
[Crossref]

Liang, Y.

Y. Liang, H. Liang, X. D. Xiao, and S. K. Hark, “The epitaxial growth of ZnS nanowire arrays and their applications in UV-light detection,” J. Mater. Chem. 22(3), 1199–1205 (2012).
[Crossref]

Liao, L.

J. Miao, W. Hu, N. Guo, Z. Lu, X. Liu, L. Liao, P. Chen, T. Jiang, S. Wu, J. C. Ho, L. Wang, X. Chen, and W. Lu, “High-responsivity graphene/InAs nanowire heterojunction near-infrared photodetectors with distinct photocurrent on/off ratios,” Small 11(8), 936–942 (2015).
[Crossref] [PubMed]

J. Miao, W. Hu, N. Guo, Z. Lu, X. Liu, L. Liao, P. Chen, T. Jiang, S. Wu, J. C. Ho, L. Wang, X. Chen, and W. Lu, “High-responsivity graphene/InAs nanowire heterojunction near-infrared photodetectors with distinct photocurrent on/off ratios,” Small 11(8), 936–942 (2015).
[Crossref] [PubMed]

Liao, Z. M.

F. Lin, S. W. Chen, J. Meng, G. Tse, X. W. Fu, F. J. Xu, B. Shen, Z. M. Liao, and D. P. Yu, “Graphene/GaN diodes for ultraviolet and visible photodetectors,” Appl. Phys. Lett. 105(7), 073103 (2014).
[Crossref]

X. W. Fu, Z. M. Liao, Y. B. Zhou, H. C. Wu, Y. Q. Bie, J. Xu, and D. P. Yu, “Graphene/ZnO nanowire/graphene vertical structure based fast-response ultraviolet photodetector,” Appl. Phys. Lett. 100(22), 223114 (2012).
[Crossref]

Lin, F.

F. Lin, S. W. Chen, J. Meng, G. Tse, X. W. Fu, F. J. Xu, B. Shen, Z. M. Liao, and D. P. Yu, “Graphene/GaN diodes for ultraviolet and visible photodetectors,” Appl. Phys. Lett. 105(7), 073103 (2014).
[Crossref]

Liu, B.

E. Enache-Pommer, B. Liu, and E. S. Aydil, “Electron transport and recombination in dye-sensitized solar cells made from single-crystal rutile TiO2 nanowires,” Phys. Chem. Chem. Phys. 11(42), 9648–9652 (2009).
[Crossref] [PubMed]

Liu, C.

M. Peng, Y. Liu, A. Yu, Y. Zhang, C. Liu, J. Liu, W. Wu, K. Zhang, X. Shi, J. Kou, J. Zhai, and Z. L. Wang, “Flexible self-powered GaN ultraviolet photoswitch with piezo-phototronic effect enhanced on/off ratio,” ACS Nano 10(1), 1572–1579 (2016).
[Crossref] [PubMed]

Liu, C. X.

H. L. Xue, X. Z. Kong, Z. R. Liu, C. X. Liu, J. R. Zhou, W. Y. Chen, S. P. Ruan, and Q. Xu, “TiO2 based metal-semiconductor-metal ultraviolet photodetectors,” Appl. Phys. Lett. 90(20), 201118 (2007).
[Crossref]

Liu, G.

Y. Xie, L. Wei, G. Wei, Q. Li, D. Wang, Y. Chen, S. Yan, G. Liu, L. Mei, and J. Jiao, “A self-powered UV photodetector based on TiO2 nanorod arrays,” Nanoscale Res. Lett. 8(1), 188 (2013).
[Crossref] [PubMed]

Liu, H.

X. Yu, Z. Zhao, J. Zhang, W. Guo, J. Qiu, D. Li, Z. Li, X. Mou, L. Li, A. Li, and H. Liu, “Rutile nanorod/anatase nanowire junction array as both sensor and power supplier for high-performance, self-Powered, wireless UV photodetector,” Small 12(20), 2759–2767 (2016).
[Crossref] [PubMed]

Liu, J.

M. Peng, Y. Liu, A. Yu, Y. Zhang, C. Liu, J. Liu, W. Wu, K. Zhang, X. Shi, J. Kou, J. Zhai, and Z. L. Wang, “Flexible self-powered GaN ultraviolet photoswitch with piezo-phototronic effect enhanced on/off ratio,” ACS Nano 10(1), 1572–1579 (2016).
[Crossref] [PubMed]

Liu, X.

J. Miao, W. Hu, N. Guo, Z. Lu, X. Liu, L. Liao, P. Chen, T. Jiang, S. Wu, J. C. Ho, L. Wang, X. Chen, and W. Lu, “High-responsivity graphene/InAs nanowire heterojunction near-infrared photodetectors with distinct photocurrent on/off ratios,” Small 11(8), 936–942 (2015).
[Crossref] [PubMed]

J. Miao, W. Hu, N. Guo, Z. Lu, X. Liu, L. Liao, P. Chen, T. Jiang, S. Wu, J. C. Ho, L. Wang, X. Chen, and W. Lu, “High-responsivity graphene/InAs nanowire heterojunction near-infrared photodetectors with distinct photocurrent on/off ratios,” Small 11(8), 936–942 (2015).
[Crossref] [PubMed]

Liu, Y.

M. Peng, Y. Liu, A. Yu, Y. Zhang, C. Liu, J. Liu, W. Wu, K. Zhang, X. Shi, J. Kou, J. Zhai, and Z. L. Wang, “Flexible self-powered GaN ultraviolet photoswitch with piezo-phototronic effect enhanced on/off ratio,” ACS Nano 10(1), 1572–1579 (2016).
[Crossref] [PubMed]

Liu, Z. R.

H. L. Xue, X. Z. Kong, Z. R. Liu, C. X. Liu, J. R. Zhou, W. Y. Chen, S. P. Ruan, and Q. Xu, “TiO2 based metal-semiconductor-metal ultraviolet photodetectors,” Appl. Phys. Lett. 90(20), 201118 (2007).
[Crossref]

Liu, Z. T.

Lo, Y. H.

C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y. Bao, Y. H. Lo, and D. Wang, “ZnO nanowire UV photodetectors with high internal gain,” Nano Lett. 7(4), 1003–1009 (2007).
[Crossref] [PubMed]

Long, H.

Lu, R.

Y. Wang, C. W. Ge, Y. F. Zou, R. Lu, K. Zheng, T. F. Zhang, Y.-Q. Yu, and L.-B. Luo, “Plasmonic indium nanoparticle-induced high-performance photoswitch for blue light detection,” Adv. Opt. Mater. 4(2), 291–296 (2016).
[Crossref]

Lu, W.

J. Miao, W. Hu, N. Guo, Z. Lu, X. Liu, L. Liao, P. Chen, T. Jiang, S. Wu, J. C. Ho, L. Wang, X. Chen, and W. Lu, “High-responsivity graphene/InAs nanowire heterojunction near-infrared photodetectors with distinct photocurrent on/off ratios,” Small 11(8), 936–942 (2015).
[Crossref] [PubMed]

J. Miao, W. Hu, N. Guo, Z. Lu, X. Liu, L. Liao, P. Chen, T. Jiang, S. Wu, J. C. Ho, L. Wang, X. Chen, and W. Lu, “High-responsivity graphene/InAs nanowire heterojunction near-infrared photodetectors with distinct photocurrent on/off ratios,” Small 11(8), 936–942 (2015).
[Crossref] [PubMed]

Lu, Z.

J. Miao, W. Hu, N. Guo, Z. Lu, X. Liu, L. Liao, P. Chen, T. Jiang, S. Wu, J. C. Ho, L. Wang, X. Chen, and W. Lu, “High-responsivity graphene/InAs nanowire heterojunction near-infrared photodetectors with distinct photocurrent on/off ratios,” Small 11(8), 936–942 (2015).
[Crossref] [PubMed]

J. Miao, W. Hu, N. Guo, Z. Lu, X. Liu, L. Liao, P. Chen, T. Jiang, S. Wu, J. C. Ho, L. Wang, X. Chen, and W. Lu, “High-responsivity graphene/InAs nanowire heterojunction near-infrared photodetectors with distinct photocurrent on/off ratios,” Small 11(8), 936–942 (2015).
[Crossref] [PubMed]

Luo, L. B.

L. B. Luo, J. J. Chen, M. Z. Wang, H. Hu, C. Y. Wu, Q. Li, L. Wang, J. A. Huang, and F. X. Liang, “Near-infrared light photovoltaic detector based on GaAs nanocone array/monolayer graphene Schottky junction,” Adv. Funct. Mater. 24(19), 2794–2800 (2014).
[Crossref]

L. B. Luo, L. H. Zeng, C. Xie, Y. Q. Yu, F. X. Liang, C. Y. Wu, L. Wang, and J. G. Hu, “Light trapping and surface plasmon enhanced high-performance NIR photodetector,” Sci. Rep. 4, 3914 (2014).
[Crossref] [PubMed]

B. Nie, J. G. Hu, L. B. Luo, C. Xie, L. H. Zeng, P. Lv, F. Z. Li, J. S. Jie, M. Feng, C. Y. Wu, Y. Q. Yu, and S. H. Yu, “Monolayer graphene film on ZnO nanorod array for high-performance Schottky junction ultraviolet photodetectors,” Small 9(17), 2872–2879 (2013).
[Crossref] [PubMed]

Y. L. Cao, Z. T. Liu, L. M. Chen, Y. B. Tang, L. B. Luo, J. S. Jie, W. J. Zhang, S. T. Lee, and C. S. Lee, “Single-crystalline ZnTe nanowires for application as high-performance green/ultraviolet photodetector,” Opt. Express 19(7), 6100–6108 (2011).
[Crossref] [PubMed]

Luo, L.-B.

Y. Wang, C. W. Ge, Y. F. Zou, R. Lu, K. Zheng, T. F. Zhang, Y.-Q. Yu, and L.-B. Luo, “Plasmonic indium nanoparticle-induced high-performance photoswitch for blue light detection,” Adv. Opt. Mater. 4(2), 291–296 (2016).
[Crossref]

Lv, P.

B. Nie, J. G. Hu, L. B. Luo, C. Xie, L. H. Zeng, P. Lv, F. Z. Li, J. S. Jie, M. Feng, C. Y. Wu, Y. Q. Yu, and S. H. Yu, “Monolayer graphene film on ZnO nanorod array for high-performance Schottky junction ultraviolet photodetectors,” Small 9(17), 2872–2879 (2013).
[Crossref] [PubMed]

Madaria, A. R.

A. Kumar, A. R. Madaria, and C. W. Zhou, “Growth of aligned single-crystalline rutile TiO2 nanowires on arbitrary substrates and their application in dye-sensitized solar cells,” J. Phys. Chem. C 114(17), 7787–7792 (2010).
[Crossref]

Manasreh, M. O.

A. I. Nusir and M. O. Manasreh, “Self-powered near-infrared photodetector based on asymmetrical Schottky interdigital contacts,” IEEE Electron Device Lett. 36(11), 1172–1175 (2015).
[Crossref]

Mei, L.

Y. Xie, L. Wei, G. Wei, Q. Li, D. Wang, Y. Chen, S. Yan, G. Liu, L. Mei, and J. Jiao, “A self-powered UV photodetector based on TiO2 nanorod arrays,” Nanoscale Res. Lett. 8(1), 188 (2013).
[Crossref] [PubMed]

Meng, F.

K. Zheng, F. Meng, L. Jiang, Q. Yan, H. H. Hng, and X. Chen, “Visible photoresponse of single-layer graphene decorated with TiO2 nanoparticles,” Small 9(12), 2076–2080 (2013).
[Crossref] [PubMed]

Meng, J.

F. Lin, S. W. Chen, J. Meng, G. Tse, X. W. Fu, F. J. Xu, B. Shen, Z. M. Liao, and D. P. Yu, “Graphene/GaN diodes for ultraviolet and visible photodetectors,” Appl. Phys. Lett. 105(7), 073103 (2014).
[Crossref]

Meng, X. M.

J. S. Jie, W. J. Zhang, Y. Jiang, X. M. Meng, Y. Q. Li, and S. T. Lee, “Photoconductive characteristics of single-crystal CdS nanoribbons,” Nano Lett. 6(9), 1887–1892 (2006).
[Crossref] [PubMed]

Miao, J.

J. Miao, W. Hu, N. Guo, Z. Lu, X. Liu, L. Liao, P. Chen, T. Jiang, S. Wu, J. C. Ho, L. Wang, X. Chen, and W. Lu, “High-responsivity graphene/InAs nanowire heterojunction near-infrared photodetectors with distinct photocurrent on/off ratios,” Small 11(8), 936–942 (2015).
[Crossref] [PubMed]

J. Miao, W. Hu, N. Guo, Z. Lu, X. Liu, L. Liao, P. Chen, T. Jiang, S. Wu, J. C. Ho, L. Wang, X. Chen, and W. Lu, “High-responsivity graphene/InAs nanowire heterojunction near-infrared photodetectors with distinct photocurrent on/off ratios,” Small 11(8), 936–942 (2015).
[Crossref] [PubMed]

Momiyama, K.

Y. Takanashi, N. Oyama, K. Momiyama, Y. Kimura, M. Niwano, and F. Hirose, “Alpha-sexthiophene/n-Si heterojunction diodes and solar cells investigated by I-V and C-V measurements,” Synth. Met. 161(23–24), 2792–2797 (2012).
[Crossref]

Mou, X.

X. Yu, Z. Zhao, J. Zhang, W. Guo, J. Qiu, D. Li, Z. Li, X. Mou, L. Li, A. Li, and H. Liu, “Rutile nanorod/anatase nanowire junction array as both sensor and power supplier for high-performance, self-Powered, wireless UV photodetector,” Small 12(20), 2759–2767 (2016).
[Crossref] [PubMed]

Mueller, T.

T. Mueller, F. N. Xia, and P. Avouris, “Graphene photodetectors for high-speed optical communications,” Nat. Photonics 4(5), 297–301 (2010).
[Crossref]

Nie, B.

B. Nie, J. G. Hu, L. B. Luo, C. Xie, L. H. Zeng, P. Lv, F. Z. Li, J. S. Jie, M. Feng, C. Y. Wu, Y. Q. Yu, and S. H. Yu, “Monolayer graphene film on ZnO nanorod array for high-performance Schottky junction ultraviolet photodetectors,” Small 9(17), 2872–2879 (2013).
[Crossref] [PubMed]

Niwano, M.

Y. Takanashi, N. Oyama, K. Momiyama, Y. Kimura, M. Niwano, and F. Hirose, “Alpha-sexthiophene/n-Si heterojunction diodes and solar cells investigated by I-V and C-V measurements,” Synth. Met. 161(23–24), 2792–2797 (2012).
[Crossref]

Nusir, A. I.

A. I. Nusir and M. O. Manasreh, “Self-powered near-infrared photodetector based on asymmetrical Schottky interdigital contacts,” IEEE Electron Device Lett. 36(11), 1172–1175 (2015).
[Crossref]

Ok, J. G.

J. G. Ok, J. Y. Lee, H. W. Baac, S. H. Tawfick, L. J. Guo, and A. J. Hart, “Rapid anisotropic photoconductive response of ZnO-coated aligned carbon nanotube sheets,” ACS Appl. Mater. Interfaces 6(2), 874–881 (2014).
[Crossref] [PubMed]

Oyama, N.

Y. Takanashi, N. Oyama, K. Momiyama, Y. Kimura, M. Niwano, and F. Hirose, “Alpha-sexthiophene/n-Si heterojunction diodes and solar cells investigated by I-V and C-V measurements,” Synth. Met. 161(23–24), 2792–2797 (2012).
[Crossref]

Ozyilmaz, B.

S. Bae, H. Kim, Y. Lee, X. Xu, J. S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y. J. Kim, K. S. Kim, B. Ozyilmaz, J. H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5(8), 574–578 (2010).
[Crossref] [PubMed]

Park, J.

C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y. Bao, Y. H. Lo, and D. Wang, “ZnO nanowire UV photodetectors with high internal gain,” Nano Lett. 7(4), 1003–1009 (2007).
[Crossref] [PubMed]

Park, J. S.

S. Bae, H. Kim, Y. Lee, X. Xu, J. S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y. J. Kim, K. S. Kim, B. Ozyilmaz, J. H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5(8), 574–578 (2010).
[Crossref] [PubMed]

Park, W. I.

D. I. Son, H. Y. Yang, T. W. Kim, and W. I. Park, “Photoresponse mechanisms of ultraviolet photodetectors based on colloidal ZnO quantum dot-graphene nanocomposites,” Appl. Phys. Lett. 102(2), 021105 (2013).
[Crossref]

Peng, M.

M. Peng, Y. Liu, A. Yu, Y. Zhang, C. Liu, J. Liu, W. Wu, K. Zhang, X. Shi, J. Kou, J. Zhai, and Z. L. Wang, “Flexible self-powered GaN ultraviolet photoswitch with piezo-phototronic effect enhanced on/off ratio,” ACS Nano 10(1), 1572–1579 (2016).
[Crossref] [PubMed]

Peng, Q.

Y. Q. Yu, J. S. Jie, Q. Jiang, L. Wang, C. Y. Wu, Q. Peng, X. W. Zhang, Z. Wang, C. Xie, D. Wu, and Y. Jiang, “High-gain visible-blind UV photodetectors based on chlorine-doped n-type ZnS nanoribbons with tunable optoelectronic properties,” J. Mater. Chem. 21(34), 12632–12638 (2011).
[Crossref]

Piner, R. D.

X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo, and R. S. Ruoff, “Transfer of large-area graphene films for high-performance transparent conductive electrodes,” Nano Lett. 9(12), 4359–4363 (2009).
[Crossref] [PubMed]

Pop, E.

Y. An, A. Behnam, E. Pop, and A. Ural, “Metal-semiconductor-metal photodetectors based on graphene/p-type silicon Schottky junctions,” Appl. Phys. Lett. 102(1), 013110 (2013).
[Crossref]

Qiu, J.

X. Yu, Z. Zhao, J. Zhang, W. Guo, J. Qiu, D. Li, Z. Li, X. Mou, L. Li, A. Li, and H. Liu, “Rutile nanorod/anatase nanowire junction array as both sensor and power supplier for high-performance, self-Powered, wireless UV photodetector,” Small 12(20), 2759–2767 (2016).
[Crossref] [PubMed]

Ruan, S. P.

H. L. Xue, X. Z. Kong, Z. R. Liu, C. X. Liu, J. R. Zhou, W. Y. Chen, S. P. Ruan, and Q. Xu, “TiO2 based metal-semiconductor-metal ultraviolet photodetectors,” Appl. Phys. Lett. 90(20), 201118 (2007).
[Crossref]

Ruoff, R. S.

X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo, and R. S. Ruoff, “Transfer of large-area graphene films for high-performance transparent conductive electrodes,” Nano Lett. 9(12), 4359–4363 (2009).
[Crossref] [PubMed]

Shen, B.

F. Lin, S. W. Chen, J. Meng, G. Tse, X. W. Fu, F. J. Xu, B. Shen, Z. M. Liao, and D. P. Yu, “Graphene/GaN diodes for ultraviolet and visible photodetectors,” Appl. Phys. Lett. 105(7), 073103 (2014).
[Crossref]

Shi, X.

M. Peng, Y. Liu, A. Yu, Y. Zhang, C. Liu, J. Liu, W. Wu, K. Zhang, X. Shi, J. Kou, J. Zhai, and Z. L. Wang, “Flexible self-powered GaN ultraviolet photoswitch with piezo-phototronic effect enhanced on/off ratio,” ACS Nano 10(1), 1572–1579 (2016).
[Crossref] [PubMed]

Soci, C.

C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y. Bao, Y. H. Lo, and D. Wang, “ZnO nanowire UV photodetectors with high internal gain,” Nano Lett. 7(4), 1003–1009 (2007).
[Crossref] [PubMed]

Son, D. I.

D. I. Son, H. Y. Yang, T. W. Kim, and W. I. Park, “Photoresponse mechanisms of ultraviolet photodetectors based on colloidal ZnO quantum dot-graphene nanocomposites,” Appl. Phys. Lett. 102(2), 021105 (2013).
[Crossref]

Song, Y. I.

S. Bae, H. Kim, Y. Lee, X. Xu, J. S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y. J. Kim, K. S. Kim, B. Ozyilmaz, J. H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5(8), 574–578 (2010).
[Crossref] [PubMed]

Takanashi, Y.

Y. Takanashi, N. Oyama, K. Momiyama, Y. Kimura, M. Niwano, and F. Hirose, “Alpha-sexthiophene/n-Si heterojunction diodes and solar cells investigated by I-V and C-V measurements,” Synth. Met. 161(23–24), 2792–2797 (2012).
[Crossref]

Tang, C.

Tang, Y. B.

Tao, L.

Tawfick, S. H.

J. G. Ok, J. Y. Lee, H. W. Baac, S. H. Tawfick, L. J. Guo, and A. J. Hart, “Rapid anisotropic photoconductive response of ZnO-coated aligned carbon nanotube sheets,” ACS Appl. Mater. Interfaces 6(2), 874–881 (2014).
[Crossref] [PubMed]

Tian, L. H.

L. B. Wang, W. Y. Yang, H. N. Chong, L. Wang, F. M. Gao, L. H. Tian, and Z. B. Yang, “Efficient ultraviolet photodetectors based on TiO2 nanotube arrays with tailored structures,” RSC Advances 5(65), 52388–52394 (2015).
[Crossref]

Tsang, Y. H.

Tse, G.

F. Lin, S. W. Chen, J. Meng, G. Tse, X. W. Fu, F. J. Xu, B. Shen, Z. M. Liao, and D. P. Yu, “Graphene/GaN diodes for ultraviolet and visible photodetectors,” Appl. Phys. Lett. 105(7), 073103 (2014).
[Crossref]

Ural, A.

Y. An, A. Behnam, E. Pop, and A. Ural, “Metal-semiconductor-metal photodetectors based on graphene/p-type silicon Schottky junctions,” Appl. Phys. Lett. 102(1), 013110 (2013).
[Crossref]

Wang, D.

Y. Xie, L. Wei, G. Wei, Q. Li, D. Wang, Y. Chen, S. Yan, G. Liu, L. Mei, and J. Jiao, “A self-powered UV photodetector based on TiO2 nanorod arrays,” Nanoscale Res. Lett. 8(1), 188 (2013).
[Crossref] [PubMed]

C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y. Bao, Y. H. Lo, and D. Wang, “ZnO nanowire UV photodetectors with high internal gain,” Nano Lett. 7(4), 1003–1009 (2007).
[Crossref] [PubMed]

Wang, K.

X. Li, H. Zhu, K. Wang, A. Cao, J. Wei, C. Li, Y. Jia, Z. Li, X. Li, and D. Wu, “Graphene-on-silicon Schottky junction solar cells,” Adv. Mater. 22(25), 2743–2748 (2010).
[Crossref] [PubMed]

Wang, L.

L. B. Wang, W. Y. Yang, H. N. Chong, L. Wang, F. M. Gao, L. H. Tian, and Z. B. Yang, “Efficient ultraviolet photodetectors based on TiO2 nanotube arrays with tailored structures,” RSC Advances 5(65), 52388–52394 (2015).
[Crossref]

J. Miao, W. Hu, N. Guo, Z. Lu, X. Liu, L. Liao, P. Chen, T. Jiang, S. Wu, J. C. Ho, L. Wang, X. Chen, and W. Lu, “High-responsivity graphene/InAs nanowire heterojunction near-infrared photodetectors with distinct photocurrent on/off ratios,” Small 11(8), 936–942 (2015).
[Crossref] [PubMed]

J. Miao, W. Hu, N. Guo, Z. Lu, X. Liu, L. Liao, P. Chen, T. Jiang, S. Wu, J. C. Ho, L. Wang, X. Chen, and W. Lu, “High-responsivity graphene/InAs nanowire heterojunction near-infrared photodetectors with distinct photocurrent on/off ratios,” Small 11(8), 936–942 (2015).
[Crossref] [PubMed]

L. B. Luo, J. J. Chen, M. Z. Wang, H. Hu, C. Y. Wu, Q. Li, L. Wang, J. A. Huang, and F. X. Liang, “Near-infrared light photovoltaic detector based on GaAs nanocone array/monolayer graphene Schottky junction,” Adv. Funct. Mater. 24(19), 2794–2800 (2014).
[Crossref]

L. B. Luo, L. H. Zeng, C. Xie, Y. Q. Yu, F. X. Liang, C. Y. Wu, L. Wang, and J. G. Hu, “Light trapping and surface plasmon enhanced high-performance NIR photodetector,” Sci. Rep. 4, 3914 (2014).
[Crossref] [PubMed]

Y. Q. Yu, J. S. Jie, Q. Jiang, L. Wang, C. Y. Wu, Q. Peng, X. W. Zhang, Z. Wang, C. Xie, D. Wu, and Y. Jiang, “High-gain visible-blind UV photodetectors based on chlorine-doped n-type ZnS nanoribbons with tunable optoelectronic properties,” J. Mater. Chem. 21(34), 12632–12638 (2011).
[Crossref]

Wang, L. B.

L. B. Wang, W. Y. Yang, H. N. Chong, L. Wang, F. M. Gao, L. H. Tian, and Z. B. Yang, “Efficient ultraviolet photodetectors based on TiO2 nanotube arrays with tailored structures,” RSC Advances 5(65), 52388–52394 (2015).
[Crossref]

Wang, M.

Y. Han, G. Wu, H. Li, M. Wang, and H. Chen, “Highly efficient ultraviolet photodetectors based on TiO2 nanocrystal-polymer composites via wet processing,” Nanotechnology 21(18), 185708 (2010).
[Crossref] [PubMed]

Wang, M. Z.

L. B. Luo, J. J. Chen, M. Z. Wang, H. Hu, C. Y. Wu, Q. Li, L. Wang, J. A. Huang, and F. X. Liang, “Near-infrared light photovoltaic detector based on GaAs nanocone array/monolayer graphene Schottky junction,” Adv. Funct. Mater. 24(19), 2794–2800 (2014).
[Crossref]

Wang, Q.

Q. Wang, J. J. Li, and C. Z. Gu, “Enhanced UV response of single anodic TiO2 nanotube: effect of water-modified microstructures,” J. Phys. Chem. C 116(32), 16864–16869 (2012).
[Crossref]

Wang, Y.

Y. Wang, C. W. Ge, Y. F. Zou, R. Lu, K. Zheng, T. F. Zhang, Y.-Q. Yu, and L.-B. Luo, “Plasmonic indium nanoparticle-induced high-performance photoswitch for blue light detection,” Adv. Opt. Mater. 4(2), 291–296 (2016).
[Crossref]

Wang, Z.

Y. Q. Yu, J. S. Jie, Q. Jiang, L. Wang, C. Y. Wu, Q. Peng, X. W. Zhang, Z. Wang, C. Xie, D. Wu, and Y. Jiang, “High-gain visible-blind UV photodetectors based on chlorine-doped n-type ZnS nanoribbons with tunable optoelectronic properties,” J. Mater. Chem. 21(34), 12632–12638 (2011).
[Crossref]

Wang, Z. L.

M. Peng, Y. Liu, A. Yu, Y. Zhang, C. Liu, J. Liu, W. Wu, K. Zhang, X. Shi, J. Kou, J. Zhai, and Z. L. Wang, “Flexible self-powered GaN ultraviolet photoswitch with piezo-phototronic effect enhanced on/off ratio,” ACS Nano 10(1), 1572–1579 (2016).
[Crossref] [PubMed]

Wei, G.

Y. Xie, L. Wei, G. Wei, Q. Li, D. Wang, Y. Chen, S. Yan, G. Liu, L. Mei, and J. Jiao, “A self-powered UV photodetector based on TiO2 nanorod arrays,” Nanoscale Res. Lett. 8(1), 188 (2013).
[Crossref] [PubMed]

Wei, J.

X. Li, H. Zhu, K. Wang, A. Cao, J. Wei, C. Li, Y. Jia, Z. Li, X. Li, and D. Wu, “Graphene-on-silicon Schottky junction solar cells,” Adv. Mater. 22(25), 2743–2748 (2010).
[Crossref] [PubMed]

Wei, L.

Y. Xie, L. Wei, G. Wei, Q. Li, D. Wang, Y. Chen, S. Yan, G. Liu, L. Mei, and J. Jiao, “A self-powered UV photodetector based on TiO2 nanorod arrays,” Nanoscale Res. Lett. 8(1), 188 (2013).
[Crossref] [PubMed]

Wei, X.

C. Lee, X. Wei, J. W. Kysar, and J. Hone, “Measurement of the elastic properties and intrinsic strength of monolayer graphene,” Science 321(5887), 385–388 (2008).
[Crossref] [PubMed]

Wu, C. Y.

L. B. Luo, L. H. Zeng, C. Xie, Y. Q. Yu, F. X. Liang, C. Y. Wu, L. Wang, and J. G. Hu, “Light trapping and surface plasmon enhanced high-performance NIR photodetector,” Sci. Rep. 4, 3914 (2014).
[Crossref] [PubMed]

L. B. Luo, J. J. Chen, M. Z. Wang, H. Hu, C. Y. Wu, Q. Li, L. Wang, J. A. Huang, and F. X. Liang, “Near-infrared light photovoltaic detector based on GaAs nanocone array/monolayer graphene Schottky junction,” Adv. Funct. Mater. 24(19), 2794–2800 (2014).
[Crossref]

B. Nie, J. G. Hu, L. B. Luo, C. Xie, L. H. Zeng, P. Lv, F. Z. Li, J. S. Jie, M. Feng, C. Y. Wu, Y. Q. Yu, and S. H. Yu, “Monolayer graphene film on ZnO nanorod array for high-performance Schottky junction ultraviolet photodetectors,” Small 9(17), 2872–2879 (2013).
[Crossref] [PubMed]

Y. Q. Yu, J. S. Jie, Q. Jiang, L. Wang, C. Y. Wu, Q. Peng, X. W. Zhang, Z. Wang, C. Xie, D. Wu, and Y. Jiang, “High-gain visible-blind UV photodetectors based on chlorine-doped n-type ZnS nanoribbons with tunable optoelectronic properties,” J. Mater. Chem. 21(34), 12632–12638 (2011).
[Crossref]

Wu, D.

Y. Q. Yu, J. S. Jie, Q. Jiang, L. Wang, C. Y. Wu, Q. Peng, X. W. Zhang, Z. Wang, C. Xie, D. Wu, and Y. Jiang, “High-gain visible-blind UV photodetectors based on chlorine-doped n-type ZnS nanoribbons with tunable optoelectronic properties,” J. Mater. Chem. 21(34), 12632–12638 (2011).
[Crossref]

X. Li, H. Zhu, K. Wang, A. Cao, J. Wei, C. Li, Y. Jia, Z. Li, X. Li, and D. Wu, “Graphene-on-silicon Schottky junction solar cells,” Adv. Mater. 22(25), 2743–2748 (2010).
[Crossref] [PubMed]

Wu, G.

Y. Han, G. Wu, H. Li, M. Wang, and H. Chen, “Highly efficient ultraviolet photodetectors based on TiO2 nanocrystal-polymer composites via wet processing,” Nanotechnology 21(18), 185708 (2010).
[Crossref] [PubMed]

Wu, H. C.

X. W. Fu, Z. M. Liao, Y. B. Zhou, H. C. Wu, Y. Q. Bie, J. Xu, and D. P. Yu, “Graphene/ZnO nanowire/graphene vertical structure based fast-response ultraviolet photodetector,” Appl. Phys. Lett. 100(22), 223114 (2012).
[Crossref]

Wu, S.

J. Miao, W. Hu, N. Guo, Z. Lu, X. Liu, L. Liao, P. Chen, T. Jiang, S. Wu, J. C. Ho, L. Wang, X. Chen, and W. Lu, “High-responsivity graphene/InAs nanowire heterojunction near-infrared photodetectors with distinct photocurrent on/off ratios,” Small 11(8), 936–942 (2015).
[Crossref] [PubMed]

J. Miao, W. Hu, N. Guo, Z. Lu, X. Liu, L. Liao, P. Chen, T. Jiang, S. Wu, J. C. Ho, L. Wang, X. Chen, and W. Lu, “High-responsivity graphene/InAs nanowire heterojunction near-infrared photodetectors with distinct photocurrent on/off ratios,” Small 11(8), 936–942 (2015).
[Crossref] [PubMed]

Wu, W.

M. Peng, Y. Liu, A. Yu, Y. Zhang, C. Liu, J. Liu, W. Wu, K. Zhang, X. Shi, J. Kou, J. Zhai, and Z. L. Wang, “Flexible self-powered GaN ultraviolet photoswitch with piezo-phototronic effect enhanced on/off ratio,” ACS Nano 10(1), 1572–1579 (2016).
[Crossref] [PubMed]

Xia, F. N.

T. Mueller, F. N. Xia, and P. Avouris, “Graphene photodetectors for high-speed optical communications,” Nat. Photonics 4(5), 297–301 (2010).
[Crossref]

Xiang, B.

C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y. Bao, Y. H. Lo, and D. Wang, “ZnO nanowire UV photodetectors with high internal gain,” Nano Lett. 7(4), 1003–1009 (2007).
[Crossref] [PubMed]

Xiao, X. D.

Y. Liang, H. Liang, X. D. Xiao, and S. K. Hark, “The epitaxial growth of ZnS nanowire arrays and their applications in UV-light detection,” J. Mater. Chem. 22(3), 1199–1205 (2012).
[Crossref]

Xie, C.

L. Zeng, C. Xie, L. Tao, H. Long, C. Tang, Y. H. Tsang, and J. Jie, “Bilayer graphene based surface passivation enhanced nano structured self-powered near-infrared photodetector,” Opt. Express 23(4), 4839–4846 (2015).
[Crossref] [PubMed]

L. B. Luo, L. H. Zeng, C. Xie, Y. Q. Yu, F. X. Liang, C. Y. Wu, L. Wang, and J. G. Hu, “Light trapping and surface plasmon enhanced high-performance NIR photodetector,” Sci. Rep. 4, 3914 (2014).
[Crossref] [PubMed]

B. Nie, J. G. Hu, L. B. Luo, C. Xie, L. H. Zeng, P. Lv, F. Z. Li, J. S. Jie, M. Feng, C. Y. Wu, Y. Q. Yu, and S. H. Yu, “Monolayer graphene film on ZnO nanorod array for high-performance Schottky junction ultraviolet photodetectors,” Small 9(17), 2872–2879 (2013).
[Crossref] [PubMed]

Y. Q. Yu, J. S. Jie, Q. Jiang, L. Wang, C. Y. Wu, Q. Peng, X. W. Zhang, Z. Wang, C. Xie, D. Wu, and Y. Jiang, “High-gain visible-blind UV photodetectors based on chlorine-doped n-type ZnS nanoribbons with tunable optoelectronic properties,” J. Mater. Chem. 21(34), 12632–12638 (2011).
[Crossref]

Xie, Y.

Y. Xie, L. Wei, G. Wei, Q. Li, D. Wang, Y. Chen, S. Yan, G. Liu, L. Mei, and J. Jiao, “A self-powered UV photodetector based on TiO2 nanorod arrays,” Nanoscale Res. Lett. 8(1), 188 (2013).
[Crossref] [PubMed]

Xu, F. J.

F. Lin, S. W. Chen, J. Meng, G. Tse, X. W. Fu, F. J. Xu, B. Shen, Z. M. Liao, and D. P. Yu, “Graphene/GaN diodes for ultraviolet and visible photodetectors,” Appl. Phys. Lett. 105(7), 073103 (2014).
[Crossref]

Xu, J.

X. W. Fu, Z. M. Liao, Y. B. Zhou, H. C. Wu, Y. Q. Bie, J. Xu, and D. P. Yu, “Graphene/ZnO nanowire/graphene vertical structure based fast-response ultraviolet photodetector,” Appl. Phys. Lett. 100(22), 223114 (2012).
[Crossref]

Xu, Q.

H. L. Xue, X. Z. Kong, Z. R. Liu, C. X. Liu, J. R. Zhou, W. Y. Chen, S. P. Ruan, and Q. Xu, “TiO2 based metal-semiconductor-metal ultraviolet photodetectors,” Appl. Phys. Lett. 90(20), 201118 (2007).
[Crossref]

Xu, X.

S. Bae, H. Kim, Y. Lee, X. Xu, J. S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y. J. Kim, K. S. Kim, B. Ozyilmaz, J. H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5(8), 574–578 (2010).
[Crossref] [PubMed]

Xue, H. L.

H. L. Xue, X. Z. Kong, Z. R. Liu, C. X. Liu, J. R. Zhou, W. Y. Chen, S. P. Ruan, and Q. Xu, “TiO2 based metal-semiconductor-metal ultraviolet photodetectors,” Appl. Phys. Lett. 90(20), 201118 (2007).
[Crossref]

Yan, Q.

K. Zheng, F. Meng, L. Jiang, Q. Yan, H. H. Hng, and X. Chen, “Visible photoresponse of single-layer graphene decorated with TiO2 nanoparticles,” Small 9(12), 2076–2080 (2013).
[Crossref] [PubMed]

Yan, S.

Y. Xie, L. Wei, G. Wei, Q. Li, D. Wang, Y. Chen, S. Yan, G. Liu, L. Mei, and J. Jiao, “A self-powered UV photodetector based on TiO2 nanorod arrays,” Nanoscale Res. Lett. 8(1), 188 (2013).
[Crossref] [PubMed]

Yang, H. Y.

D. I. Son, H. Y. Yang, T. W. Kim, and W. I. Park, “Photoresponse mechanisms of ultraviolet photodetectors based on colloidal ZnO quantum dot-graphene nanocomposites,” Appl. Phys. Lett. 102(2), 021105 (2013).
[Crossref]

Yang, W. Y.

L. B. Wang, W. Y. Yang, H. N. Chong, L. Wang, F. M. Gao, L. H. Tian, and Z. B. Yang, “Efficient ultraviolet photodetectors based on TiO2 nanotube arrays with tailored structures,” RSC Advances 5(65), 52388–52394 (2015).
[Crossref]

Yang, Z. B.

L. B. Wang, W. Y. Yang, H. N. Chong, L. Wang, F. M. Gao, L. H. Tian, and Z. B. Yang, “Efficient ultraviolet photodetectors based on TiO2 nanotube arrays with tailored structures,” RSC Advances 5(65), 52388–52394 (2015).
[Crossref]

Yu, A.

M. Peng, Y. Liu, A. Yu, Y. Zhang, C. Liu, J. Liu, W. Wu, K. Zhang, X. Shi, J. Kou, J. Zhai, and Z. L. Wang, “Flexible self-powered GaN ultraviolet photoswitch with piezo-phototronic effect enhanced on/off ratio,” ACS Nano 10(1), 1572–1579 (2016).
[Crossref] [PubMed]

Yu, D. P.

F. Lin, S. W. Chen, J. Meng, G. Tse, X. W. Fu, F. J. Xu, B. Shen, Z. M. Liao, and D. P. Yu, “Graphene/GaN diodes for ultraviolet and visible photodetectors,” Appl. Phys. Lett. 105(7), 073103 (2014).
[Crossref]

X. W. Fu, Z. M. Liao, Y. B. Zhou, H. C. Wu, Y. Q. Bie, J. Xu, and D. P. Yu, “Graphene/ZnO nanowire/graphene vertical structure based fast-response ultraviolet photodetector,” Appl. Phys. Lett. 100(22), 223114 (2012).
[Crossref]

Yu, S. H.

B. Nie, J. G. Hu, L. B. Luo, C. Xie, L. H. Zeng, P. Lv, F. Z. Li, J. S. Jie, M. Feng, C. Y. Wu, Y. Q. Yu, and S. H. Yu, “Monolayer graphene film on ZnO nanorod array for high-performance Schottky junction ultraviolet photodetectors,” Small 9(17), 2872–2879 (2013).
[Crossref] [PubMed]

Yu, X.

X. Yu, Z. Zhao, J. Zhang, W. Guo, J. Qiu, D. Li, Z. Li, X. Mou, L. Li, A. Li, and H. Liu, “Rutile nanorod/anatase nanowire junction array as both sensor and power supplier for high-performance, self-Powered, wireless UV photodetector,” Small 12(20), 2759–2767 (2016).
[Crossref] [PubMed]

Yu, Y. Q.

L. B. Luo, L. H. Zeng, C. Xie, Y. Q. Yu, F. X. Liang, C. Y. Wu, L. Wang, and J. G. Hu, “Light trapping and surface plasmon enhanced high-performance NIR photodetector,” Sci. Rep. 4, 3914 (2014).
[Crossref] [PubMed]

B. Nie, J. G. Hu, L. B. Luo, C. Xie, L. H. Zeng, P. Lv, F. Z. Li, J. S. Jie, M. Feng, C. Y. Wu, Y. Q. Yu, and S. H. Yu, “Monolayer graphene film on ZnO nanorod array for high-performance Schottky junction ultraviolet photodetectors,” Small 9(17), 2872–2879 (2013).
[Crossref] [PubMed]

Y. Q. Yu, J. S. Jie, Q. Jiang, L. Wang, C. Y. Wu, Q. Peng, X. W. Zhang, Z. Wang, C. Xie, D. Wu, and Y. Jiang, “High-gain visible-blind UV photodetectors based on chlorine-doped n-type ZnS nanoribbons with tunable optoelectronic properties,” J. Mater. Chem. 21(34), 12632–12638 (2011).
[Crossref]

Yu, Y.-Q.

Y. Wang, C. W. Ge, Y. F. Zou, R. Lu, K. Zheng, T. F. Zhang, Y.-Q. Yu, and L.-B. Luo, “Plasmonic indium nanoparticle-induced high-performance photoswitch for blue light detection,” Adv. Opt. Mater. 4(2), 291–296 (2016).
[Crossref]

Zeng, L.

Zeng, L. H.

L. B. Luo, L. H. Zeng, C. Xie, Y. Q. Yu, F. X. Liang, C. Y. Wu, L. Wang, and J. G. Hu, “Light trapping and surface plasmon enhanced high-performance NIR photodetector,” Sci. Rep. 4, 3914 (2014).
[Crossref] [PubMed]

B. Nie, J. G. Hu, L. B. Luo, C. Xie, L. H. Zeng, P. Lv, F. Z. Li, J. S. Jie, M. Feng, C. Y. Wu, Y. Q. Yu, and S. H. Yu, “Monolayer graphene film on ZnO nanorod array for high-performance Schottky junction ultraviolet photodetectors,” Small 9(17), 2872–2879 (2013).
[Crossref] [PubMed]

Zhai, J.

M. Peng, Y. Liu, A. Yu, Y. Zhang, C. Liu, J. Liu, W. Wu, K. Zhang, X. Shi, J. Kou, J. Zhai, and Z. L. Wang, “Flexible self-powered GaN ultraviolet photoswitch with piezo-phototronic effect enhanced on/off ratio,” ACS Nano 10(1), 1572–1579 (2016).
[Crossref] [PubMed]

Zhang, A.

C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y. Bao, Y. H. Lo, and D. Wang, “ZnO nanowire UV photodetectors with high internal gain,” Nano Lett. 7(4), 1003–1009 (2007).
[Crossref] [PubMed]

Zhang, J.

X. Yu, Z. Zhao, J. Zhang, W. Guo, J. Qiu, D. Li, Z. Li, X. Mou, L. Li, A. Li, and H. Liu, “Rutile nanorod/anatase nanowire junction array as both sensor and power supplier for high-performance, self-Powered, wireless UV photodetector,” Small 12(20), 2759–2767 (2016).
[Crossref] [PubMed]

Zhang, K.

M. Peng, Y. Liu, A. Yu, Y. Zhang, C. Liu, J. Liu, W. Wu, K. Zhang, X. Shi, J. Kou, J. Zhai, and Z. L. Wang, “Flexible self-powered GaN ultraviolet photoswitch with piezo-phototronic effect enhanced on/off ratio,” ACS Nano 10(1), 1572–1579 (2016).
[Crossref] [PubMed]

Zhang, T. F.

Y. Wang, C. W. Ge, Y. F. Zou, R. Lu, K. Zheng, T. F. Zhang, Y.-Q. Yu, and L.-B. Luo, “Plasmonic indium nanoparticle-induced high-performance photoswitch for blue light detection,” Adv. Opt. Mater. 4(2), 291–296 (2016).
[Crossref]

Zhang, W. J.

Zhang, X. W.

Y. Q. Yu, J. S. Jie, Q. Jiang, L. Wang, C. Y. Wu, Q. Peng, X. W. Zhang, Z. Wang, C. Xie, D. Wu, and Y. Jiang, “High-gain visible-blind UV photodetectors based on chlorine-doped n-type ZnS nanoribbons with tunable optoelectronic properties,” J. Mater. Chem. 21(34), 12632–12638 (2011).
[Crossref]

Zhang, Y.

M. Peng, Y. Liu, A. Yu, Y. Zhang, C. Liu, J. Liu, W. Wu, K. Zhang, X. Shi, J. Kou, J. Zhai, and Z. L. Wang, “Flexible self-powered GaN ultraviolet photoswitch with piezo-phototronic effect enhanced on/off ratio,” ACS Nano 10(1), 1572–1579 (2016).
[Crossref] [PubMed]

Zhao, Y.

K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature 457(7230), 706–710 (2009).
[Crossref] [PubMed]

Zhao, Z.

X. Yu, Z. Zhao, J. Zhang, W. Guo, J. Qiu, D. Li, Z. Li, X. Mou, L. Li, A. Li, and H. Liu, “Rutile nanorod/anatase nanowire junction array as both sensor and power supplier for high-performance, self-Powered, wireless UV photodetector,” Small 12(20), 2759–2767 (2016).
[Crossref] [PubMed]

Zheng, K.

Y. Wang, C. W. Ge, Y. F. Zou, R. Lu, K. Zheng, T. F. Zhang, Y.-Q. Yu, and L.-B. Luo, “Plasmonic indium nanoparticle-induced high-performance photoswitch for blue light detection,” Adv. Opt. Mater. 4(2), 291–296 (2016).
[Crossref]

K. Zheng, F. Meng, L. Jiang, Q. Yan, H. H. Hng, and X. Chen, “Visible photoresponse of single-layer graphene decorated with TiO2 nanoparticles,” Small 9(12), 2076–2080 (2013).
[Crossref] [PubMed]

Zheng, Y.

S. Bae, H. Kim, Y. Lee, X. Xu, J. S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y. J. Kim, K. S. Kim, B. Ozyilmaz, J. H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5(8), 574–578 (2010).
[Crossref] [PubMed]

Zhou, C. W.

A. Kumar, A. R. Madaria, and C. W. Zhou, “Growth of aligned single-crystalline rutile TiO2 nanowires on arbitrary substrates and their application in dye-sensitized solar cells,” J. Phys. Chem. C 114(17), 7787–7792 (2010).
[Crossref]

Zhou, J. R.

H. L. Xue, X. Z. Kong, Z. R. Liu, C. X. Liu, J. R. Zhou, W. Y. Chen, S. P. Ruan, and Q. Xu, “TiO2 based metal-semiconductor-metal ultraviolet photodetectors,” Appl. Phys. Lett. 90(20), 201118 (2007).
[Crossref]

Zhou, Y. B.

X. W. Fu, Z. M. Liao, Y. B. Zhou, H. C. Wu, Y. Q. Bie, J. Xu, and D. P. Yu, “Graphene/ZnO nanowire/graphene vertical structure based fast-response ultraviolet photodetector,” Appl. Phys. Lett. 100(22), 223114 (2012).
[Crossref]

Zhu, H.

X. Li, H. Zhu, K. Wang, A. Cao, J. Wei, C. Li, Y. Jia, Z. Li, X. Li, and D. Wu, “Graphene-on-silicon Schottky junction solar cells,” Adv. Mater. 22(25), 2743–2748 (2010).
[Crossref] [PubMed]

Zhu, Y.

X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo, and R. S. Ruoff, “Transfer of large-area graphene films for high-performance transparent conductive electrodes,” Nano Lett. 9(12), 4359–4363 (2009).
[Crossref] [PubMed]

Zou, Y. F.

Y. Wang, C. W. Ge, Y. F. Zou, R. Lu, K. Zheng, T. F. Zhang, Y.-Q. Yu, and L.-B. Luo, “Plasmonic indium nanoparticle-induced high-performance photoswitch for blue light detection,” Adv. Opt. Mater. 4(2), 291–296 (2016).
[Crossref]

ACS Appl. Mater. Interfaces (1)

J. G. Ok, J. Y. Lee, H. W. Baac, S. H. Tawfick, L. J. Guo, and A. J. Hart, “Rapid anisotropic photoconductive response of ZnO-coated aligned carbon nanotube sheets,” ACS Appl. Mater. Interfaces 6(2), 874–881 (2014).
[Crossref] [PubMed]

ACS Nano (1)

M. Peng, Y. Liu, A. Yu, Y. Zhang, C. Liu, J. Liu, W. Wu, K. Zhang, X. Shi, J. Kou, J. Zhai, and Z. L. Wang, “Flexible self-powered GaN ultraviolet photoswitch with piezo-phototronic effect enhanced on/off ratio,” ACS Nano 10(1), 1572–1579 (2016).
[Crossref] [PubMed]

Adv. Funct. Mater. (1)

L. B. Luo, J. J. Chen, M. Z. Wang, H. Hu, C. Y. Wu, Q. Li, L. Wang, J. A. Huang, and F. X. Liang, “Near-infrared light photovoltaic detector based on GaAs nanocone array/monolayer graphene Schottky junction,” Adv. Funct. Mater. 24(19), 2794–2800 (2014).
[Crossref]

Adv. Mater. (2)

X. Li, H. Zhu, K. Wang, A. Cao, J. Wei, C. Li, Y. Jia, Z. Li, X. Li, and D. Wu, “Graphene-on-silicon Schottky junction solar cells,” Adv. Mater. 22(25), 2743–2748 (2010).
[Crossref] [PubMed]

G. Eda and M. Chhowalla, “Chemically derived graphene oxide: towards large-area thin-film electronics and optoelectronics,” Adv. Mater. 22(22), 2392–2415 (2010).
[Crossref] [PubMed]

Adv. Opt. Mater. (1)

Y. Wang, C. W. Ge, Y. F. Zou, R. Lu, K. Zheng, T. F. Zhang, Y.-Q. Yu, and L.-B. Luo, “Plasmonic indium nanoparticle-induced high-performance photoswitch for blue light detection,” Adv. Opt. Mater. 4(2), 291–296 (2016).
[Crossref]

Appl. Phys. Lett. (5)

X. W. Fu, Z. M. Liao, Y. B. Zhou, H. C. Wu, Y. Q. Bie, J. Xu, and D. P. Yu, “Graphene/ZnO nanowire/graphene vertical structure based fast-response ultraviolet photodetector,” Appl. Phys. Lett. 100(22), 223114 (2012).
[Crossref]

Y. An, A. Behnam, E. Pop, and A. Ural, “Metal-semiconductor-metal photodetectors based on graphene/p-type silicon Schottky junctions,” Appl. Phys. Lett. 102(1), 013110 (2013).
[Crossref]

F. Lin, S. W. Chen, J. Meng, G. Tse, X. W. Fu, F. J. Xu, B. Shen, Z. M. Liao, and D. P. Yu, “Graphene/GaN diodes for ultraviolet and visible photodetectors,” Appl. Phys. Lett. 105(7), 073103 (2014).
[Crossref]

H. L. Xue, X. Z. Kong, Z. R. Liu, C. X. Liu, J. R. Zhou, W. Y. Chen, S. P. Ruan, and Q. Xu, “TiO2 based metal-semiconductor-metal ultraviolet photodetectors,” Appl. Phys. Lett. 90(20), 201118 (2007).
[Crossref]

D. I. Son, H. Y. Yang, T. W. Kim, and W. I. Park, “Photoresponse mechanisms of ultraviolet photodetectors based on colloidal ZnO quantum dot-graphene nanocomposites,” Appl. Phys. Lett. 102(2), 021105 (2013).
[Crossref]

Appl. Surf. Sci. (1)

S. Chand and S. Bala, “Analysis of current–voltage characteristics of inhomogeneous Schottky diodes at low temperatures,” Appl. Surf. Sci. 252(2), 358–363 (2005).
[Crossref]

IEEE Electron Device Lett. (1)

A. I. Nusir and M. O. Manasreh, “Self-powered near-infrared photodetector based on asymmetrical Schottky interdigital contacts,” IEEE Electron Device Lett. 36(11), 1172–1175 (2015).
[Crossref]

J. Am. Chem. Soc. (1)

E. Hosono, S. Fujihara, K. Kakiuchi, and H. Imai, “Growth of submicrometer-scale rectangular parallelepiped rutile TiO2 films in aqueous TiCl3 solutions under hydrothermal conditions,” J. Am. Chem. Soc. 126(25), 7790–7791 (2004).
[Crossref] [PubMed]

J. Mater. Chem. (2)

Y. Liang, H. Liang, X. D. Xiao, and S. K. Hark, “The epitaxial growth of ZnS nanowire arrays and their applications in UV-light detection,” J. Mater. Chem. 22(3), 1199–1205 (2012).
[Crossref]

Y. Q. Yu, J. S. Jie, Q. Jiang, L. Wang, C. Y. Wu, Q. Peng, X. W. Zhang, Z. Wang, C. Xie, D. Wu, and Y. Jiang, “High-gain visible-blind UV photodetectors based on chlorine-doped n-type ZnS nanoribbons with tunable optoelectronic properties,” J. Mater. Chem. 21(34), 12632–12638 (2011).
[Crossref]

J. Phys. Chem. C (2)

A. Kumar, A. R. Madaria, and C. W. Zhou, “Growth of aligned single-crystalline rutile TiO2 nanowires on arbitrary substrates and their application in dye-sensitized solar cells,” J. Phys. Chem. C 114(17), 7787–7792 (2010).
[Crossref]

Q. Wang, J. J. Li, and C. Z. Gu, “Enhanced UV response of single anodic TiO2 nanotube: effect of water-modified microstructures,” J. Phys. Chem. C 116(32), 16864–16869 (2012).
[Crossref]

Nano Lett. (3)

X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo, and R. S. Ruoff, “Transfer of large-area graphene films for high-performance transparent conductive electrodes,” Nano Lett. 9(12), 4359–4363 (2009).
[Crossref] [PubMed]

C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y. Bao, Y. H. Lo, and D. Wang, “ZnO nanowire UV photodetectors with high internal gain,” Nano Lett. 7(4), 1003–1009 (2007).
[Crossref] [PubMed]

J. S. Jie, W. J. Zhang, Y. Jiang, X. M. Meng, Y. Q. Li, and S. T. Lee, “Photoconductive characteristics of single-crystal CdS nanoribbons,” Nano Lett. 6(9), 1887–1892 (2006).
[Crossref] [PubMed]

Nanoscale Res. Lett. (1)

Y. Xie, L. Wei, G. Wei, Q. Li, D. Wang, Y. Chen, S. Yan, G. Liu, L. Mei, and J. Jiao, “A self-powered UV photodetector based on TiO2 nanorod arrays,” Nanoscale Res. Lett. 8(1), 188 (2013).
[Crossref] [PubMed]

Nanotechnology (1)

Y. Han, G. Wu, H. Li, M. Wang, and H. Chen, “Highly efficient ultraviolet photodetectors based on TiO2 nanocrystal-polymer composites via wet processing,” Nanotechnology 21(18), 185708 (2010).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

S. Bae, H. Kim, Y. Lee, X. Xu, J. S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y. J. Kim, K. S. Kim, B. Ozyilmaz, J. H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5(8), 574–578 (2010).
[Crossref] [PubMed]

Nat. Photonics (1)

T. Mueller, F. N. Xia, and P. Avouris, “Graphene photodetectors for high-speed optical communications,” Nat. Photonics 4(5), 297–301 (2010).
[Crossref]

Nature (1)

K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature 457(7230), 706–710 (2009).
[Crossref] [PubMed]

Opt. Express (2)

Phys. Chem. Chem. Phys. (1)

E. Enache-Pommer, B. Liu, and E. S. Aydil, “Electron transport and recombination in dye-sensitized solar cells made from single-crystal rutile TiO2 nanowires,” Phys. Chem. Chem. Phys. 11(42), 9648–9652 (2009).
[Crossref] [PubMed]

RSC Advances (1)

L. B. Wang, W. Y. Yang, H. N. Chong, L. Wang, F. M. Gao, L. H. Tian, and Z. B. Yang, “Efficient ultraviolet photodetectors based on TiO2 nanotube arrays with tailored structures,” RSC Advances 5(65), 52388–52394 (2015).
[Crossref]

Sci. Rep. (1)

L. B. Luo, L. H. Zeng, C. Xie, Y. Q. Yu, F. X. Liang, C. Y. Wu, L. Wang, and J. G. Hu, “Light trapping and surface plasmon enhanced high-performance NIR photodetector,” Sci. Rep. 4, 3914 (2014).
[Crossref] [PubMed]

Science (1)

C. Lee, X. Wei, J. W. Kysar, and J. Hone, “Measurement of the elastic properties and intrinsic strength of monolayer graphene,” Science 321(5887), 385–388 (2008).
[Crossref] [PubMed]

Small (5)

X. Yu, Z. Zhao, J. Zhang, W. Guo, J. Qiu, D. Li, Z. Li, X. Mou, L. Li, A. Li, and H. Liu, “Rutile nanorod/anatase nanowire junction array as both sensor and power supplier for high-performance, self-Powered, wireless UV photodetector,” Small 12(20), 2759–2767 (2016).
[Crossref] [PubMed]

K. Zheng, F. Meng, L. Jiang, Q. Yan, H. H. Hng, and X. Chen, “Visible photoresponse of single-layer graphene decorated with TiO2 nanoparticles,” Small 9(12), 2076–2080 (2013).
[Crossref] [PubMed]

J. Miao, W. Hu, N. Guo, Z. Lu, X. Liu, L. Liao, P. Chen, T. Jiang, S. Wu, J. C. Ho, L. Wang, X. Chen, and W. Lu, “High-responsivity graphene/InAs nanowire heterojunction near-infrared photodetectors with distinct photocurrent on/off ratios,” Small 11(8), 936–942 (2015).
[Crossref] [PubMed]

B. Nie, J. G. Hu, L. B. Luo, C. Xie, L. H. Zeng, P. Lv, F. Z. Li, J. S. Jie, M. Feng, C. Y. Wu, Y. Q. Yu, and S. H. Yu, “Monolayer graphene film on ZnO nanorod array for high-performance Schottky junction ultraviolet photodetectors,” Small 9(17), 2872–2879 (2013).
[Crossref] [PubMed]

J. Miao, W. Hu, N. Guo, Z. Lu, X. Liu, L. Liao, P. Chen, T. Jiang, S. Wu, J. C. Ho, L. Wang, X. Chen, and W. Lu, “High-responsivity graphene/InAs nanowire heterojunction near-infrared photodetectors with distinct photocurrent on/off ratios,” Small 11(8), 936–942 (2015).
[Crossref] [PubMed]

Synth. Met. (1)

Y. Takanashi, N. Oyama, K. Momiyama, Y. Kimura, M. Niwano, and F. Hirose, “Alpha-sexthiophene/n-Si heterojunction diodes and solar cells investigated by I-V and C-V measurements,” Synth. Met. 161(23–24), 2792–2797 (2012).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) Flow chart for the fabrication of the p-type graphene-TiO2 PD. (b) The digital photograph of the PD, the inset shows the equivalent circuit. (c) Top-view SEM image of the graphene-single-crystal TiO2 interface. (d) Raman spectrum of the SLG film.
Fig. 2
Fig. 2 I-V curve of the SLG-TiO2 Schottky junction PD in dark, the inset shows the I-V curve on a logarithmic scale.
Fig. 3
Fig. 3 (a) Photoresponse of the device at 10 V reverse bias under 40 cycles with light illumination of 60 mW/cm2 before and after 1 month. (b) I-V curves of the device under different light intensities. (c) Photoresponse behavior of the device under light with different light intensities, this measurement was carried out at a bias voltage of −10 V. (d) The fitting of the relationship between the photocurrent and light intensity, λ = 405 nm. (e) The relationship between on/off ratio of the device and light intensity at 10 V reverse bias.
Fig. 4
Fig. 4 (a) Responsivity and detectivity as a function of the light power at −10 V bias. (b) Photoresponse behavior of the device at various reverse bias voltages under light illumination of 60 mW/cm2. (c) The relationship between photocurrent and reverse bias voltages of the PD.
Fig. 5
Fig. 5 Spectral response and absorption spectrum of the PD.
Fig. 6
Fig. 6 (a) Illustration of the setup for measuring the response speed of PD. Photoresponse of the device to switchable light illumination (wavelength: 405 nm) with a frequency of 5 Hz (b), 10 Hz (c), 50Hz (d), 100 Hz (e), 200 Hz (f), 400 Hz (g), respectively. (h) The relative balance (Imax-Imin)/Imax versus switching frequency. (i) A single normalized cycle measured at 400 Hz for determining both rise time (τr) and fall time (τf).
Fig. 7
Fig. 7 Energy band diagram of the PD with light illumination at a reverse bias. Φ and EF are the work function and Fermi energy level of the single crystal TiO2 or SLG film, respectively, χTiO2 represents the electron affinity of TiO2, Ev and Ec are the valence band and conduction and of TiO2, respectively.

Tables (1)

Tables Icon

Table 1 Comparison of the PD performance with other TiO2 nanostructures based devices.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

J = J s T [ e x p ( q V n k T ) - 1 ]
J s T = A * 2 T exp ( - q n s k T ) , A * = 4 π q m * k 2 / h 3
R ( A W 1 ) = I p - I d P opt
D = A 2 q I d R

Metrics