Abstract

We evaluate the dependence of system performance on the roll-off factor, α, of a Nyquist pulse in a single-channel 1.28 Tbit/s-525 km transmission both experimentally and analytically. Low α values are preferable in terms of spectral efficiency and tolerance to chromatic dispersion and polarization-mode dispersion, while a strong overlap with neighboring symbols results in larger nonlinear impairments. On the other hand, a Nyquist pulse with high α values also suffers from nonlinearity due to higher peak power. As a result, we found experimentally that the optimum α value is 0.4~0.6, which agrees well with the analysis.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Single-channel 10.2 Tbit/s (2.56 Tbaud) optical Nyquist pulse transmission over 300 km

Toshihiko Hirooka, Ryoya Hirata, Jianping Wang, Masato Yoshida, and Masataka Nakazawa
Opt. Express 26(21) 27221-27236 (2018)

Q-factor analysis of nonlinear impairments in ultrahigh-speed Nyquist pulse transmission

Toshihiko Hirooka and Masataka Nakazawa
Opt. Express 23(26) 33484-33492 (2015)

2.56 Tbit/s/ch (640 Gbaud) polarization-multiplexed DQPSK non-coherent Nyquist pulse transmission over 525 km

Koudai Harako, Daiki Seya, Daiki Suzuki, Toshihiko Hirooka, and Masataka Nakazawa
Opt. Express 23(24) 30801-30806 (2015)

References

  • View by:
  • |
  • |
  • |

  1. G. Raybon, A. Adamiecki, P. J. Winzer, M. Montoliu, S. Randel, A. Umbach, M. Margraf, J. Stephan, S. Draving, M. Grove, and K. Rush, “All-ETDM 107-Gbaud PDM-16QAM (856-Gb/s) transmitter and coherent receiver,” in ECOC 2013 (2013, paper PD2.D.3.
  2. G. Raybon, J. Cho, A. Adamiecki, P. Winzer, A. Konczykowska, F. Jorge, J. Dupuy, M. Riet, B. Duval, K. Kim, S. Randel, D. Pilori, B. Guan, N. K. Fontaine, and E. Burrows, “Single carrier high symbol rate transmitter for data rates up to 1.0 Tb/s,” in OFC 2016 (2016), paper Th3A.2.
  3. M. Nakazawa, T. Yamamoto, and K. R. Tamura, “1.28 Tbit/s-70 km OTDM transmission using third- and fourth-order simultaneous dispersion compensation with a phase modulator,” Electron. Lett. 36(24), 2027–2029 (2000).
    [Crossref]
  4. H. C. H. Mulvad, M. Galili, L. K. Oxenløwe, H. Hu, A. T. Clausen, J. B. Jensen, C. Peucheret, and P. Jeppesen, “Demonstration of 5.1 Tbit/s data capacity on a single-wavelength channel,” Opt. Express 18(2), 1438–1443 (2010).
    [Crossref] [PubMed]
  5. T. Richter, E. Palushani, C. Schmidt-Langhorst, M. Nölle, R. Ludwig, and C. Schubert, “Single wavelength channel 10.2 Tb/s TDM-data capacity using 16-QAM and coherent detection,” in OFC 2011 (2011), paper PDPA9.
  6. M. Nakazawa, T. Hirooka, P. Ruan, and P. Guan, “Ultrahigh-speed “orthogonal” TDM transmission with an optical Nyquist pulse train,” Opt. Express 20(2), 1129–1140 (2012).
    [Crossref] [PubMed]
  7. K. Harako, D. Seya, D. Suzuki, T. Hirooka, and M. Nakazawa, “2.56 Tbit/s/ch (640 Gbaud) polarization-multiplexed DQPSK non-coherent Nyquist pulse transmission over 525 km,” Opt. Express 23(24), 30801–30806 (2015).
    [Crossref] [PubMed]
  8. D. O. Otuya, K. Harako, K. Kasai, T. Hirooka, and M. Nakazawa, “Single-channel 1.92 Tbit/s, 64 QAM coherent orthogonal TDM transmission of 160 Gbaud optical Nyquist pulses with 10.6 bit/s/Hz spectral efficiency,” in OFC 2015 (2015), paper M3G.2.
  9. D. Suzuki, K. Harako, T. Hirooka, and M. Nakazawa, “Single-channel 5.12 Tbit/s (1.28 Tbaud) DQPSK transmission over 300 km using non-coherent Nyquist pulses,” in ECOC 2016 (2016), paper W4.P1.SC5.49.
  10. H. Hu, D. Kong, E. Palushani, J. D. Andersen, A. Rasmussen, B. M. Sørensen, M. Galili, H. C. H. Mulvad, K. J. Larsen, S. Forchhammer, P. Jeppesen, and L. K. Oxenløwe, “1.28 Tbaud Nyquist signal transmission using time-domain optical Fourier transformation based receiver,” in CLEO 2013 (2013), paper CTh5D.5.
  11. H. N. Tan, T. Inoue, T. Kurosu, and S. Namiki, “Transmission and pass-drop operations of mixed baudrate Nyquist OTDM-WDM signals for all-optical elastic network,” Opt. Express 21(17), 20313–20321 (2013).
    [Crossref] [PubMed]
  12. S. Kumar, S. N. Shahi, and D. Yang, “Analytical modeling of a single channel nonlinear fiber optic system based on QPSK,” Opt. Express 20(25), 27740–27755 (2012).
    [Crossref] [PubMed]

2015 (1)

2013 (1)

2012 (2)

2010 (1)

2000 (1)

M. Nakazawa, T. Yamamoto, and K. R. Tamura, “1.28 Tbit/s-70 km OTDM transmission using third- and fourth-order simultaneous dispersion compensation with a phase modulator,” Electron. Lett. 36(24), 2027–2029 (2000).
[Crossref]

Clausen, A. T.

Galili, M.

Guan, P.

Harako, K.

Hirooka, T.

Hu, H.

Inoue, T.

Jensen, J. B.

Jeppesen, P.

Kumar, S.

Kurosu, T.

Mulvad, H. C. H.

Nakazawa, M.

Namiki, S.

Oxenløwe, L. K.

Peucheret, C.

Ruan, P.

Seya, D.

Shahi, S. N.

Suzuki, D.

Tamura, K. R.

M. Nakazawa, T. Yamamoto, and K. R. Tamura, “1.28 Tbit/s-70 km OTDM transmission using third- and fourth-order simultaneous dispersion compensation with a phase modulator,” Electron. Lett. 36(24), 2027–2029 (2000).
[Crossref]

Tan, H. N.

Yamamoto, T.

M. Nakazawa, T. Yamamoto, and K. R. Tamura, “1.28 Tbit/s-70 km OTDM transmission using third- and fourth-order simultaneous dispersion compensation with a phase modulator,” Electron. Lett. 36(24), 2027–2029 (2000).
[Crossref]

Yang, D.

Electron. Lett. (1)

M. Nakazawa, T. Yamamoto, and K. R. Tamura, “1.28 Tbit/s-70 km OTDM transmission using third- and fourth-order simultaneous dispersion compensation with a phase modulator,” Electron. Lett. 36(24), 2027–2029 (2000).
[Crossref]

Opt. Express (5)

Other (6)

D. O. Otuya, K. Harako, K. Kasai, T. Hirooka, and M. Nakazawa, “Single-channel 1.92 Tbit/s, 64 QAM coherent orthogonal TDM transmission of 160 Gbaud optical Nyquist pulses with 10.6 bit/s/Hz spectral efficiency,” in OFC 2015 (2015), paper M3G.2.

D. Suzuki, K. Harako, T. Hirooka, and M. Nakazawa, “Single-channel 5.12 Tbit/s (1.28 Tbaud) DQPSK transmission over 300 km using non-coherent Nyquist pulses,” in ECOC 2016 (2016), paper W4.P1.SC5.49.

H. Hu, D. Kong, E. Palushani, J. D. Andersen, A. Rasmussen, B. M. Sørensen, M. Galili, H. C. H. Mulvad, K. J. Larsen, S. Forchhammer, P. Jeppesen, and L. K. Oxenløwe, “1.28 Tbaud Nyquist signal transmission using time-domain optical Fourier transformation based receiver,” in CLEO 2013 (2013), paper CTh5D.5.

T. Richter, E. Palushani, C. Schmidt-Langhorst, M. Nölle, R. Ludwig, and C. Schubert, “Single wavelength channel 10.2 Tb/s TDM-data capacity using 16-QAM and coherent detection,” in OFC 2011 (2011), paper PDPA9.

G. Raybon, A. Adamiecki, P. J. Winzer, M. Montoliu, S. Randel, A. Umbach, M. Margraf, J. Stephan, S. Draving, M. Grove, and K. Rush, “All-ETDM 107-Gbaud PDM-16QAM (856-Gb/s) transmitter and coherent receiver,” in ECOC 2013 (2013, paper PD2.D.3.

G. Raybon, J. Cho, A. Adamiecki, P. Winzer, A. Konczykowska, F. Jorge, J. Dupuy, M. Riet, B. Duval, K. Kim, S. Randel, D. Pilori, B. Guan, N. K. Fontaine, and E. Burrows, “Single carrier high symbol rate transmitter for data rates up to 1.0 Tb/s,” in OFC 2016 (2016), paper Th3A.2.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Experimental setup for a single-channel 1.28 Tbit/s Nyquist pulse transmission.
Fig. 2
Fig. 2 Nyquist pulse waveform (left) and spectrum (right) with α = 0 (a), 0.5 (b), and 1 (c). Black curves are the ideal Nyquist profile.
Fig. 3
Fig. 3 BER vs. received power (a) and OSNR (b) for different α values in a 1.28 Tbit/s-525 km transmission.
Fig. 4
Fig. 4 Output waveforms from a balanced PD at a received power of −20 dBm for α = 0 (a), 0.5 (b) and 1 (c).
Fig. 5
Fig. 5 BER vs. launch power for different α values (a) and the minimum BER vs. α (b) in a 1.28 Tbit/s-525 km transmission.
Fig. 6
Fig. 6 Dependence of ηXPM and ηFWM (a) and Pp/Pav (b) on roll-off factor α.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

i Δu z β 2 2 2 Δu t 2 =γ a 2 (z) u l u m u n *
σ NL 2 =( η SPM + η XPM + η FWM ) P av 3
η= γ 2 ( P p / P av ) 3 T l,m=N/2 N/2 l , m =N/2 N/2 a l a m a l+m * a l * a m * a l + m Y l,m (f) Y l , m * (f)H(f)df
Y l,m (f)= 0 z a 2 ( z ) 2π| β 2 z | s ^ ( f lT 2π β 2 z ) s ^ ( f mT 2π β 2 z ) s ^ ( f+ (l+m)T 2π β 2 z )exp( i lm T 2 β 2 z ) d z

Metrics