Abstract

We present a multi-function electronic-photonic integrated circuit (EPIC) design which exploits a new operation mode of a Mach-Zehnder modulator (MZM). Different from the conventional design, the two arms of the modulator are driven by time-shifted signals of tunable amplitude. We study its operation in the linear and quadratic regions where the MZM is biased at π/2 and π initial phase difference, respectively. In the linear region, the modulator sums the waveforms of the driving signals in the two arms, which can be used to add pre-emphasis function to the modulator, and hence it obviates an electrical pre-emphasis driver. Furthermore, when operating in the quadratic region, the modulator can produce optical pulses with tunable pulse width at double clock rate. Prototype circuits are designed first using a suit of device, electromagnetic simulators to build compact models, and then importing into a photonic circuit simulator for complete circuit performance evaluation.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
25-Gb/s broadband silicon modulator with 0.31-V·cm VπL based on forward-biased PIN diodes embedded with passive equalizer

Takeshi Baba, Suguru Akiyama, Masahiko Imai, and Tatsuya Usuki
Opt. Express 23(26) 32950-32960 (2015)

High-speed low-voltage single-drive push-pull silicon Mach-Zehnder modulators

Po Dong, Long Chen, and Young-kai Chen
Opt. Express 20(6) 6163-6169 (2012)

Travelling-wave Mach-Zehnder modulators functioning as optical isolators

Po Dong
Opt. Express 23(8) 10498-10505 (2015)

References

  • View by:
  • |
  • |
  • |

  1. A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metalâǍŞoxideâǍŞsemiconductor capacitor,” Nature 427, 615–618 (2004).
    [Crossref] [PubMed]
  2. G. T. Reed, G. Mashanovich, F. Gardes, and D. Thomson, “Silicon optical modulators,” Nat. Photonics 4, 518–526 (2010).
    [Crossref]
  3. G. T. Reed, G. Z. Mashanovich, F. Y. Gardes, M. Nedeljkovic, Y. Hu, D. J. Thomson, K. Li, P. R. Wilson, S.-W. Chen, and S. S. Hsu, “Recent breakthroughs in carrier depletion based silicon optical modulators,” Nanophotonics 3, 229–245 (2014).
    [Crossref]
  4. P. Dong, L. Chen, C. Xie, L. L. Buhl, and Y.-K. Chen, “50-Gb/s silicon quadrature phase-shift keying modulator,” Opt. Express 20, 21181–21186 (2012).
    [Crossref] [PubMed]
  5. M. Morsy-Osman, M. Chagnon, M. Poulin, S. Lessard, and D. V. Plant, “224-Gb/s 10-km transmission of PDM PAM-4 at 1.3 μ m using a single intensity-modulated laser and a direct-detection MIMO DSP-based receiver,” J. Lightwave Technol. 33, 1417–1424 (2015).
    [Crossref]
  6. K. B. Roberts, “Equalization, pulse shaping and regeneration of optical signals,” (US Patents6067180 A, 2000)
  7. B. Garrett and E. Kimber, “Optical pulse generation,” (US Patents20030030882 A1, 2001).
  8. S. Akiyama, T. Baba, M. Imai, T. Akagawa, M. Takahashi, N. Hirayama, H. Takahashi, Y. Noguchi, H. Okayama, and T. Horikawa, “12.5-Gb/s operation with 0.29-V · cm Vπ Lπ using silicon Mach-Zehnder modulator based-on forward-biased pin diode,” Opt. Express 20, 2911–2923 (2012).
    [Crossref] [PubMed]
  9. C. R. Doerr, S. Chandrasekhar, P. J. Winzer, A. R. Chraplyvy, A. H. Gnauck, L. W. Stulz, R. Pafchek, and E. Burrows, “Simple multichannel optical equalizer mitigating intersymbol interference for 40-Gb/s nonreturn-to-zero signals,” J. Lightwave Technol. 22, 249–256 (2004).
    [Crossref]
  10. T. Sakamoto, T. Kawanishi, and M. Tsuchiya, “10 GHz, 2.4 ps pulse generation using a single-stage dual-drive Mach-Zehnder modulator,” Opt. Lett. 33, 890–892 (2008).
    [Crossref] [PubMed]
  11. B. Xia and L. R. Chen, “A direct temporal domain approach for pulse-repetition rate multiplication with arbitrary envelope shaping,” IEEE J. Sel. Top. Quantum Electron. 11, 165–172 (2005).
    [Crossref]
  12. Q. Xu, S. Manipatruni, B. Schmidt, J. Shakya, and M. Lipson, “12.5 Gbit/s carrier-injection-based silicon micro-ring silicon modulators,” Opt. Express 15, 430–436 (2007).
    [Crossref] [PubMed]
  13. T.-C. Huang, T.-W. Chung, C.-H. Chern, M.-C. Huang, C.-C. Lin, and F.-L. Hsueh, “A 28Gb/s 1pJ/b shared-inductor optical receiver with 56% chip-area reduction in 28nm CMOS,” in Proceedings of IEEE International Solid-State Circuits Conference Digest of Technical Papers (IEEE, 2014), 144–145.
  14. T. Li, J. Zhang, H. Yi, W. Tan, Q. Long, Z. Zhou, X. Wang, and H. Wu, “Low-voltage, high speed, compact silicon modulator for BPSK modulation,” Opt. Express 21, 23410–23415 (2013).
    [Crossref] [PubMed]
  15. R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23, 123–129 (1987).
    [Crossref]
  16. A. B. Fallahkhair, K. S. Li, and T. E. Murphy, “Vector finite difference modesolver for anisotropic dielectric waveguides,” J. Lightwave Technol. 26, 1423–1431 (2008).
    [Crossref]
  17. R. Ding, Y. Liu, Q. Li, Y. Yang, Y. Ma, K. Padmaraju, A. E.-J. Lim, G.-Q. Lo, K. Bergman, and T. Baehr-Jones, “Design and characterization of a 30-GHz bandwidth low-power silicon traveling-wave modulator,” Opt. Commun. 321, 124–133 (2014).
    [Crossref]
  18. J.-M. Liu, Photonic Devices (Cambridge University, 2005).
    [Crossref]
  19. D. J. Thomson, F. Y. Gardes, J.-M. Fedeli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, and G. Z. Mashanovich, “50-Gb/s silicon optical modulator,” IEEE Photonics Technol. Lett,  9, 234–236 (2012).
    [Crossref]
  20. P. Dong, L. Chen, and Y.-K. Chen, “High-speed low-voltage single-drive push-pull silicon Mach-Zehnder modulators,” Opt. Express 20, 6163–6169 (2012).
    [Crossref] [PubMed]
  21. J. Pond, C. Cone, L. Chrostowski, J. Klein, J. Flueckiger, A. Liu, D. McGuire, and X. Wang, “A complete design flow for silicon photonics,” in Proceeding of SPIE Photonics Europe (2014), pp. 9133–9139.
  22. Y. Zhang, S. Yang, A. E.-J. Lim, G.-Q. Lo, C. Galland, T. Baehr-Jones, and M. Hochberg, “A compact and low loss Y-junction for submicron silicon waveguide,” Opt. Express 21, 1310–1316 (2013).
    [Crossref] [PubMed]
  23. T. Baehr-Jones, “OpSIS-IME O150 process - performance summary,” http://opsisfoundry.org/wp-content/uploads/opsis_oi50_performance_summary.pdf
  24. A. M. Weiner and A. M. Kan’an, “Femtosecond pulse shaping for synthesis, processing, and time-to-space conversion of ultrafast optical waveforms,” IEEE J. Sel. Top. Quantum Electron. 4, 317–331 (1998).
    [Crossref]
  25. D. Breuer and K. Petermann, “Comparison of NRZ-and RZ-modulation format for 40-Gb/s TDM standard-fiber systems,” IEEE Photonics Technol. Lett. 9, 398–400, 1997.
    [Crossref]
  26. R. Kumar, T. Spuesens, P. Mechet, N. Olivier, J.-M. Fedeli, P. Regreny, G. Roelkens, D. Van Thourhout, and G. Morthier, “10Gbit/s all-optical NRZ-OOK to RZ-OOK format conversion in an ultra-small III-V-on-silicon microdisk fabricated in a CMOS pilot line,” Opt. Express 19, 24647–24656 (2011).
    [Crossref] [PubMed]
  27. D. Pozar, Microwave Engineering, 3rd ed. (Wiley, 2004).

2015 (1)

2014 (2)

G. T. Reed, G. Z. Mashanovich, F. Y. Gardes, M. Nedeljkovic, Y. Hu, D. J. Thomson, K. Li, P. R. Wilson, S.-W. Chen, and S. S. Hsu, “Recent breakthroughs in carrier depletion based silicon optical modulators,” Nanophotonics 3, 229–245 (2014).
[Crossref]

R. Ding, Y. Liu, Q. Li, Y. Yang, Y. Ma, K. Padmaraju, A. E.-J. Lim, G.-Q. Lo, K. Bergman, and T. Baehr-Jones, “Design and characterization of a 30-GHz bandwidth low-power silicon traveling-wave modulator,” Opt. Commun. 321, 124–133 (2014).
[Crossref]

2013 (2)

2012 (4)

2011 (1)

2010 (1)

G. T. Reed, G. Mashanovich, F. Gardes, and D. Thomson, “Silicon optical modulators,” Nat. Photonics 4, 518–526 (2010).
[Crossref]

2008 (2)

2007 (1)

2005 (1)

B. Xia and L. R. Chen, “A direct temporal domain approach for pulse-repetition rate multiplication with arbitrary envelope shaping,” IEEE J. Sel. Top. Quantum Electron. 11, 165–172 (2005).
[Crossref]

2004 (2)

C. R. Doerr, S. Chandrasekhar, P. J. Winzer, A. R. Chraplyvy, A. H. Gnauck, L. W. Stulz, R. Pafchek, and E. Burrows, “Simple multichannel optical equalizer mitigating intersymbol interference for 40-Gb/s nonreturn-to-zero signals,” J. Lightwave Technol. 22, 249–256 (2004).
[Crossref]

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metalâǍŞoxideâǍŞsemiconductor capacitor,” Nature 427, 615–618 (2004).
[Crossref] [PubMed]

1998 (1)

A. M. Weiner and A. M. Kan’an, “Femtosecond pulse shaping for synthesis, processing, and time-to-space conversion of ultrafast optical waveforms,” IEEE J. Sel. Top. Quantum Electron. 4, 317–331 (1998).
[Crossref]

1997 (1)

D. Breuer and K. Petermann, “Comparison of NRZ-and RZ-modulation format for 40-Gb/s TDM standard-fiber systems,” IEEE Photonics Technol. Lett. 9, 398–400, 1997.
[Crossref]

1987 (1)

R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23, 123–129 (1987).
[Crossref]

Akagawa, T.

Akiyama, S.

Alic, N.

D. J. Thomson, F. Y. Gardes, J.-M. Fedeli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, and G. Z. Mashanovich, “50-Gb/s silicon optical modulator,” IEEE Photonics Technol. Lett,  9, 234–236 (2012).
[Crossref]

Baba, T.

Baehr-Jones, T.

R. Ding, Y. Liu, Q. Li, Y. Yang, Y. Ma, K. Padmaraju, A. E.-J. Lim, G.-Q. Lo, K. Bergman, and T. Baehr-Jones, “Design and characterization of a 30-GHz bandwidth low-power silicon traveling-wave modulator,” Opt. Commun. 321, 124–133 (2014).
[Crossref]

Y. Zhang, S. Yang, A. E.-J. Lim, G.-Q. Lo, C. Galland, T. Baehr-Jones, and M. Hochberg, “A compact and low loss Y-junction for submicron silicon waveguide,” Opt. Express 21, 1310–1316 (2013).
[Crossref] [PubMed]

Bennett, B. R.

R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23, 123–129 (1987).
[Crossref]

Bergman, K.

R. Ding, Y. Liu, Q. Li, Y. Yang, Y. Ma, K. Padmaraju, A. E.-J. Lim, G.-Q. Lo, K. Bergman, and T. Baehr-Jones, “Design and characterization of a 30-GHz bandwidth low-power silicon traveling-wave modulator,” Opt. Commun. 321, 124–133 (2014).
[Crossref]

Breuer, D.

D. Breuer and K. Petermann, “Comparison of NRZ-and RZ-modulation format for 40-Gb/s TDM standard-fiber systems,” IEEE Photonics Technol. Lett. 9, 398–400, 1997.
[Crossref]

Buhl, L. L.

Burrows, E.

Chagnon, M.

Chandrasekhar, S.

Chen, L.

Chen, L. R.

B. Xia and L. R. Chen, “A direct temporal domain approach for pulse-repetition rate multiplication with arbitrary envelope shaping,” IEEE J. Sel. Top. Quantum Electron. 11, 165–172 (2005).
[Crossref]

Chen, S.-W.

G. T. Reed, G. Z. Mashanovich, F. Y. Gardes, M. Nedeljkovic, Y. Hu, D. J. Thomson, K. Li, P. R. Wilson, S.-W. Chen, and S. S. Hsu, “Recent breakthroughs in carrier depletion based silicon optical modulators,” Nanophotonics 3, 229–245 (2014).
[Crossref]

Chen, Y.-K.

Chern, C.-H.

T.-C. Huang, T.-W. Chung, C.-H. Chern, M.-C. Huang, C.-C. Lin, and F.-L. Hsueh, “A 28Gb/s 1pJ/b shared-inductor optical receiver with 56% chip-area reduction in 28nm CMOS,” in Proceedings of IEEE International Solid-State Circuits Conference Digest of Technical Papers (IEEE, 2014), 144–145.

Chraplyvy, A. R.

Chrostowski, L.

J. Pond, C. Cone, L. Chrostowski, J. Klein, J. Flueckiger, A. Liu, D. McGuire, and X. Wang, “A complete design flow for silicon photonics,” in Proceeding of SPIE Photonics Europe (2014), pp. 9133–9139.

Chung, T.-W.

T.-C. Huang, T.-W. Chung, C.-H. Chern, M.-C. Huang, C.-C. Lin, and F.-L. Hsueh, “A 28Gb/s 1pJ/b shared-inductor optical receiver with 56% chip-area reduction in 28nm CMOS,” in Proceedings of IEEE International Solid-State Circuits Conference Digest of Technical Papers (IEEE, 2014), 144–145.

Cohen, O.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metalâǍŞoxideâǍŞsemiconductor capacitor,” Nature 427, 615–618 (2004).
[Crossref] [PubMed]

Cone, C.

J. Pond, C. Cone, L. Chrostowski, J. Klein, J. Flueckiger, A. Liu, D. McGuire, and X. Wang, “A complete design flow for silicon photonics,” in Proceeding of SPIE Photonics Europe (2014), pp. 9133–9139.

Ding, R.

R. Ding, Y. Liu, Q. Li, Y. Yang, Y. Ma, K. Padmaraju, A. E.-J. Lim, G.-Q. Lo, K. Bergman, and T. Baehr-Jones, “Design and characterization of a 30-GHz bandwidth low-power silicon traveling-wave modulator,” Opt. Commun. 321, 124–133 (2014).
[Crossref]

Doerr, C. R.

Dong, P.

Fallahkhair, A. B.

Fedeli, J.-M.

D. J. Thomson, F. Y. Gardes, J.-M. Fedeli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, and G. Z. Mashanovich, “50-Gb/s silicon optical modulator,” IEEE Photonics Technol. Lett,  9, 234–236 (2012).
[Crossref]

R. Kumar, T. Spuesens, P. Mechet, N. Olivier, J.-M. Fedeli, P. Regreny, G. Roelkens, D. Van Thourhout, and G. Morthier, “10Gbit/s all-optical NRZ-OOK to RZ-OOK format conversion in an ultra-small III-V-on-silicon microdisk fabricated in a CMOS pilot line,” Opt. Express 19, 24647–24656 (2011).
[Crossref] [PubMed]

Flueckiger, J.

J. Pond, C. Cone, L. Chrostowski, J. Klein, J. Flueckiger, A. Liu, D. McGuire, and X. Wang, “A complete design flow for silicon photonics,” in Proceeding of SPIE Photonics Europe (2014), pp. 9133–9139.

Galland, C.

Gardes, F.

G. T. Reed, G. Mashanovich, F. Gardes, and D. Thomson, “Silicon optical modulators,” Nat. Photonics 4, 518–526 (2010).
[Crossref]

Gardes, F. Y.

G. T. Reed, G. Z. Mashanovich, F. Y. Gardes, M. Nedeljkovic, Y. Hu, D. J. Thomson, K. Li, P. R. Wilson, S.-W. Chen, and S. S. Hsu, “Recent breakthroughs in carrier depletion based silicon optical modulators,” Nanophotonics 3, 229–245 (2014).
[Crossref]

D. J. Thomson, F. Y. Gardes, J.-M. Fedeli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, and G. Z. Mashanovich, “50-Gb/s silicon optical modulator,” IEEE Photonics Technol. Lett,  9, 234–236 (2012).
[Crossref]

Garrett, B.

B. Garrett and E. Kimber, “Optical pulse generation,” (US Patents20030030882 A1, 2001).

Gnauck, A. H.

Hirayama, N.

Hochberg, M.

Horikawa, T.

Hsu, S. S.

G. T. Reed, G. Z. Mashanovich, F. Y. Gardes, M. Nedeljkovic, Y. Hu, D. J. Thomson, K. Li, P. R. Wilson, S.-W. Chen, and S. S. Hsu, “Recent breakthroughs in carrier depletion based silicon optical modulators,” Nanophotonics 3, 229–245 (2014).
[Crossref]

Hsueh, F.-L.

T.-C. Huang, T.-W. Chung, C.-H. Chern, M.-C. Huang, C.-C. Lin, and F.-L. Hsueh, “A 28Gb/s 1pJ/b shared-inductor optical receiver with 56% chip-area reduction in 28nm CMOS,” in Proceedings of IEEE International Solid-State Circuits Conference Digest of Technical Papers (IEEE, 2014), 144–145.

Hu, Y.

G. T. Reed, G. Z. Mashanovich, F. Y. Gardes, M. Nedeljkovic, Y. Hu, D. J. Thomson, K. Li, P. R. Wilson, S.-W. Chen, and S. S. Hsu, “Recent breakthroughs in carrier depletion based silicon optical modulators,” Nanophotonics 3, 229–245 (2014).
[Crossref]

D. J. Thomson, F. Y. Gardes, J.-M. Fedeli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, and G. Z. Mashanovich, “50-Gb/s silicon optical modulator,” IEEE Photonics Technol. Lett,  9, 234–236 (2012).
[Crossref]

Huang, M.-C.

T.-C. Huang, T.-W. Chung, C.-H. Chern, M.-C. Huang, C.-C. Lin, and F.-L. Hsueh, “A 28Gb/s 1pJ/b shared-inductor optical receiver with 56% chip-area reduction in 28nm CMOS,” in Proceedings of IEEE International Solid-State Circuits Conference Digest of Technical Papers (IEEE, 2014), 144–145.

Huang, T.-C.

T.-C. Huang, T.-W. Chung, C.-H. Chern, M.-C. Huang, C.-C. Lin, and F.-L. Hsueh, “A 28Gb/s 1pJ/b shared-inductor optical receiver with 56% chip-area reduction in 28nm CMOS,” in Proceedings of IEEE International Solid-State Circuits Conference Digest of Technical Papers (IEEE, 2014), 144–145.

Imai, M.

Jones, R.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metalâǍŞoxideâǍŞsemiconductor capacitor,” Nature 427, 615–618 (2004).
[Crossref] [PubMed]

Kan’an, A. M.

A. M. Weiner and A. M. Kan’an, “Femtosecond pulse shaping for synthesis, processing, and time-to-space conversion of ultrafast optical waveforms,” IEEE J. Sel. Top. Quantum Electron. 4, 317–331 (1998).
[Crossref]

Kawanishi, T.

Kimber, E.

B. Garrett and E. Kimber, “Optical pulse generation,” (US Patents20030030882 A1, 2001).

Klein, J.

J. Pond, C. Cone, L. Chrostowski, J. Klein, J. Flueckiger, A. Liu, D. McGuire, and X. Wang, “A complete design flow for silicon photonics,” in Proceeding of SPIE Photonics Europe (2014), pp. 9133–9139.

Kumar, R.

Kuo, B. P. P.

D. J. Thomson, F. Y. Gardes, J.-M. Fedeli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, and G. Z. Mashanovich, “50-Gb/s silicon optical modulator,” IEEE Photonics Technol. Lett,  9, 234–236 (2012).
[Crossref]

Lessard, S.

Li, K.

G. T. Reed, G. Z. Mashanovich, F. Y. Gardes, M. Nedeljkovic, Y. Hu, D. J. Thomson, K. Li, P. R. Wilson, S.-W. Chen, and S. S. Hsu, “Recent breakthroughs in carrier depletion based silicon optical modulators,” Nanophotonics 3, 229–245 (2014).
[Crossref]

Li, K. S.

Li, Q.

R. Ding, Y. Liu, Q. Li, Y. Yang, Y. Ma, K. Padmaraju, A. E.-J. Lim, G.-Q. Lo, K. Bergman, and T. Baehr-Jones, “Design and characterization of a 30-GHz bandwidth low-power silicon traveling-wave modulator,” Opt. Commun. 321, 124–133 (2014).
[Crossref]

Li, T.

Liao, L.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metalâǍŞoxideâǍŞsemiconductor capacitor,” Nature 427, 615–618 (2004).
[Crossref] [PubMed]

Lim, A. E.-J.

R. Ding, Y. Liu, Q. Li, Y. Yang, Y. Ma, K. Padmaraju, A. E.-J. Lim, G.-Q. Lo, K. Bergman, and T. Baehr-Jones, “Design and characterization of a 30-GHz bandwidth low-power silicon traveling-wave modulator,” Opt. Commun. 321, 124–133 (2014).
[Crossref]

Y. Zhang, S. Yang, A. E.-J. Lim, G.-Q. Lo, C. Galland, T. Baehr-Jones, and M. Hochberg, “A compact and low loss Y-junction for submicron silicon waveguide,” Opt. Express 21, 1310–1316 (2013).
[Crossref] [PubMed]

Lin, C.-C.

T.-C. Huang, T.-W. Chung, C.-H. Chern, M.-C. Huang, C.-C. Lin, and F.-L. Hsueh, “A 28Gb/s 1pJ/b shared-inductor optical receiver with 56% chip-area reduction in 28nm CMOS,” in Proceedings of IEEE International Solid-State Circuits Conference Digest of Technical Papers (IEEE, 2014), 144–145.

Lipson, M.

Liu, A.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metalâǍŞoxideâǍŞsemiconductor capacitor,” Nature 427, 615–618 (2004).
[Crossref] [PubMed]

J. Pond, C. Cone, L. Chrostowski, J. Klein, J. Flueckiger, A. Liu, D. McGuire, and X. Wang, “A complete design flow for silicon photonics,” in Proceeding of SPIE Photonics Europe (2014), pp. 9133–9139.

Liu, J.-M.

J.-M. Liu, Photonic Devices (Cambridge University, 2005).
[Crossref]

Liu, Y.

R. Ding, Y. Liu, Q. Li, Y. Yang, Y. Ma, K. Padmaraju, A. E.-J. Lim, G.-Q. Lo, K. Bergman, and T. Baehr-Jones, “Design and characterization of a 30-GHz bandwidth low-power silicon traveling-wave modulator,” Opt. Commun. 321, 124–133 (2014).
[Crossref]

Lo, G.-Q.

R. Ding, Y. Liu, Q. Li, Y. Yang, Y. Ma, K. Padmaraju, A. E.-J. Lim, G.-Q. Lo, K. Bergman, and T. Baehr-Jones, “Design and characterization of a 30-GHz bandwidth low-power silicon traveling-wave modulator,” Opt. Commun. 321, 124–133 (2014).
[Crossref]

Y. Zhang, S. Yang, A. E.-J. Lim, G.-Q. Lo, C. Galland, T. Baehr-Jones, and M. Hochberg, “A compact and low loss Y-junction for submicron silicon waveguide,” Opt. Express 21, 1310–1316 (2013).
[Crossref] [PubMed]

Long, Q.

Ma, Y.

R. Ding, Y. Liu, Q. Li, Y. Yang, Y. Ma, K. Padmaraju, A. E.-J. Lim, G.-Q. Lo, K. Bergman, and T. Baehr-Jones, “Design and characterization of a 30-GHz bandwidth low-power silicon traveling-wave modulator,” Opt. Commun. 321, 124–133 (2014).
[Crossref]

Manipatruni, S.

Mashanovich, G.

G. T. Reed, G. Mashanovich, F. Gardes, and D. Thomson, “Silicon optical modulators,” Nat. Photonics 4, 518–526 (2010).
[Crossref]

Mashanovich, G. Z.

G. T. Reed, G. Z. Mashanovich, F. Y. Gardes, M. Nedeljkovic, Y. Hu, D. J. Thomson, K. Li, P. R. Wilson, S.-W. Chen, and S. S. Hsu, “Recent breakthroughs in carrier depletion based silicon optical modulators,” Nanophotonics 3, 229–245 (2014).
[Crossref]

D. J. Thomson, F. Y. Gardes, J.-M. Fedeli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, and G. Z. Mashanovich, “50-Gb/s silicon optical modulator,” IEEE Photonics Technol. Lett,  9, 234–236 (2012).
[Crossref]

McGuire, D.

J. Pond, C. Cone, L. Chrostowski, J. Klein, J. Flueckiger, A. Liu, D. McGuire, and X. Wang, “A complete design flow for silicon photonics,” in Proceeding of SPIE Photonics Europe (2014), pp. 9133–9139.

Mechet, P.

Morsy-Osman, M.

Morthier, G.

Murphy, T. E.

Myslivets, E.

D. J. Thomson, F. Y. Gardes, J.-M. Fedeli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, and G. Z. Mashanovich, “50-Gb/s silicon optical modulator,” IEEE Photonics Technol. Lett,  9, 234–236 (2012).
[Crossref]

Nedeljkovic, M.

G. T. Reed, G. Z. Mashanovich, F. Y. Gardes, M. Nedeljkovic, Y. Hu, D. J. Thomson, K. Li, P. R. Wilson, S.-W. Chen, and S. S. Hsu, “Recent breakthroughs in carrier depletion based silicon optical modulators,” Nanophotonics 3, 229–245 (2014).
[Crossref]

Nicolaescu, R.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metalâǍŞoxideâǍŞsemiconductor capacitor,” Nature 427, 615–618 (2004).
[Crossref] [PubMed]

Noguchi, Y.

Okayama, H.

Olivier, N.

Padmaraju, K.

R. Ding, Y. Liu, Q. Li, Y. Yang, Y. Ma, K. Padmaraju, A. E.-J. Lim, G.-Q. Lo, K. Bergman, and T. Baehr-Jones, “Design and characterization of a 30-GHz bandwidth low-power silicon traveling-wave modulator,” Opt. Commun. 321, 124–133 (2014).
[Crossref]

Pafchek, R.

Paniccia, M.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metalâǍŞoxideâǍŞsemiconductor capacitor,” Nature 427, 615–618 (2004).
[Crossref] [PubMed]

Petermann, K.

D. Breuer and K. Petermann, “Comparison of NRZ-and RZ-modulation format for 40-Gb/s TDM standard-fiber systems,” IEEE Photonics Technol. Lett. 9, 398–400, 1997.
[Crossref]

Plant, D. V.

Pond, J.

J. Pond, C. Cone, L. Chrostowski, J. Klein, J. Flueckiger, A. Liu, D. McGuire, and X. Wang, “A complete design flow for silicon photonics,” in Proceeding of SPIE Photonics Europe (2014), pp. 9133–9139.

Poulin, M.

Pozar, D.

D. Pozar, Microwave Engineering, 3rd ed. (Wiley, 2004).

Radic, S.

D. J. Thomson, F. Y. Gardes, J.-M. Fedeli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, and G. Z. Mashanovich, “50-Gb/s silicon optical modulator,” IEEE Photonics Technol. Lett,  9, 234–236 (2012).
[Crossref]

Reed, G. T.

G. T. Reed, G. Z. Mashanovich, F. Y. Gardes, M. Nedeljkovic, Y. Hu, D. J. Thomson, K. Li, P. R. Wilson, S.-W. Chen, and S. S. Hsu, “Recent breakthroughs in carrier depletion based silicon optical modulators,” Nanophotonics 3, 229–245 (2014).
[Crossref]

G. T. Reed, G. Mashanovich, F. Gardes, and D. Thomson, “Silicon optical modulators,” Nat. Photonics 4, 518–526 (2010).
[Crossref]

Regreny, P.

Roberts, K. B.

K. B. Roberts, “Equalization, pulse shaping and regeneration of optical signals,” (US Patents6067180 A, 2000)

Roelkens, G.

Rubin, D.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metalâǍŞoxideâǍŞsemiconductor capacitor,” Nature 427, 615–618 (2004).
[Crossref] [PubMed]

Sakamoto, T.

Samara-Rubio, D.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metalâǍŞoxideâǍŞsemiconductor capacitor,” Nature 427, 615–618 (2004).
[Crossref] [PubMed]

Schmidt, B.

Shakya, J.

Soref, R. A.

R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23, 123–129 (1987).
[Crossref]

Spuesens, T.

Stulz, L. W.

Takahashi, H.

Takahashi, M.

Tan, W.

Thomson, D.

G. T. Reed, G. Mashanovich, F. Gardes, and D. Thomson, “Silicon optical modulators,” Nat. Photonics 4, 518–526 (2010).
[Crossref]

Thomson, D. J.

G. T. Reed, G. Z. Mashanovich, F. Y. Gardes, M. Nedeljkovic, Y. Hu, D. J. Thomson, K. Li, P. R. Wilson, S.-W. Chen, and S. S. Hsu, “Recent breakthroughs in carrier depletion based silicon optical modulators,” Nanophotonics 3, 229–245 (2014).
[Crossref]

D. J. Thomson, F. Y. Gardes, J.-M. Fedeli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, and G. Z. Mashanovich, “50-Gb/s silicon optical modulator,” IEEE Photonics Technol. Lett,  9, 234–236 (2012).
[Crossref]

Tsuchiya, M.

Van Thourhout, D.

Wang, X.

T. Li, J. Zhang, H. Yi, W. Tan, Q. Long, Z. Zhou, X. Wang, and H. Wu, “Low-voltage, high speed, compact silicon modulator for BPSK modulation,” Opt. Express 21, 23410–23415 (2013).
[Crossref] [PubMed]

J. Pond, C. Cone, L. Chrostowski, J. Klein, J. Flueckiger, A. Liu, D. McGuire, and X. Wang, “A complete design flow for silicon photonics,” in Proceeding of SPIE Photonics Europe (2014), pp. 9133–9139.

Weiner, A. M.

A. M. Weiner and A. M. Kan’an, “Femtosecond pulse shaping for synthesis, processing, and time-to-space conversion of ultrafast optical waveforms,” IEEE J. Sel. Top. Quantum Electron. 4, 317–331 (1998).
[Crossref]

Wilson, P. R.

G. T. Reed, G. Z. Mashanovich, F. Y. Gardes, M. Nedeljkovic, Y. Hu, D. J. Thomson, K. Li, P. R. Wilson, S.-W. Chen, and S. S. Hsu, “Recent breakthroughs in carrier depletion based silicon optical modulators,” Nanophotonics 3, 229–245 (2014).
[Crossref]

Winzer, P. J.

Wu, H.

Xia, B.

B. Xia and L. R. Chen, “A direct temporal domain approach for pulse-repetition rate multiplication with arbitrary envelope shaping,” IEEE J. Sel. Top. Quantum Electron. 11, 165–172 (2005).
[Crossref]

Xie, C.

Xu, Q.

Yang, S.

Yang, Y.

R. Ding, Y. Liu, Q. Li, Y. Yang, Y. Ma, K. Padmaraju, A. E.-J. Lim, G.-Q. Lo, K. Bergman, and T. Baehr-Jones, “Design and characterization of a 30-GHz bandwidth low-power silicon traveling-wave modulator,” Opt. Commun. 321, 124–133 (2014).
[Crossref]

Yi, H.

Zhang, J.

Zhang, Y.

Zhou, Z.

Zlatanovic, S.

D. J. Thomson, F. Y. Gardes, J.-M. Fedeli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, and G. Z. Mashanovich, “50-Gb/s silicon optical modulator,” IEEE Photonics Technol. Lett,  9, 234–236 (2012).
[Crossref]

IEEE J. Quantum Electron. (1)

R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23, 123–129 (1987).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

A. M. Weiner and A. M. Kan’an, “Femtosecond pulse shaping for synthesis, processing, and time-to-space conversion of ultrafast optical waveforms,” IEEE J. Sel. Top. Quantum Electron. 4, 317–331 (1998).
[Crossref]

B. Xia and L. R. Chen, “A direct temporal domain approach for pulse-repetition rate multiplication with arbitrary envelope shaping,” IEEE J. Sel. Top. Quantum Electron. 11, 165–172 (2005).
[Crossref]

IEEE Photonics Technol. Lett (1)

D. J. Thomson, F. Y. Gardes, J.-M. Fedeli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, and G. Z. Mashanovich, “50-Gb/s silicon optical modulator,” IEEE Photonics Technol. Lett,  9, 234–236 (2012).
[Crossref]

IEEE Photonics Technol. Lett. (1)

D. Breuer and K. Petermann, “Comparison of NRZ-and RZ-modulation format for 40-Gb/s TDM standard-fiber systems,” IEEE Photonics Technol. Lett. 9, 398–400, 1997.
[Crossref]

J. Lightwave Technol. (3)

Nanophotonics (1)

G. T. Reed, G. Z. Mashanovich, F. Y. Gardes, M. Nedeljkovic, Y. Hu, D. J. Thomson, K. Li, P. R. Wilson, S.-W. Chen, and S. S. Hsu, “Recent breakthroughs in carrier depletion based silicon optical modulators,” Nanophotonics 3, 229–245 (2014).
[Crossref]

Nat. Photonics (1)

G. T. Reed, G. Mashanovich, F. Gardes, and D. Thomson, “Silicon optical modulators,” Nat. Photonics 4, 518–526 (2010).
[Crossref]

Nature (1)

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metalâǍŞoxideâǍŞsemiconductor capacitor,” Nature 427, 615–618 (2004).
[Crossref] [PubMed]

Opt. Commun. (1)

R. Ding, Y. Liu, Q. Li, Y. Yang, Y. Ma, K. Padmaraju, A. E.-J. Lim, G.-Q. Lo, K. Bergman, and T. Baehr-Jones, “Design and characterization of a 30-GHz bandwidth low-power silicon traveling-wave modulator,” Opt. Commun. 321, 124–133 (2014).
[Crossref]

Opt. Express (7)

R. Kumar, T. Spuesens, P. Mechet, N. Olivier, J.-M. Fedeli, P. Regreny, G. Roelkens, D. Van Thourhout, and G. Morthier, “10Gbit/s all-optical NRZ-OOK to RZ-OOK format conversion in an ultra-small III-V-on-silicon microdisk fabricated in a CMOS pilot line,” Opt. Express 19, 24647–24656 (2011).
[Crossref] [PubMed]

S. Akiyama, T. Baba, M. Imai, T. Akagawa, M. Takahashi, N. Hirayama, H. Takahashi, Y. Noguchi, H. Okayama, and T. Horikawa, “12.5-Gb/s operation with 0.29-V · cm Vπ Lπ using silicon Mach-Zehnder modulator based-on forward-biased pin diode,” Opt. Express 20, 2911–2923 (2012).
[Crossref] [PubMed]

P. Dong, L. Chen, and Y.-K. Chen, “High-speed low-voltage single-drive push-pull silicon Mach-Zehnder modulators,” Opt. Express 20, 6163–6169 (2012).
[Crossref] [PubMed]

P. Dong, L. Chen, C. Xie, L. L. Buhl, and Y.-K. Chen, “50-Gb/s silicon quadrature phase-shift keying modulator,” Opt. Express 20, 21181–21186 (2012).
[Crossref] [PubMed]

Y. Zhang, S. Yang, A. E.-J. Lim, G.-Q. Lo, C. Galland, T. Baehr-Jones, and M. Hochberg, “A compact and low loss Y-junction for submicron silicon waveguide,” Opt. Express 21, 1310–1316 (2013).
[Crossref] [PubMed]

T. Li, J. Zhang, H. Yi, W. Tan, Q. Long, Z. Zhou, X. Wang, and H. Wu, “Low-voltage, high speed, compact silicon modulator for BPSK modulation,” Opt. Express 21, 23410–23415 (2013).
[Crossref] [PubMed]

Q. Xu, S. Manipatruni, B. Schmidt, J. Shakya, and M. Lipson, “12.5 Gbit/s carrier-injection-based silicon micro-ring silicon modulators,” Opt. Express 15, 430–436 (2007).
[Crossref] [PubMed]

Opt. Lett. (1)

Other (7)

D. Pozar, Microwave Engineering, 3rd ed. (Wiley, 2004).

J. Pond, C. Cone, L. Chrostowski, J. Klein, J. Flueckiger, A. Liu, D. McGuire, and X. Wang, “A complete design flow for silicon photonics,” in Proceeding of SPIE Photonics Europe (2014), pp. 9133–9139.

T. Baehr-Jones, “OpSIS-IME O150 process - performance summary,” http://opsisfoundry.org/wp-content/uploads/opsis_oi50_performance_summary.pdf

J.-M. Liu, Photonic Devices (Cambridge University, 2005).
[Crossref]

T.-C. Huang, T.-W. Chung, C.-H. Chern, M.-C. Huang, C.-C. Lin, and F.-L. Hsueh, “A 28Gb/s 1pJ/b shared-inductor optical receiver with 56% chip-area reduction in 28nm CMOS,” in Proceedings of IEEE International Solid-State Circuits Conference Digest of Technical Papers (IEEE, 2014), 144–145.

K. B. Roberts, “Equalization, pulse shaping and regeneration of optical signals,” (US Patents6067180 A, 2000)

B. Garrett and E. Kimber, “Optical pulse generation,” (US Patents20030030882 A1, 2001).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 (a) Schematic of the proposed modulator circuit. (b) Relationship between the optical output and the total phase difference in a MZM.
Fig. 2
Fig. 2 (a) Pulse shaping based on two-tap pre-emphasis, assuming kl = ku. (b) Pulse generation at both rising and falling edges with τ = T 6 and τ = T 4. T is the period of the clock. Shallowed pulses are 180° out of phase. Au = Al and kl = ku are assumed.
Fig. 3
Fig. 3 (a) Cross-sectional view of the phase shifter. (b) Doping profile of the PN junction after process simulation. Negative values mean p-type doping. (c) Extracted small-signal model parameters of the PN junction. (d) Simulated effective mode index change and VπLπ of the phase shifter. Note that the junction breakdown is about 9 V.
Fig. 4
Fig. 4 (a) Circuit model of the loaded transmission line. The series RC model of the PN junction is marked by a dash box. (b) Mode index and (c) characteristic impedance of the unloaded and loaded transmission lines; (d) Loss of the unloaded and loaded transmission lines. For an 1-mm long phase shifter, the 3-dB EO bandwidth corresponds to α = 0.74, which is about 40 GHz. For a 3-mm long phase shifter, the bandwidth is reduced to 18 GHz.
Fig. 5
Fig. 5 (a) Schematic of the simulated multi-function MZM circuit. (b) Schematic of the distributed model for the MZM. S-parameter boxes are used to represent the 300 μm long loaded transmission lines. The S-parameter is obtained from ADS simulation. Ten sections of S-parameter boxes and phase shifters are used. So the total length of the phase shifter is 3-mm. The initial phase difference is implemented as an extra phase shifter on both arms and controlled by two DC sources.
Fig. 6
Fig. 6 Simulated optical pulse waveforms. The data rate is 28 Gb/s. The data is shown on top. From top down: Au/Al = 10 dB, τ = 10 ps; Au/Al = 10 dB, τ = 18 ps; Au/Al = 7 dB, τ = 10 ps.
Fig. 7
Fig. 7 ISI compensation by pre-emphasis in optical domain: (a) compensation of the ISI due to modulator bandwidth limitation; data rate is 50 Gb/s; the delay and weight ratio in the simulation are τ = 7 ps and Au/Al = 10 dB. (b) compensation of the ISI due to photodetector bandwidth limitation; data rate is 28 Gb/s, the bandwidth of the detector is set to 10 GHz; The delay and weight ratio in the simulation are τ = 17 ps and Au/Al = 10 dB.
Fig. 8
Fig. 8 Optical pulse generation and frequency multiplication simulation results with sinusoidal input. (a) Waveform of the input 14-GHz electrical clock signal (upper) and output optical signal (lower) at τ = 18ps. (b) Spectrum of the output optical signal showing the main peak at 28-GHz and two frequency spurs.
Fig. 9
Fig. 9 Optical RZ data generation simulation results. (a) Circuit schematic for the RZ data generation. The 2nd MZM is an ideal component in Lumerical INTERCONNECT working in linear region. (b) Generation of 28 Gb/s RZ data. Upper: electrical modulation signal; lower: optical data taking RZ format.
Fig. 10
Fig. 10 (a) Schematic of the passive-only driving circuit. The inset shows the Tpad attenuator circuit schematic. (b) Simulated S21 of the Y junction, 1-mm long meandering delay line and the 10-dB T-pad attenuator using an EM simulator SONNET.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

E o u t = 1 2 E 0 [ e j ( Δ ϕ u + Δ ϕ 0 ) + e j Δ ϕ l ] = E 0 cos ( Δ ϕ u + Δ ϕ 0 Δ ϕ l 2 ) e j Δ ϕ l + Δ ϕ u + Δ ϕ 0 2
P o u t = 1 2 P 0 [ 1 + cos ( Δ ϕ 0 + Δ ϕ u Δ ϕ l ) ]
P o u t = 1 2 P 0 [ 1 sin ( Δ ϕ u Δ ϕ l ) ] 1 2 P 0 ( 1 + k 1 v 1 k u v u )
P o u t = 1 2 P 0 [ 1 cos ( Δ ϕ u Δ ϕ l ) ] = P 0 sin 2 ( Δ ϕ u Δ ϕ l 2 ) P 0 ( k u v u k l v l 2 ) 2

Metrics