Abstract

We develop a compact whispering-gallery-mode (WGM) sensing system by integrating multiple components, including a tunable laser, a temperature controller, a function generator, an oscilloscope, a photodiode detector, and a testing computer, into a phone-sized embedded system. We demonstrate a thermal sensing experiment by using this portable system. Such a system successfully eliminates bulky measurement equipment required for characterizing optical resonators and will open up new avenues for practical sensing applications by using ultra-high Q WGM resonators.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Single virus and nanoparticle size spectrometry by whispering-gallery-mode microcavities

Jiangang Zhu, Şahin Kaya Özdemir, Lina He, Da-Ren Chen, and Lan Yang
Opt. Express 19(17) 16195-16206 (2011)

Packaged and robust microcavity device based on a microcylinder–taper coupling system

Yongchao Dong, Xueying Jin, and Keyi Wang
Appl. Opt. 54(13) 4016-4022 (2015)

High-Q silk fibroin whispering gallery microresonator

Linhua Xu, Xuefeng Jiang, Guangming Zhao, Ding Ma, Hu Tao, Zhiwen Liu, Fiorenzo G. Omenetto, and Lan Yang
Opt. Express 24(18) 20825-20830 (2016)

References

  • View by:
  • |
  • |
  • |

  1. K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
    [Crossref] [PubMed]
  2. T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. J. Kippenberg, K. J. Vahala, and H. J. Kimble, “Observation of strong coupling between one atom and a monolithic microresonator,” Nature 443(7112), 671–674 (2006).
    [Crossref] [PubMed]
  3. M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86(4), 1391–1452 (2014).
    [Crossref]
  4. T. Carmon, H. Rokhsari, L. Yang, T. J. Kippenberg, and K. J. Vahala, “Temporal behavior of radiation-pressure-induced vibrations of an optical microcavity phonon mode,” Phys. Rev. Lett. 94(22), 223902 (2005).
    [Crossref] [PubMed]
  5. T. J. Kippenberg, H. Rokhsari, T. Carmon, A. Scherer, and K. J. Vahala, “Analysis of radiation-pressure induced mechanical oscillation of an optical microcavity,” Phys. Rev. Lett. 95(3), 033901 (2005).
    [Crossref] [PubMed]
  6. C. Dong, V. Fiore, M. C. Kuzyk, and H. Wang, “Optomechanical dark mode,” Science 338(6114), 1609–1613 (2012).
    [Crossref] [PubMed]
  7. X. Jiang, M. Wang, M. C. Kuzyk, T. Oo, G. L. Long, and H. Wang, “Chip-based silica microspheres for cavity optomechanics,” Opt. Express 23(21), 27260–27265 (2015).
    [Crossref] [PubMed]
  8. F. Monifi, J. Zhang, S. K. Ozdemir, B. Peng, Y. Liu, F. Bo, F. Nori, and L. Yang, “Optomechanically induced stochastic resonance and chaos transfer between optical fields,” Nat. Photonics 10(6), 399–405 (2016).
    [Crossref]
  9. F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5(7), 591–596 (2008).
    [Crossref] [PubMed]
  10. J. Zhu, S. K. Ozdemir, Y. F. Xiao, L. Li, L. He, D. R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photon. 4(1), 46–49 (2010).
    [Crossref]
  11. L. Shao, X.-F. Jiang, X.-C. Yu, B.-B. Li, W. R. Clements, F. Vollmer, W. Wang, Y.-F. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25(39), 5616–5620 (2013).
    [Crossref] [PubMed]
  12. F. Vollmer and L. Yang, “Label-free detection with high-Q microcavities: a review of biosensing mechanisms for integrated devices,” Nanophoton. 1(3-4), 267–291 (2012).
    [Crossref] [PubMed]
  13. S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature 415(6872), 621–623 (2002).
    [Crossref] [PubMed]
  14. T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity,” Phys. Rev. Lett. 93(8), 083904 (2004).
    [Crossref] [PubMed]
  15. L. Yang, T. Carmon, B. Min, S. M. Spillane, and K. J. Vahala, “Erbium-doped and Raman microlasers on a silicon chip fabricated by the sol–gel process,” Appl. Phys. Lett. 86(9), 091114 (2005).
    [Crossref]
  16. T. Carmon and K. J. Vahala, “Visible continuous emission from a silica microphonic device by third-harmonic generation,” Nat. Phys. 3(6), 430–435 (2007).
    [Crossref]
  17. X.-F. Jiang, Y.-F. Xiao, Q.-F. Yang, L. Shao, W. R. Clements, and Q. Gong, “Free-space coupled, ultralow-threshold Raman lasing from a silica microcavity,” Appl. Phys. Lett. 103(10), 101102 (2013).
    [Crossref]
  18. L. Yang and K. J. Vahala, “Gain functionalization of silica microresonators,” Opt. Lett. 28(8), 592–594 (2003).
    [Crossref] [PubMed]
  19. L. Yang, D. K. Armani, and K. J. Vahala, “Fiber-coupled erbium microlasers on a chip,” Appl. Phys. Lett. 83(5), 825–826 (2003).
    [Crossref]
  20. X.-F. Jiang, Y.-F. Xiao, C.-L. Zou, L. He, C.-H. Dong, B.-B. Li, Y. Li, F.-W. Sun, L. Yang, and Q. Gong, “Highly Unidirectional Emission and Ultralow-Threshold Lasing from On-Chip Ultrahigh-Q Microcavities,” Adv. Mater. 24(35), OP260–OP264 (2012).
    [Crossref] [PubMed]
  21. X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
    [Crossref] [PubMed]
  22. M. D. Baaske, M. R. Foreman, and F. Vollmer, “Single-molecule nucleic acid interactions monitored on a label-free microcavity biosensor platform,” Nat. Nanotechnol. 9(11), 933–939 (2014).
    [Crossref] [PubMed]
  23. S. Forstner, E. Sheridan, J. Knittel, C. L. Humphreys, G. A. Brawley, H. Rubinsztein-Dunlop, and W. P. Bowen, “Ultrasensitive optomechanical magnetometry,” Adv. Mater. 26(36), 6348–6353 (2014).
    [Crossref] [PubMed]
  24. C. Yu, J. Janousek, E. Sheridan, D. L. McAuslan, H. Rubinsztein-Dunlop, P. K. Lam, Y. Zhang, and W. P. Bowen, “Optomechanical magnetometry with a macroscopic resonator,” Phys. Rev. Appl. 5(4), 044007 (2016).
    [Crossref]
  25. A. B. Matsko, A. A. Savchenkov, V. S. Ilchenko, and L. Maleki, “Optical gyroscope with whispering gallery mode optical cavities,” Opt. Commun. 233(1), 107–112 (2004).
    [Crossref]
  26. R. Sarma, L. Ge, J. Wiersig, and H. Cao, “Rotating Optical Microcavities with Broken Chiral Symmetry,” Phys. Rev. Lett. 114(5), 053903 (2015).
    [Crossref] [PubMed]
  27. R. Sarma, L. Ge, and H. Cao, “Optical resonances in rotating dielectric microcavities of deformed shape,” J. Opt. Soc. Am. B 32(8), 1736 (2015).
    [Crossref]
  28. G. Farca, S. I. Shopova, and A. T. Rosenberger, “Cavity-enhanced laser absorption spectroscopy using microresonator whispering-gallery modes,” Opt. Express 15(25), 17443–17448 (2007).
    [Crossref] [PubMed]
  29. M. Gregor, C. Pyrlik, R. Henze, A. Wicht, A. Peters, and O. Benson, “An alignment-free fiber-coupled microsphere resonator for gas sensing applications,” Appl. Phys. Lett. 96(23), 231102 (2010).
    [Crossref]
  30. Y.-Z. Yan, C.-L. Zou, S.-B. Yan, F.-W. Sun, Z. Ji, J. Liu, Y.-G. Zhang, L. Wang, C.-Y. Xue, W.-D. Zhang, Z.-F. Han, and J.-J. Xiong, “Packaged silica microsphere-taper coupling system for robust thermal sensing application,” Opt. Express 19(7), 5753–5759 (2011).
    [Crossref] [PubMed]
  31. Y.-Z. Yan, C.-L. Zou, S.-B. Yan, F.-W. Sun, J. Liu, C.-Y. Xue, Y.-G. Zhang, L. Wang, W.-D. Zhang, and J.-J. Xiong, “Robust spot-packaged microsphere-taper coupling structure for in-line optical sensors,” IEEE Photonics Technol. Lett. 23(22), 1736–1738 (2011).
    [Crossref]
  32. F. Monifi, S. K. Ozdemir, J. Friedlein, and L. Yang, “Encapsulation of a Fiber Taper Coupled Microtoroid Resonator in a Polymer Matrix,” IEEE Photonics Technol. Lett. 25(15), 1458–1461 (2013).
    [Crossref]
  33. G. Zhao, Ş. K. Özdemir, T. Wang, L. Xu, G.-L. Long, and L. Yang, “Raman lasing and Fano lineshapes in a packaged fiber-coupled whispering-gallery-mode microresonator,” arXiv: 1609.02618.
  34. T. Carmon, L. Yang, and K. Vahala, “Dynamical thermal behavior and thermal self-stability of microcavities,” Opt. Express 12(20), 4742–4750 (2004).
    [Crossref] [PubMed]
  35. B. B. Li, Q. Y. Wang, Y. F. Xiao, X. F. Jiang, Y. Li, L. Xiao, and Q. Gong, “On chip, high-sensitivity thermal sensor based on high-Q polydimethylsiloxane-coated microresonator,” Appl. Phys. Lett. 96(25), 251109 (2010).
    [Crossref]
  36. L. Xu, X. Jiang, G. Zhao, D. Ma, H. Tao, Z. Liu, F. G. Omenetto, and L. Yang, “High-Q silk fibroin whispering gallery microresonator,” Opt. Express 24(18), 20825–20830 (2016).
    [Crossref] [PubMed]
  37. Q. Ma, T. Rossmann, and Z. Guo, “Temperature sensitivity of silica micro-resonators,” J. Phys. D Appl. Phys. 41(24), 245111 (2008).
    [Crossref]
  38. Q. Ma, T. Rossmann, and Z. Guo, “Whispering-gallery mode silica microsensors for cryogenic to room temperature measurement,” Meas. Sci. Technol. 21(2), 025310 (2010).
    [Crossref]

2016 (3)

F. Monifi, J. Zhang, S. K. Ozdemir, B. Peng, Y. Liu, F. Bo, F. Nori, and L. Yang, “Optomechanically induced stochastic resonance and chaos transfer between optical fields,” Nat. Photonics 10(6), 399–405 (2016).
[Crossref]

C. Yu, J. Janousek, E. Sheridan, D. L. McAuslan, H. Rubinsztein-Dunlop, P. K. Lam, Y. Zhang, and W. P. Bowen, “Optomechanical magnetometry with a macroscopic resonator,” Phys. Rev. Appl. 5(4), 044007 (2016).
[Crossref]

L. Xu, X. Jiang, G. Zhao, D. Ma, H. Tao, Z. Liu, F. G. Omenetto, and L. Yang, “High-Q silk fibroin whispering gallery microresonator,” Opt. Express 24(18), 20825–20830 (2016).
[Crossref] [PubMed]

2015 (3)

2014 (3)

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86(4), 1391–1452 (2014).
[Crossref]

M. D. Baaske, M. R. Foreman, and F. Vollmer, “Single-molecule nucleic acid interactions monitored on a label-free microcavity biosensor platform,” Nat. Nanotechnol. 9(11), 933–939 (2014).
[Crossref] [PubMed]

S. Forstner, E. Sheridan, J. Knittel, C. L. Humphreys, G. A. Brawley, H. Rubinsztein-Dunlop, and W. P. Bowen, “Ultrasensitive optomechanical magnetometry,” Adv. Mater. 26(36), 6348–6353 (2014).
[Crossref] [PubMed]

2013 (3)

F. Monifi, S. K. Ozdemir, J. Friedlein, and L. Yang, “Encapsulation of a Fiber Taper Coupled Microtoroid Resonator in a Polymer Matrix,” IEEE Photonics Technol. Lett. 25(15), 1458–1461 (2013).
[Crossref]

L. Shao, X.-F. Jiang, X.-C. Yu, B.-B. Li, W. R. Clements, F. Vollmer, W. Wang, Y.-F. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25(39), 5616–5620 (2013).
[Crossref] [PubMed]

X.-F. Jiang, Y.-F. Xiao, Q.-F. Yang, L. Shao, W. R. Clements, and Q. Gong, “Free-space coupled, ultralow-threshold Raman lasing from a silica microcavity,” Appl. Phys. Lett. 103(10), 101102 (2013).
[Crossref]

2012 (3)

F. Vollmer and L. Yang, “Label-free detection with high-Q microcavities: a review of biosensing mechanisms for integrated devices,” Nanophoton. 1(3-4), 267–291 (2012).
[Crossref] [PubMed]

C. Dong, V. Fiore, M. C. Kuzyk, and H. Wang, “Optomechanical dark mode,” Science 338(6114), 1609–1613 (2012).
[Crossref] [PubMed]

X.-F. Jiang, Y.-F. Xiao, C.-L. Zou, L. He, C.-H. Dong, B.-B. Li, Y. Li, F.-W. Sun, L. Yang, and Q. Gong, “Highly Unidirectional Emission and Ultralow-Threshold Lasing from On-Chip Ultrahigh-Q Microcavities,” Adv. Mater. 24(35), OP260–OP264 (2012).
[Crossref] [PubMed]

2011 (2)

Y.-Z. Yan, C.-L. Zou, S.-B. Yan, F.-W. Sun, Z. Ji, J. Liu, Y.-G. Zhang, L. Wang, C.-Y. Xue, W.-D. Zhang, Z.-F. Han, and J.-J. Xiong, “Packaged silica microsphere-taper coupling system for robust thermal sensing application,” Opt. Express 19(7), 5753–5759 (2011).
[Crossref] [PubMed]

Y.-Z. Yan, C.-L. Zou, S.-B. Yan, F.-W. Sun, J. Liu, C.-Y. Xue, Y.-G. Zhang, L. Wang, W.-D. Zhang, and J.-J. Xiong, “Robust spot-packaged microsphere-taper coupling structure for in-line optical sensors,” IEEE Photonics Technol. Lett. 23(22), 1736–1738 (2011).
[Crossref]

2010 (4)

M. Gregor, C. Pyrlik, R. Henze, A. Wicht, A. Peters, and O. Benson, “An alignment-free fiber-coupled microsphere resonator for gas sensing applications,” Appl. Phys. Lett. 96(23), 231102 (2010).
[Crossref]

B. B. Li, Q. Y. Wang, Y. F. Xiao, X. F. Jiang, Y. Li, L. Xiao, and Q. Gong, “On chip, high-sensitivity thermal sensor based on high-Q polydimethylsiloxane-coated microresonator,” Appl. Phys. Lett. 96(25), 251109 (2010).
[Crossref]

J. Zhu, S. K. Ozdemir, Y. F. Xiao, L. Li, L. He, D. R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photon. 4(1), 46–49 (2010).
[Crossref]

Q. Ma, T. Rossmann, and Z. Guo, “Whispering-gallery mode silica microsensors for cryogenic to room temperature measurement,” Meas. Sci. Technol. 21(2), 025310 (2010).
[Crossref]

2008 (3)

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5(7), 591–596 (2008).
[Crossref] [PubMed]

Q. Ma, T. Rossmann, and Z. Guo, “Temperature sensitivity of silica micro-resonators,” J. Phys. D Appl. Phys. 41(24), 245111 (2008).
[Crossref]

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[Crossref] [PubMed]

2007 (2)

G. Farca, S. I. Shopova, and A. T. Rosenberger, “Cavity-enhanced laser absorption spectroscopy using microresonator whispering-gallery modes,” Opt. Express 15(25), 17443–17448 (2007).
[Crossref] [PubMed]

T. Carmon and K. J. Vahala, “Visible continuous emission from a silica microphonic device by third-harmonic generation,” Nat. Phys. 3(6), 430–435 (2007).
[Crossref]

2006 (1)

T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. J. Kippenberg, K. J. Vahala, and H. J. Kimble, “Observation of strong coupling between one atom and a monolithic microresonator,” Nature 443(7112), 671–674 (2006).
[Crossref] [PubMed]

2005 (3)

T. Carmon, H. Rokhsari, L. Yang, T. J. Kippenberg, and K. J. Vahala, “Temporal behavior of radiation-pressure-induced vibrations of an optical microcavity phonon mode,” Phys. Rev. Lett. 94(22), 223902 (2005).
[Crossref] [PubMed]

T. J. Kippenberg, H. Rokhsari, T. Carmon, A. Scherer, and K. J. Vahala, “Analysis of radiation-pressure induced mechanical oscillation of an optical microcavity,” Phys. Rev. Lett. 95(3), 033901 (2005).
[Crossref] [PubMed]

L. Yang, T. Carmon, B. Min, S. M. Spillane, and K. J. Vahala, “Erbium-doped and Raman microlasers on a silicon chip fabricated by the sol–gel process,” Appl. Phys. Lett. 86(9), 091114 (2005).
[Crossref]

2004 (3)

T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity,” Phys. Rev. Lett. 93(8), 083904 (2004).
[Crossref] [PubMed]

A. B. Matsko, A. A. Savchenkov, V. S. Ilchenko, and L. Maleki, “Optical gyroscope with whispering gallery mode optical cavities,” Opt. Commun. 233(1), 107–112 (2004).
[Crossref]

T. Carmon, L. Yang, and K. Vahala, “Dynamical thermal behavior and thermal self-stability of microcavities,” Opt. Express 12(20), 4742–4750 (2004).
[Crossref] [PubMed]

2003 (3)

L. Yang and K. J. Vahala, “Gain functionalization of silica microresonators,” Opt. Lett. 28(8), 592–594 (2003).
[Crossref] [PubMed]

L. Yang, D. K. Armani, and K. J. Vahala, “Fiber-coupled erbium microlasers on a chip,” Appl. Phys. Lett. 83(5), 825–826 (2003).
[Crossref]

K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
[Crossref] [PubMed]

2002 (1)

S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature 415(6872), 621–623 (2002).
[Crossref] [PubMed]

Aoki, T.

T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. J. Kippenberg, K. J. Vahala, and H. J. Kimble, “Observation of strong coupling between one atom and a monolithic microresonator,” Nature 443(7112), 671–674 (2006).
[Crossref] [PubMed]

Armani, D. K.

L. Yang, D. K. Armani, and K. J. Vahala, “Fiber-coupled erbium microlasers on a chip,” Appl. Phys. Lett. 83(5), 825–826 (2003).
[Crossref]

Arnold, S.

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5(7), 591–596 (2008).
[Crossref] [PubMed]

Aspelmeyer, M.

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86(4), 1391–1452 (2014).
[Crossref]

Baaske, M. D.

M. D. Baaske, M. R. Foreman, and F. Vollmer, “Single-molecule nucleic acid interactions monitored on a label-free microcavity biosensor platform,” Nat. Nanotechnol. 9(11), 933–939 (2014).
[Crossref] [PubMed]

Benson, O.

M. Gregor, C. Pyrlik, R. Henze, A. Wicht, A. Peters, and O. Benson, “An alignment-free fiber-coupled microsphere resonator for gas sensing applications,” Appl. Phys. Lett. 96(23), 231102 (2010).
[Crossref]

Bo, F.

F. Monifi, J. Zhang, S. K. Ozdemir, B. Peng, Y. Liu, F. Bo, F. Nori, and L. Yang, “Optomechanically induced stochastic resonance and chaos transfer between optical fields,” Nat. Photonics 10(6), 399–405 (2016).
[Crossref]

Bowen, W. P.

C. Yu, J. Janousek, E. Sheridan, D. L. McAuslan, H. Rubinsztein-Dunlop, P. K. Lam, Y. Zhang, and W. P. Bowen, “Optomechanical magnetometry with a macroscopic resonator,” Phys. Rev. Appl. 5(4), 044007 (2016).
[Crossref]

S. Forstner, E. Sheridan, J. Knittel, C. L. Humphreys, G. A. Brawley, H. Rubinsztein-Dunlop, and W. P. Bowen, “Ultrasensitive optomechanical magnetometry,” Adv. Mater. 26(36), 6348–6353 (2014).
[Crossref] [PubMed]

T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. J. Kippenberg, K. J. Vahala, and H. J. Kimble, “Observation of strong coupling between one atom and a monolithic microresonator,” Nature 443(7112), 671–674 (2006).
[Crossref] [PubMed]

Brawley, G. A.

S. Forstner, E. Sheridan, J. Knittel, C. L. Humphreys, G. A. Brawley, H. Rubinsztein-Dunlop, and W. P. Bowen, “Ultrasensitive optomechanical magnetometry,” Adv. Mater. 26(36), 6348–6353 (2014).
[Crossref] [PubMed]

Cao, H.

R. Sarma, L. Ge, J. Wiersig, and H. Cao, “Rotating Optical Microcavities with Broken Chiral Symmetry,” Phys. Rev. Lett. 114(5), 053903 (2015).
[Crossref] [PubMed]

R. Sarma, L. Ge, and H. Cao, “Optical resonances in rotating dielectric microcavities of deformed shape,” J. Opt. Soc. Am. B 32(8), 1736 (2015).
[Crossref]

Carmon, T.

T. Carmon and K. J. Vahala, “Visible continuous emission from a silica microphonic device by third-harmonic generation,” Nat. Phys. 3(6), 430–435 (2007).
[Crossref]

L. Yang, T. Carmon, B. Min, S. M. Spillane, and K. J. Vahala, “Erbium-doped and Raman microlasers on a silicon chip fabricated by the sol–gel process,” Appl. Phys. Lett. 86(9), 091114 (2005).
[Crossref]

T. Carmon, H. Rokhsari, L. Yang, T. J. Kippenberg, and K. J. Vahala, “Temporal behavior of radiation-pressure-induced vibrations of an optical microcavity phonon mode,” Phys. Rev. Lett. 94(22), 223902 (2005).
[Crossref] [PubMed]

T. J. Kippenberg, H. Rokhsari, T. Carmon, A. Scherer, and K. J. Vahala, “Analysis of radiation-pressure induced mechanical oscillation of an optical microcavity,” Phys. Rev. Lett. 95(3), 033901 (2005).
[Crossref] [PubMed]

T. Carmon, L. Yang, and K. Vahala, “Dynamical thermal behavior and thermal self-stability of microcavities,” Opt. Express 12(20), 4742–4750 (2004).
[Crossref] [PubMed]

Chen, D. R.

J. Zhu, S. K. Ozdemir, Y. F. Xiao, L. Li, L. He, D. R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photon. 4(1), 46–49 (2010).
[Crossref]

Clements, W. R.

L. Shao, X.-F. Jiang, X.-C. Yu, B.-B. Li, W. R. Clements, F. Vollmer, W. Wang, Y.-F. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25(39), 5616–5620 (2013).
[Crossref] [PubMed]

X.-F. Jiang, Y.-F. Xiao, Q.-F. Yang, L. Shao, W. R. Clements, and Q. Gong, “Free-space coupled, ultralow-threshold Raman lasing from a silica microcavity,” Appl. Phys. Lett. 103(10), 101102 (2013).
[Crossref]

Dayan, B.

T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. J. Kippenberg, K. J. Vahala, and H. J. Kimble, “Observation of strong coupling between one atom and a monolithic microresonator,” Nature 443(7112), 671–674 (2006).
[Crossref] [PubMed]

Dong, C.

C. Dong, V. Fiore, M. C. Kuzyk, and H. Wang, “Optomechanical dark mode,” Science 338(6114), 1609–1613 (2012).
[Crossref] [PubMed]

Dong, C.-H.

X.-F. Jiang, Y.-F. Xiao, C.-L. Zou, L. He, C.-H. Dong, B.-B. Li, Y. Li, F.-W. Sun, L. Yang, and Q. Gong, “Highly Unidirectional Emission and Ultralow-Threshold Lasing from On-Chip Ultrahigh-Q Microcavities,” Adv. Mater. 24(35), OP260–OP264 (2012).
[Crossref] [PubMed]

Fan, X.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[Crossref] [PubMed]

Farca, G.

Fiore, V.

C. Dong, V. Fiore, M. C. Kuzyk, and H. Wang, “Optomechanical dark mode,” Science 338(6114), 1609–1613 (2012).
[Crossref] [PubMed]

Foreman, M. R.

M. D. Baaske, M. R. Foreman, and F. Vollmer, “Single-molecule nucleic acid interactions monitored on a label-free microcavity biosensor platform,” Nat. Nanotechnol. 9(11), 933–939 (2014).
[Crossref] [PubMed]

Forstner, S.

S. Forstner, E. Sheridan, J. Knittel, C. L. Humphreys, G. A. Brawley, H. Rubinsztein-Dunlop, and W. P. Bowen, “Ultrasensitive optomechanical magnetometry,” Adv. Mater. 26(36), 6348–6353 (2014).
[Crossref] [PubMed]

Friedlein, J.

F. Monifi, S. K. Ozdemir, J. Friedlein, and L. Yang, “Encapsulation of a Fiber Taper Coupled Microtoroid Resonator in a Polymer Matrix,” IEEE Photonics Technol. Lett. 25(15), 1458–1461 (2013).
[Crossref]

Ge, L.

R. Sarma, L. Ge, J. Wiersig, and H. Cao, “Rotating Optical Microcavities with Broken Chiral Symmetry,” Phys. Rev. Lett. 114(5), 053903 (2015).
[Crossref] [PubMed]

R. Sarma, L. Ge, and H. Cao, “Optical resonances in rotating dielectric microcavities of deformed shape,” J. Opt. Soc. Am. B 32(8), 1736 (2015).
[Crossref]

Gong, Q.

X.-F. Jiang, Y.-F. Xiao, Q.-F. Yang, L. Shao, W. R. Clements, and Q. Gong, “Free-space coupled, ultralow-threshold Raman lasing from a silica microcavity,” Appl. Phys. Lett. 103(10), 101102 (2013).
[Crossref]

L. Shao, X.-F. Jiang, X.-C. Yu, B.-B. Li, W. R. Clements, F. Vollmer, W. Wang, Y.-F. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25(39), 5616–5620 (2013).
[Crossref] [PubMed]

X.-F. Jiang, Y.-F. Xiao, C.-L. Zou, L. He, C.-H. Dong, B.-B. Li, Y. Li, F.-W. Sun, L. Yang, and Q. Gong, “Highly Unidirectional Emission and Ultralow-Threshold Lasing from On-Chip Ultrahigh-Q Microcavities,” Adv. Mater. 24(35), OP260–OP264 (2012).
[Crossref] [PubMed]

B. B. Li, Q. Y. Wang, Y. F. Xiao, X. F. Jiang, Y. Li, L. Xiao, and Q. Gong, “On chip, high-sensitivity thermal sensor based on high-Q polydimethylsiloxane-coated microresonator,” Appl. Phys. Lett. 96(25), 251109 (2010).
[Crossref]

Gregor, M.

M. Gregor, C. Pyrlik, R. Henze, A. Wicht, A. Peters, and O. Benson, “An alignment-free fiber-coupled microsphere resonator for gas sensing applications,” Appl. Phys. Lett. 96(23), 231102 (2010).
[Crossref]

Guo, Z.

Q. Ma, T. Rossmann, and Z. Guo, “Whispering-gallery mode silica microsensors for cryogenic to room temperature measurement,” Meas. Sci. Technol. 21(2), 025310 (2010).
[Crossref]

Q. Ma, T. Rossmann, and Z. Guo, “Temperature sensitivity of silica micro-resonators,” J. Phys. D Appl. Phys. 41(24), 245111 (2008).
[Crossref]

Han, Z.-F.

He, L.

X.-F. Jiang, Y.-F. Xiao, C.-L. Zou, L. He, C.-H. Dong, B.-B. Li, Y. Li, F.-W. Sun, L. Yang, and Q. Gong, “Highly Unidirectional Emission and Ultralow-Threshold Lasing from On-Chip Ultrahigh-Q Microcavities,” Adv. Mater. 24(35), OP260–OP264 (2012).
[Crossref] [PubMed]

J. Zhu, S. K. Ozdemir, Y. F. Xiao, L. Li, L. He, D. R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photon. 4(1), 46–49 (2010).
[Crossref]

Henze, R.

M. Gregor, C. Pyrlik, R. Henze, A. Wicht, A. Peters, and O. Benson, “An alignment-free fiber-coupled microsphere resonator for gas sensing applications,” Appl. Phys. Lett. 96(23), 231102 (2010).
[Crossref]

Humphreys, C. L.

S. Forstner, E. Sheridan, J. Knittel, C. L. Humphreys, G. A. Brawley, H. Rubinsztein-Dunlop, and W. P. Bowen, “Ultrasensitive optomechanical magnetometry,” Adv. Mater. 26(36), 6348–6353 (2014).
[Crossref] [PubMed]

Ilchenko, V. S.

A. B. Matsko, A. A. Savchenkov, V. S. Ilchenko, and L. Maleki, “Optical gyroscope with whispering gallery mode optical cavities,” Opt. Commun. 233(1), 107–112 (2004).
[Crossref]

Janousek, J.

C. Yu, J. Janousek, E. Sheridan, D. L. McAuslan, H. Rubinsztein-Dunlop, P. K. Lam, Y. Zhang, and W. P. Bowen, “Optomechanical magnetometry with a macroscopic resonator,” Phys. Rev. Appl. 5(4), 044007 (2016).
[Crossref]

Ji, Z.

Jiang, X.

Jiang, X. F.

B. B. Li, Q. Y. Wang, Y. F. Xiao, X. F. Jiang, Y. Li, L. Xiao, and Q. Gong, “On chip, high-sensitivity thermal sensor based on high-Q polydimethylsiloxane-coated microresonator,” Appl. Phys. Lett. 96(25), 251109 (2010).
[Crossref]

Jiang, X.-F.

L. Shao, X.-F. Jiang, X.-C. Yu, B.-B. Li, W. R. Clements, F. Vollmer, W. Wang, Y.-F. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25(39), 5616–5620 (2013).
[Crossref] [PubMed]

X.-F. Jiang, Y.-F. Xiao, Q.-F. Yang, L. Shao, W. R. Clements, and Q. Gong, “Free-space coupled, ultralow-threshold Raman lasing from a silica microcavity,” Appl. Phys. Lett. 103(10), 101102 (2013).
[Crossref]

X.-F. Jiang, Y.-F. Xiao, C.-L. Zou, L. He, C.-H. Dong, B.-B. Li, Y. Li, F.-W. Sun, L. Yang, and Q. Gong, “Highly Unidirectional Emission and Ultralow-Threshold Lasing from On-Chip Ultrahigh-Q Microcavities,” Adv. Mater. 24(35), OP260–OP264 (2012).
[Crossref] [PubMed]

Kimble, H. J.

T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. J. Kippenberg, K. J. Vahala, and H. J. Kimble, “Observation of strong coupling between one atom and a monolithic microresonator,” Nature 443(7112), 671–674 (2006).
[Crossref] [PubMed]

Kippenberg, T. J.

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86(4), 1391–1452 (2014).
[Crossref]

T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. J. Kippenberg, K. J. Vahala, and H. J. Kimble, “Observation of strong coupling between one atom and a monolithic microresonator,” Nature 443(7112), 671–674 (2006).
[Crossref] [PubMed]

T. Carmon, H. Rokhsari, L. Yang, T. J. Kippenberg, and K. J. Vahala, “Temporal behavior of radiation-pressure-induced vibrations of an optical microcavity phonon mode,” Phys. Rev. Lett. 94(22), 223902 (2005).
[Crossref] [PubMed]

T. J. Kippenberg, H. Rokhsari, T. Carmon, A. Scherer, and K. J. Vahala, “Analysis of radiation-pressure induced mechanical oscillation of an optical microcavity,” Phys. Rev. Lett. 95(3), 033901 (2005).
[Crossref] [PubMed]

T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity,” Phys. Rev. Lett. 93(8), 083904 (2004).
[Crossref] [PubMed]

S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature 415(6872), 621–623 (2002).
[Crossref] [PubMed]

Knittel, J.

S. Forstner, E. Sheridan, J. Knittel, C. L. Humphreys, G. A. Brawley, H. Rubinsztein-Dunlop, and W. P. Bowen, “Ultrasensitive optomechanical magnetometry,” Adv. Mater. 26(36), 6348–6353 (2014).
[Crossref] [PubMed]

Kuzyk, M. C.

Lam, P. K.

C. Yu, J. Janousek, E. Sheridan, D. L. McAuslan, H. Rubinsztein-Dunlop, P. K. Lam, Y. Zhang, and W. P. Bowen, “Optomechanical magnetometry with a macroscopic resonator,” Phys. Rev. Appl. 5(4), 044007 (2016).
[Crossref]

Li, B. B.

B. B. Li, Q. Y. Wang, Y. F. Xiao, X. F. Jiang, Y. Li, L. Xiao, and Q. Gong, “On chip, high-sensitivity thermal sensor based on high-Q polydimethylsiloxane-coated microresonator,” Appl. Phys. Lett. 96(25), 251109 (2010).
[Crossref]

Li, B.-B.

L. Shao, X.-F. Jiang, X.-C. Yu, B.-B. Li, W. R. Clements, F. Vollmer, W. Wang, Y.-F. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25(39), 5616–5620 (2013).
[Crossref] [PubMed]

X.-F. Jiang, Y.-F. Xiao, C.-L. Zou, L. He, C.-H. Dong, B.-B. Li, Y. Li, F.-W. Sun, L. Yang, and Q. Gong, “Highly Unidirectional Emission and Ultralow-Threshold Lasing from On-Chip Ultrahigh-Q Microcavities,” Adv. Mater. 24(35), OP260–OP264 (2012).
[Crossref] [PubMed]

Li, L.

J. Zhu, S. K. Ozdemir, Y. F. Xiao, L. Li, L. He, D. R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photon. 4(1), 46–49 (2010).
[Crossref]

Li, Y.

X.-F. Jiang, Y.-F. Xiao, C.-L. Zou, L. He, C.-H. Dong, B.-B. Li, Y. Li, F.-W. Sun, L. Yang, and Q. Gong, “Highly Unidirectional Emission and Ultralow-Threshold Lasing from On-Chip Ultrahigh-Q Microcavities,” Adv. Mater. 24(35), OP260–OP264 (2012).
[Crossref] [PubMed]

B. B. Li, Q. Y. Wang, Y. F. Xiao, X. F. Jiang, Y. Li, L. Xiao, and Q. Gong, “On chip, high-sensitivity thermal sensor based on high-Q polydimethylsiloxane-coated microresonator,” Appl. Phys. Lett. 96(25), 251109 (2010).
[Crossref]

Liu, J.

Y.-Z. Yan, C.-L. Zou, S.-B. Yan, F.-W. Sun, J. Liu, C.-Y. Xue, Y.-G. Zhang, L. Wang, W.-D. Zhang, and J.-J. Xiong, “Robust spot-packaged microsphere-taper coupling structure for in-line optical sensors,” IEEE Photonics Technol. Lett. 23(22), 1736–1738 (2011).
[Crossref]

Y.-Z. Yan, C.-L. Zou, S.-B. Yan, F.-W. Sun, Z. Ji, J. Liu, Y.-G. Zhang, L. Wang, C.-Y. Xue, W.-D. Zhang, Z.-F. Han, and J.-J. Xiong, “Packaged silica microsphere-taper coupling system for robust thermal sensing application,” Opt. Express 19(7), 5753–5759 (2011).
[Crossref] [PubMed]

Liu, Y.

F. Monifi, J. Zhang, S. K. Ozdemir, B. Peng, Y. Liu, F. Bo, F. Nori, and L. Yang, “Optomechanically induced stochastic resonance and chaos transfer between optical fields,” Nat. Photonics 10(6), 399–405 (2016).
[Crossref]

Liu, Z.

Long, G. L.

Ma, D.

Ma, Q.

Q. Ma, T. Rossmann, and Z. Guo, “Whispering-gallery mode silica microsensors for cryogenic to room temperature measurement,” Meas. Sci. Technol. 21(2), 025310 (2010).
[Crossref]

Q. Ma, T. Rossmann, and Z. Guo, “Temperature sensitivity of silica micro-resonators,” J. Phys. D Appl. Phys. 41(24), 245111 (2008).
[Crossref]

Maleki, L.

A. B. Matsko, A. A. Savchenkov, V. S. Ilchenko, and L. Maleki, “Optical gyroscope with whispering gallery mode optical cavities,” Opt. Commun. 233(1), 107–112 (2004).
[Crossref]

Marquardt, F.

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86(4), 1391–1452 (2014).
[Crossref]

Matsko, A. B.

A. B. Matsko, A. A. Savchenkov, V. S. Ilchenko, and L. Maleki, “Optical gyroscope with whispering gallery mode optical cavities,” Opt. Commun. 233(1), 107–112 (2004).
[Crossref]

McAuslan, D. L.

C. Yu, J. Janousek, E. Sheridan, D. L. McAuslan, H. Rubinsztein-Dunlop, P. K. Lam, Y. Zhang, and W. P. Bowen, “Optomechanical magnetometry with a macroscopic resonator,” Phys. Rev. Appl. 5(4), 044007 (2016).
[Crossref]

Min, B.

L. Yang, T. Carmon, B. Min, S. M. Spillane, and K. J. Vahala, “Erbium-doped and Raman microlasers on a silicon chip fabricated by the sol–gel process,” Appl. Phys. Lett. 86(9), 091114 (2005).
[Crossref]

Monifi, F.

F. Monifi, J. Zhang, S. K. Ozdemir, B. Peng, Y. Liu, F. Bo, F. Nori, and L. Yang, “Optomechanically induced stochastic resonance and chaos transfer between optical fields,” Nat. Photonics 10(6), 399–405 (2016).
[Crossref]

F. Monifi, S. K. Ozdemir, J. Friedlein, and L. Yang, “Encapsulation of a Fiber Taper Coupled Microtoroid Resonator in a Polymer Matrix,” IEEE Photonics Technol. Lett. 25(15), 1458–1461 (2013).
[Crossref]

Nori, F.

F. Monifi, J. Zhang, S. K. Ozdemir, B. Peng, Y. Liu, F. Bo, F. Nori, and L. Yang, “Optomechanically induced stochastic resonance and chaos transfer between optical fields,” Nat. Photonics 10(6), 399–405 (2016).
[Crossref]

Omenetto, F. G.

Oo, T.

Ozdemir, S. K.

F. Monifi, J. Zhang, S. K. Ozdemir, B. Peng, Y. Liu, F. Bo, F. Nori, and L. Yang, “Optomechanically induced stochastic resonance and chaos transfer between optical fields,” Nat. Photonics 10(6), 399–405 (2016).
[Crossref]

F. Monifi, S. K. Ozdemir, J. Friedlein, and L. Yang, “Encapsulation of a Fiber Taper Coupled Microtoroid Resonator in a Polymer Matrix,” IEEE Photonics Technol. Lett. 25(15), 1458–1461 (2013).
[Crossref]

J. Zhu, S. K. Ozdemir, Y. F. Xiao, L. Li, L. He, D. R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photon. 4(1), 46–49 (2010).
[Crossref]

Parkins, A. S.

T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. J. Kippenberg, K. J. Vahala, and H. J. Kimble, “Observation of strong coupling between one atom and a monolithic microresonator,” Nature 443(7112), 671–674 (2006).
[Crossref] [PubMed]

Peng, B.

F. Monifi, J. Zhang, S. K. Ozdemir, B. Peng, Y. Liu, F. Bo, F. Nori, and L. Yang, “Optomechanically induced stochastic resonance and chaos transfer between optical fields,” Nat. Photonics 10(6), 399–405 (2016).
[Crossref]

Peters, A.

M. Gregor, C. Pyrlik, R. Henze, A. Wicht, A. Peters, and O. Benson, “An alignment-free fiber-coupled microsphere resonator for gas sensing applications,” Appl. Phys. Lett. 96(23), 231102 (2010).
[Crossref]

Pyrlik, C.

M. Gregor, C. Pyrlik, R. Henze, A. Wicht, A. Peters, and O. Benson, “An alignment-free fiber-coupled microsphere resonator for gas sensing applications,” Appl. Phys. Lett. 96(23), 231102 (2010).
[Crossref]

Rokhsari, H.

T. Carmon, H. Rokhsari, L. Yang, T. J. Kippenberg, and K. J. Vahala, “Temporal behavior of radiation-pressure-induced vibrations of an optical microcavity phonon mode,” Phys. Rev. Lett. 94(22), 223902 (2005).
[Crossref] [PubMed]

T. J. Kippenberg, H. Rokhsari, T. Carmon, A. Scherer, and K. J. Vahala, “Analysis of radiation-pressure induced mechanical oscillation of an optical microcavity,” Phys. Rev. Lett. 95(3), 033901 (2005).
[Crossref] [PubMed]

Rosenberger, A. T.

Rossmann, T.

Q. Ma, T. Rossmann, and Z. Guo, “Whispering-gallery mode silica microsensors for cryogenic to room temperature measurement,” Meas. Sci. Technol. 21(2), 025310 (2010).
[Crossref]

Q. Ma, T. Rossmann, and Z. Guo, “Temperature sensitivity of silica micro-resonators,” J. Phys. D Appl. Phys. 41(24), 245111 (2008).
[Crossref]

Rubinsztein-Dunlop, H.

C. Yu, J. Janousek, E. Sheridan, D. L. McAuslan, H. Rubinsztein-Dunlop, P. K. Lam, Y. Zhang, and W. P. Bowen, “Optomechanical magnetometry with a macroscopic resonator,” Phys. Rev. Appl. 5(4), 044007 (2016).
[Crossref]

S. Forstner, E. Sheridan, J. Knittel, C. L. Humphreys, G. A. Brawley, H. Rubinsztein-Dunlop, and W. P. Bowen, “Ultrasensitive optomechanical magnetometry,” Adv. Mater. 26(36), 6348–6353 (2014).
[Crossref] [PubMed]

Sarma, R.

R. Sarma, L. Ge, J. Wiersig, and H. Cao, “Rotating Optical Microcavities with Broken Chiral Symmetry,” Phys. Rev. Lett. 114(5), 053903 (2015).
[Crossref] [PubMed]

R. Sarma, L. Ge, and H. Cao, “Optical resonances in rotating dielectric microcavities of deformed shape,” J. Opt. Soc. Am. B 32(8), 1736 (2015).
[Crossref]

Savchenkov, A. A.

A. B. Matsko, A. A. Savchenkov, V. S. Ilchenko, and L. Maleki, “Optical gyroscope with whispering gallery mode optical cavities,” Opt. Commun. 233(1), 107–112 (2004).
[Crossref]

Scherer, A.

T. J. Kippenberg, H. Rokhsari, T. Carmon, A. Scherer, and K. J. Vahala, “Analysis of radiation-pressure induced mechanical oscillation of an optical microcavity,” Phys. Rev. Lett. 95(3), 033901 (2005).
[Crossref] [PubMed]

Shao, L.

L. Shao, X.-F. Jiang, X.-C. Yu, B.-B. Li, W. R. Clements, F. Vollmer, W. Wang, Y.-F. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25(39), 5616–5620 (2013).
[Crossref] [PubMed]

X.-F. Jiang, Y.-F. Xiao, Q.-F. Yang, L. Shao, W. R. Clements, and Q. Gong, “Free-space coupled, ultralow-threshold Raman lasing from a silica microcavity,” Appl. Phys. Lett. 103(10), 101102 (2013).
[Crossref]

Sheridan, E.

C. Yu, J. Janousek, E. Sheridan, D. L. McAuslan, H. Rubinsztein-Dunlop, P. K. Lam, Y. Zhang, and W. P. Bowen, “Optomechanical magnetometry with a macroscopic resonator,” Phys. Rev. Appl. 5(4), 044007 (2016).
[Crossref]

S. Forstner, E. Sheridan, J. Knittel, C. L. Humphreys, G. A. Brawley, H. Rubinsztein-Dunlop, and W. P. Bowen, “Ultrasensitive optomechanical magnetometry,” Adv. Mater. 26(36), 6348–6353 (2014).
[Crossref] [PubMed]

Shopova, S. I.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[Crossref] [PubMed]

G. Farca, S. I. Shopova, and A. T. Rosenberger, “Cavity-enhanced laser absorption spectroscopy using microresonator whispering-gallery modes,” Opt. Express 15(25), 17443–17448 (2007).
[Crossref] [PubMed]

Spillane, S. M.

L. Yang, T. Carmon, B. Min, S. M. Spillane, and K. J. Vahala, “Erbium-doped and Raman microlasers on a silicon chip fabricated by the sol–gel process,” Appl. Phys. Lett. 86(9), 091114 (2005).
[Crossref]

T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity,” Phys. Rev. Lett. 93(8), 083904 (2004).
[Crossref] [PubMed]

S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature 415(6872), 621–623 (2002).
[Crossref] [PubMed]

Sun, F.-W.

X.-F. Jiang, Y.-F. Xiao, C.-L. Zou, L. He, C.-H. Dong, B.-B. Li, Y. Li, F.-W. Sun, L. Yang, and Q. Gong, “Highly Unidirectional Emission and Ultralow-Threshold Lasing from On-Chip Ultrahigh-Q Microcavities,” Adv. Mater. 24(35), OP260–OP264 (2012).
[Crossref] [PubMed]

Y.-Z. Yan, C.-L. Zou, S.-B. Yan, F.-W. Sun, J. Liu, C.-Y. Xue, Y.-G. Zhang, L. Wang, W.-D. Zhang, and J.-J. Xiong, “Robust spot-packaged microsphere-taper coupling structure for in-line optical sensors,” IEEE Photonics Technol. Lett. 23(22), 1736–1738 (2011).
[Crossref]

Y.-Z. Yan, C.-L. Zou, S.-B. Yan, F.-W. Sun, Z. Ji, J. Liu, Y.-G. Zhang, L. Wang, C.-Y. Xue, W.-D. Zhang, Z.-F. Han, and J.-J. Xiong, “Packaged silica microsphere-taper coupling system for robust thermal sensing application,” Opt. Express 19(7), 5753–5759 (2011).
[Crossref] [PubMed]

Sun, Y.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[Crossref] [PubMed]

Suter, J. D.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[Crossref] [PubMed]

Tao, H.

Vahala, K.

Vahala, K. J.

T. Carmon and K. J. Vahala, “Visible continuous emission from a silica microphonic device by third-harmonic generation,” Nat. Phys. 3(6), 430–435 (2007).
[Crossref]

T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. J. Kippenberg, K. J. Vahala, and H. J. Kimble, “Observation of strong coupling between one atom and a monolithic microresonator,” Nature 443(7112), 671–674 (2006).
[Crossref] [PubMed]

T. Carmon, H. Rokhsari, L. Yang, T. J. Kippenberg, and K. J. Vahala, “Temporal behavior of radiation-pressure-induced vibrations of an optical microcavity phonon mode,” Phys. Rev. Lett. 94(22), 223902 (2005).
[Crossref] [PubMed]

T. J. Kippenberg, H. Rokhsari, T. Carmon, A. Scherer, and K. J. Vahala, “Analysis of radiation-pressure induced mechanical oscillation of an optical microcavity,” Phys. Rev. Lett. 95(3), 033901 (2005).
[Crossref] [PubMed]

L. Yang, T. Carmon, B. Min, S. M. Spillane, and K. J. Vahala, “Erbium-doped and Raman microlasers on a silicon chip fabricated by the sol–gel process,” Appl. Phys. Lett. 86(9), 091114 (2005).
[Crossref]

T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity,” Phys. Rev. Lett. 93(8), 083904 (2004).
[Crossref] [PubMed]

K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
[Crossref] [PubMed]

L. Yang, D. K. Armani, and K. J. Vahala, “Fiber-coupled erbium microlasers on a chip,” Appl. Phys. Lett. 83(5), 825–826 (2003).
[Crossref]

L. Yang and K. J. Vahala, “Gain functionalization of silica microresonators,” Opt. Lett. 28(8), 592–594 (2003).
[Crossref] [PubMed]

S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature 415(6872), 621–623 (2002).
[Crossref] [PubMed]

Vollmer, F.

M. D. Baaske, M. R. Foreman, and F. Vollmer, “Single-molecule nucleic acid interactions monitored on a label-free microcavity biosensor platform,” Nat. Nanotechnol. 9(11), 933–939 (2014).
[Crossref] [PubMed]

L. Shao, X.-F. Jiang, X.-C. Yu, B.-B. Li, W. R. Clements, F. Vollmer, W. Wang, Y.-F. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25(39), 5616–5620 (2013).
[Crossref] [PubMed]

F. Vollmer and L. Yang, “Label-free detection with high-Q microcavities: a review of biosensing mechanisms for integrated devices,” Nanophoton. 1(3-4), 267–291 (2012).
[Crossref] [PubMed]

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5(7), 591–596 (2008).
[Crossref] [PubMed]

Wang, H.

Wang, L.

Y.-Z. Yan, C.-L. Zou, S.-B. Yan, F.-W. Sun, J. Liu, C.-Y. Xue, Y.-G. Zhang, L. Wang, W.-D. Zhang, and J.-J. Xiong, “Robust spot-packaged microsphere-taper coupling structure for in-line optical sensors,” IEEE Photonics Technol. Lett. 23(22), 1736–1738 (2011).
[Crossref]

Y.-Z. Yan, C.-L. Zou, S.-B. Yan, F.-W. Sun, Z. Ji, J. Liu, Y.-G. Zhang, L. Wang, C.-Y. Xue, W.-D. Zhang, Z.-F. Han, and J.-J. Xiong, “Packaged silica microsphere-taper coupling system for robust thermal sensing application,” Opt. Express 19(7), 5753–5759 (2011).
[Crossref] [PubMed]

Wang, M.

Wang, Q. Y.

B. B. Li, Q. Y. Wang, Y. F. Xiao, X. F. Jiang, Y. Li, L. Xiao, and Q. Gong, “On chip, high-sensitivity thermal sensor based on high-Q polydimethylsiloxane-coated microresonator,” Appl. Phys. Lett. 96(25), 251109 (2010).
[Crossref]

Wang, W.

L. Shao, X.-F. Jiang, X.-C. Yu, B.-B. Li, W. R. Clements, F. Vollmer, W. Wang, Y.-F. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25(39), 5616–5620 (2013).
[Crossref] [PubMed]

White, I. M.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[Crossref] [PubMed]

Wicht, A.

M. Gregor, C. Pyrlik, R. Henze, A. Wicht, A. Peters, and O. Benson, “An alignment-free fiber-coupled microsphere resonator for gas sensing applications,” Appl. Phys. Lett. 96(23), 231102 (2010).
[Crossref]

Wiersig, J.

R. Sarma, L. Ge, J. Wiersig, and H. Cao, “Rotating Optical Microcavities with Broken Chiral Symmetry,” Phys. Rev. Lett. 114(5), 053903 (2015).
[Crossref] [PubMed]

Wilcut, E.

T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. J. Kippenberg, K. J. Vahala, and H. J. Kimble, “Observation of strong coupling between one atom and a monolithic microresonator,” Nature 443(7112), 671–674 (2006).
[Crossref] [PubMed]

Xiao, L.

B. B. Li, Q. Y. Wang, Y. F. Xiao, X. F. Jiang, Y. Li, L. Xiao, and Q. Gong, “On chip, high-sensitivity thermal sensor based on high-Q polydimethylsiloxane-coated microresonator,” Appl. Phys. Lett. 96(25), 251109 (2010).
[Crossref]

Xiao, Y. F.

B. B. Li, Q. Y. Wang, Y. F. Xiao, X. F. Jiang, Y. Li, L. Xiao, and Q. Gong, “On chip, high-sensitivity thermal sensor based on high-Q polydimethylsiloxane-coated microresonator,” Appl. Phys. Lett. 96(25), 251109 (2010).
[Crossref]

J. Zhu, S. K. Ozdemir, Y. F. Xiao, L. Li, L. He, D. R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photon. 4(1), 46–49 (2010).
[Crossref]

Xiao, Y.-F.

L. Shao, X.-F. Jiang, X.-C. Yu, B.-B. Li, W. R. Clements, F. Vollmer, W. Wang, Y.-F. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25(39), 5616–5620 (2013).
[Crossref] [PubMed]

X.-F. Jiang, Y.-F. Xiao, Q.-F. Yang, L. Shao, W. R. Clements, and Q. Gong, “Free-space coupled, ultralow-threshold Raman lasing from a silica microcavity,” Appl. Phys. Lett. 103(10), 101102 (2013).
[Crossref]

X.-F. Jiang, Y.-F. Xiao, C.-L. Zou, L. He, C.-H. Dong, B.-B. Li, Y. Li, F.-W. Sun, L. Yang, and Q. Gong, “Highly Unidirectional Emission and Ultralow-Threshold Lasing from On-Chip Ultrahigh-Q Microcavities,” Adv. Mater. 24(35), OP260–OP264 (2012).
[Crossref] [PubMed]

Xiong, J.-J.

Y.-Z. Yan, C.-L. Zou, S.-B. Yan, F.-W. Sun, J. Liu, C.-Y. Xue, Y.-G. Zhang, L. Wang, W.-D. Zhang, and J.-J. Xiong, “Robust spot-packaged microsphere-taper coupling structure for in-line optical sensors,” IEEE Photonics Technol. Lett. 23(22), 1736–1738 (2011).
[Crossref]

Y.-Z. Yan, C.-L. Zou, S.-B. Yan, F.-W. Sun, Z. Ji, J. Liu, Y.-G. Zhang, L. Wang, C.-Y. Xue, W.-D. Zhang, Z.-F. Han, and J.-J. Xiong, “Packaged silica microsphere-taper coupling system for robust thermal sensing application,” Opt. Express 19(7), 5753–5759 (2011).
[Crossref] [PubMed]

Xu, L.

Xue, C.-Y.

Y.-Z. Yan, C.-L. Zou, S.-B. Yan, F.-W. Sun, Z. Ji, J. Liu, Y.-G. Zhang, L. Wang, C.-Y. Xue, W.-D. Zhang, Z.-F. Han, and J.-J. Xiong, “Packaged silica microsphere-taper coupling system for robust thermal sensing application,” Opt. Express 19(7), 5753–5759 (2011).
[Crossref] [PubMed]

Y.-Z. Yan, C.-L. Zou, S.-B. Yan, F.-W. Sun, J. Liu, C.-Y. Xue, Y.-G. Zhang, L. Wang, W.-D. Zhang, and J.-J. Xiong, “Robust spot-packaged microsphere-taper coupling structure for in-line optical sensors,” IEEE Photonics Technol. Lett. 23(22), 1736–1738 (2011).
[Crossref]

Yan, S.-B.

Y.-Z. Yan, C.-L. Zou, S.-B. Yan, F.-W. Sun, J. Liu, C.-Y. Xue, Y.-G. Zhang, L. Wang, W.-D. Zhang, and J.-J. Xiong, “Robust spot-packaged microsphere-taper coupling structure for in-line optical sensors,” IEEE Photonics Technol. Lett. 23(22), 1736–1738 (2011).
[Crossref]

Y.-Z. Yan, C.-L. Zou, S.-B. Yan, F.-W. Sun, Z. Ji, J. Liu, Y.-G. Zhang, L. Wang, C.-Y. Xue, W.-D. Zhang, Z.-F. Han, and J.-J. Xiong, “Packaged silica microsphere-taper coupling system for robust thermal sensing application,” Opt. Express 19(7), 5753–5759 (2011).
[Crossref] [PubMed]

Yan, Y.-Z.

Y.-Z. Yan, C.-L. Zou, S.-B. Yan, F.-W. Sun, Z. Ji, J. Liu, Y.-G. Zhang, L. Wang, C.-Y. Xue, W.-D. Zhang, Z.-F. Han, and J.-J. Xiong, “Packaged silica microsphere-taper coupling system for robust thermal sensing application,” Opt. Express 19(7), 5753–5759 (2011).
[Crossref] [PubMed]

Y.-Z. Yan, C.-L. Zou, S.-B. Yan, F.-W. Sun, J. Liu, C.-Y. Xue, Y.-G. Zhang, L. Wang, W.-D. Zhang, and J.-J. Xiong, “Robust spot-packaged microsphere-taper coupling structure for in-line optical sensors,” IEEE Photonics Technol. Lett. 23(22), 1736–1738 (2011).
[Crossref]

Yang, L.

F. Monifi, J. Zhang, S. K. Ozdemir, B. Peng, Y. Liu, F. Bo, F. Nori, and L. Yang, “Optomechanically induced stochastic resonance and chaos transfer between optical fields,” Nat. Photonics 10(6), 399–405 (2016).
[Crossref]

L. Xu, X. Jiang, G. Zhao, D. Ma, H. Tao, Z. Liu, F. G. Omenetto, and L. Yang, “High-Q silk fibroin whispering gallery microresonator,” Opt. Express 24(18), 20825–20830 (2016).
[Crossref] [PubMed]

F. Monifi, S. K. Ozdemir, J. Friedlein, and L. Yang, “Encapsulation of a Fiber Taper Coupled Microtoroid Resonator in a Polymer Matrix,” IEEE Photonics Technol. Lett. 25(15), 1458–1461 (2013).
[Crossref]

X.-F. Jiang, Y.-F. Xiao, C.-L. Zou, L. He, C.-H. Dong, B.-B. Li, Y. Li, F.-W. Sun, L. Yang, and Q. Gong, “Highly Unidirectional Emission and Ultralow-Threshold Lasing from On-Chip Ultrahigh-Q Microcavities,” Adv. Mater. 24(35), OP260–OP264 (2012).
[Crossref] [PubMed]

F. Vollmer and L. Yang, “Label-free detection with high-Q microcavities: a review of biosensing mechanisms for integrated devices,” Nanophoton. 1(3-4), 267–291 (2012).
[Crossref] [PubMed]

J. Zhu, S. K. Ozdemir, Y. F. Xiao, L. Li, L. He, D. R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photon. 4(1), 46–49 (2010).
[Crossref]

L. Yang, T. Carmon, B. Min, S. M. Spillane, and K. J. Vahala, “Erbium-doped and Raman microlasers on a silicon chip fabricated by the sol–gel process,” Appl. Phys. Lett. 86(9), 091114 (2005).
[Crossref]

T. Carmon, H. Rokhsari, L. Yang, T. J. Kippenberg, and K. J. Vahala, “Temporal behavior of radiation-pressure-induced vibrations of an optical microcavity phonon mode,” Phys. Rev. Lett. 94(22), 223902 (2005).
[Crossref] [PubMed]

T. Carmon, L. Yang, and K. Vahala, “Dynamical thermal behavior and thermal self-stability of microcavities,” Opt. Express 12(20), 4742–4750 (2004).
[Crossref] [PubMed]

L. Yang, D. K. Armani, and K. J. Vahala, “Fiber-coupled erbium microlasers on a chip,” Appl. Phys. Lett. 83(5), 825–826 (2003).
[Crossref]

L. Yang and K. J. Vahala, “Gain functionalization of silica microresonators,” Opt. Lett. 28(8), 592–594 (2003).
[Crossref] [PubMed]

Yang, Q.-F.

X.-F. Jiang, Y.-F. Xiao, Q.-F. Yang, L. Shao, W. R. Clements, and Q. Gong, “Free-space coupled, ultralow-threshold Raman lasing from a silica microcavity,” Appl. Phys. Lett. 103(10), 101102 (2013).
[Crossref]

Yu, C.

C. Yu, J. Janousek, E. Sheridan, D. L. McAuslan, H. Rubinsztein-Dunlop, P. K. Lam, Y. Zhang, and W. P. Bowen, “Optomechanical magnetometry with a macroscopic resonator,” Phys. Rev. Appl. 5(4), 044007 (2016).
[Crossref]

Yu, X.-C.

L. Shao, X.-F. Jiang, X.-C. Yu, B.-B. Li, W. R. Clements, F. Vollmer, W. Wang, Y.-F. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25(39), 5616–5620 (2013).
[Crossref] [PubMed]

Zhang, J.

F. Monifi, J. Zhang, S. K. Ozdemir, B. Peng, Y. Liu, F. Bo, F. Nori, and L. Yang, “Optomechanically induced stochastic resonance and chaos transfer between optical fields,” Nat. Photonics 10(6), 399–405 (2016).
[Crossref]

Zhang, W.-D.

Y.-Z. Yan, C.-L. Zou, S.-B. Yan, F.-W. Sun, J. Liu, C.-Y. Xue, Y.-G. Zhang, L. Wang, W.-D. Zhang, and J.-J. Xiong, “Robust spot-packaged microsphere-taper coupling structure for in-line optical sensors,” IEEE Photonics Technol. Lett. 23(22), 1736–1738 (2011).
[Crossref]

Y.-Z. Yan, C.-L. Zou, S.-B. Yan, F.-W. Sun, Z. Ji, J. Liu, Y.-G. Zhang, L. Wang, C.-Y. Xue, W.-D. Zhang, Z.-F. Han, and J.-J. Xiong, “Packaged silica microsphere-taper coupling system for robust thermal sensing application,” Opt. Express 19(7), 5753–5759 (2011).
[Crossref] [PubMed]

Zhang, Y.

C. Yu, J. Janousek, E. Sheridan, D. L. McAuslan, H. Rubinsztein-Dunlop, P. K. Lam, Y. Zhang, and W. P. Bowen, “Optomechanical magnetometry with a macroscopic resonator,” Phys. Rev. Appl. 5(4), 044007 (2016).
[Crossref]

Zhang, Y.-G.

Y.-Z. Yan, C.-L. Zou, S.-B. Yan, F.-W. Sun, J. Liu, C.-Y. Xue, Y.-G. Zhang, L. Wang, W.-D. Zhang, and J.-J. Xiong, “Robust spot-packaged microsphere-taper coupling structure for in-line optical sensors,” IEEE Photonics Technol. Lett. 23(22), 1736–1738 (2011).
[Crossref]

Y.-Z. Yan, C.-L. Zou, S.-B. Yan, F.-W. Sun, Z. Ji, J. Liu, Y.-G. Zhang, L. Wang, C.-Y. Xue, W.-D. Zhang, Z.-F. Han, and J.-J. Xiong, “Packaged silica microsphere-taper coupling system for robust thermal sensing application,” Opt. Express 19(7), 5753–5759 (2011).
[Crossref] [PubMed]

Zhao, G.

Zhu, H.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[Crossref] [PubMed]

Zhu, J.

J. Zhu, S. K. Ozdemir, Y. F. Xiao, L. Li, L. He, D. R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photon. 4(1), 46–49 (2010).
[Crossref]

Zou, C.-L.

X.-F. Jiang, Y.-F. Xiao, C.-L. Zou, L. He, C.-H. Dong, B.-B. Li, Y. Li, F.-W. Sun, L. Yang, and Q. Gong, “Highly Unidirectional Emission and Ultralow-Threshold Lasing from On-Chip Ultrahigh-Q Microcavities,” Adv. Mater. 24(35), OP260–OP264 (2012).
[Crossref] [PubMed]

Y.-Z. Yan, C.-L. Zou, S.-B. Yan, F.-W. Sun, J. Liu, C.-Y. Xue, Y.-G. Zhang, L. Wang, W.-D. Zhang, and J.-J. Xiong, “Robust spot-packaged microsphere-taper coupling structure for in-line optical sensors,” IEEE Photonics Technol. Lett. 23(22), 1736–1738 (2011).
[Crossref]

Y.-Z. Yan, C.-L. Zou, S.-B. Yan, F.-W. Sun, Z. Ji, J. Liu, Y.-G. Zhang, L. Wang, C.-Y. Xue, W.-D. Zhang, Z.-F. Han, and J.-J. Xiong, “Packaged silica microsphere-taper coupling system for robust thermal sensing application,” Opt. Express 19(7), 5753–5759 (2011).
[Crossref] [PubMed]

Adv. Mater. (3)

L. Shao, X.-F. Jiang, X.-C. Yu, B.-B. Li, W. R. Clements, F. Vollmer, W. Wang, Y.-F. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25(39), 5616–5620 (2013).
[Crossref] [PubMed]

X.-F. Jiang, Y.-F. Xiao, C.-L. Zou, L. He, C.-H. Dong, B.-B. Li, Y. Li, F.-W. Sun, L. Yang, and Q. Gong, “Highly Unidirectional Emission and Ultralow-Threshold Lasing from On-Chip Ultrahigh-Q Microcavities,” Adv. Mater. 24(35), OP260–OP264 (2012).
[Crossref] [PubMed]

S. Forstner, E. Sheridan, J. Knittel, C. L. Humphreys, G. A. Brawley, H. Rubinsztein-Dunlop, and W. P. Bowen, “Ultrasensitive optomechanical magnetometry,” Adv. Mater. 26(36), 6348–6353 (2014).
[Crossref] [PubMed]

Anal. Chim. Acta (1)

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[Crossref] [PubMed]

Appl. Phys. Lett. (5)

X.-F. Jiang, Y.-F. Xiao, Q.-F. Yang, L. Shao, W. R. Clements, and Q. Gong, “Free-space coupled, ultralow-threshold Raman lasing from a silica microcavity,” Appl. Phys. Lett. 103(10), 101102 (2013).
[Crossref]

L. Yang, D. K. Armani, and K. J. Vahala, “Fiber-coupled erbium microlasers on a chip,” Appl. Phys. Lett. 83(5), 825–826 (2003).
[Crossref]

L. Yang, T. Carmon, B. Min, S. M. Spillane, and K. J. Vahala, “Erbium-doped and Raman microlasers on a silicon chip fabricated by the sol–gel process,” Appl. Phys. Lett. 86(9), 091114 (2005).
[Crossref]

M. Gregor, C. Pyrlik, R. Henze, A. Wicht, A. Peters, and O. Benson, “An alignment-free fiber-coupled microsphere resonator for gas sensing applications,” Appl. Phys. Lett. 96(23), 231102 (2010).
[Crossref]

B. B. Li, Q. Y. Wang, Y. F. Xiao, X. F. Jiang, Y. Li, L. Xiao, and Q. Gong, “On chip, high-sensitivity thermal sensor based on high-Q polydimethylsiloxane-coated microresonator,” Appl. Phys. Lett. 96(25), 251109 (2010).
[Crossref]

IEEE Photonics Technol. Lett. (2)

Y.-Z. Yan, C.-L. Zou, S.-B. Yan, F.-W. Sun, J. Liu, C.-Y. Xue, Y.-G. Zhang, L. Wang, W.-D. Zhang, and J.-J. Xiong, “Robust spot-packaged microsphere-taper coupling structure for in-line optical sensors,” IEEE Photonics Technol. Lett. 23(22), 1736–1738 (2011).
[Crossref]

F. Monifi, S. K. Ozdemir, J. Friedlein, and L. Yang, “Encapsulation of a Fiber Taper Coupled Microtoroid Resonator in a Polymer Matrix,” IEEE Photonics Technol. Lett. 25(15), 1458–1461 (2013).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. D Appl. Phys. (1)

Q. Ma, T. Rossmann, and Z. Guo, “Temperature sensitivity of silica micro-resonators,” J. Phys. D Appl. Phys. 41(24), 245111 (2008).
[Crossref]

Meas. Sci. Technol. (1)

Q. Ma, T. Rossmann, and Z. Guo, “Whispering-gallery mode silica microsensors for cryogenic to room temperature measurement,” Meas. Sci. Technol. 21(2), 025310 (2010).
[Crossref]

Nanophoton. (1)

F. Vollmer and L. Yang, “Label-free detection with high-Q microcavities: a review of biosensing mechanisms for integrated devices,” Nanophoton. 1(3-4), 267–291 (2012).
[Crossref] [PubMed]

Nat. Methods (1)

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5(7), 591–596 (2008).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

M. D. Baaske, M. R. Foreman, and F. Vollmer, “Single-molecule nucleic acid interactions monitored on a label-free microcavity biosensor platform,” Nat. Nanotechnol. 9(11), 933–939 (2014).
[Crossref] [PubMed]

Nat. Photon. (1)

J. Zhu, S. K. Ozdemir, Y. F. Xiao, L. Li, L. He, D. R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photon. 4(1), 46–49 (2010).
[Crossref]

Nat. Photonics (1)

F. Monifi, J. Zhang, S. K. Ozdemir, B. Peng, Y. Liu, F. Bo, F. Nori, and L. Yang, “Optomechanically induced stochastic resonance and chaos transfer between optical fields,” Nat. Photonics 10(6), 399–405 (2016).
[Crossref]

Nat. Phys. (1)

T. Carmon and K. J. Vahala, “Visible continuous emission from a silica microphonic device by third-harmonic generation,” Nat. Phys. 3(6), 430–435 (2007).
[Crossref]

Nature (3)

S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature 415(6872), 621–623 (2002).
[Crossref] [PubMed]

K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
[Crossref] [PubMed]

T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. J. Kippenberg, K. J. Vahala, and H. J. Kimble, “Observation of strong coupling between one atom and a monolithic microresonator,” Nature 443(7112), 671–674 (2006).
[Crossref] [PubMed]

Opt. Commun. (1)

A. B. Matsko, A. A. Savchenkov, V. S. Ilchenko, and L. Maleki, “Optical gyroscope with whispering gallery mode optical cavities,” Opt. Commun. 233(1), 107–112 (2004).
[Crossref]

Opt. Express (5)

Opt. Lett. (1)

Phys. Rev. Appl. (1)

C. Yu, J. Janousek, E. Sheridan, D. L. McAuslan, H. Rubinsztein-Dunlop, P. K. Lam, Y. Zhang, and W. P. Bowen, “Optomechanical magnetometry with a macroscopic resonator,” Phys. Rev. Appl. 5(4), 044007 (2016).
[Crossref]

Phys. Rev. Lett. (4)

R. Sarma, L. Ge, J. Wiersig, and H. Cao, “Rotating Optical Microcavities with Broken Chiral Symmetry,” Phys. Rev. Lett. 114(5), 053903 (2015).
[Crossref] [PubMed]

T. Carmon, H. Rokhsari, L. Yang, T. J. Kippenberg, and K. J. Vahala, “Temporal behavior of radiation-pressure-induced vibrations of an optical microcavity phonon mode,” Phys. Rev. Lett. 94(22), 223902 (2005).
[Crossref] [PubMed]

T. J. Kippenberg, H. Rokhsari, T. Carmon, A. Scherer, and K. J. Vahala, “Analysis of radiation-pressure induced mechanical oscillation of an optical microcavity,” Phys. Rev. Lett. 95(3), 033901 (2005).
[Crossref] [PubMed]

T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity,” Phys. Rev. Lett. 93(8), 083904 (2004).
[Crossref] [PubMed]

Rev. Mod. Phys. (1)

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86(4), 1391–1452 (2014).
[Crossref]

Science (1)

C. Dong, V. Fiore, M. C. Kuzyk, and H. Wang, “Optomechanical dark mode,” Science 338(6114), 1609–1613 (2012).
[Crossref] [PubMed]

Other (1)

G. Zhao, Ş. K. Özdemir, T. Wang, L. Xu, G.-L. Long, and L. Yang, “Raman lasing and Fano lineshapes in a packaged fiber-coupled whispering-gallery-mode microresonator,” arXiv: 1609.02618.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Schematic diagram of a WGM based portable sensor system.
Fig. 2
Fig. 2 A photograph of the portable WGM testing system compared with a regular ruler.
Fig. 3
Fig. 3 (a) A typical transmission spectrum of a packaged WGM resonator monitored by the portable WGM testing system. (b) Resonant frequency detuning as a function of the injection current in the laser diode. (c) Resonant frequency detuning as a function of the temperature of the laser diode. (d) The time stability of the linewidth of a resonance in the packaged resonator monitored by the portable WGM testing system.
Fig. 4
Fig. 4 Thermal sensing experiment of a normal microtoroid by using the portable system.

Metrics