Abstract

A simple tunable dual-wavelength fiber laser was developed and multiple self-mixing interferometry to large step height measurement was demonstrated. The fiber laser, which can emit two wavelengths without laser mode competition, is composed of a single fiber ring cavity and two fiber branches. Each branch includes a length of erbium-doped fiber and a fiber Bragg grating. Large step heights can be measured using multiple self-mixing interference of the two wavelengths. The maximum height that can be measured is half synthetic wavelength of the two wavelengths. A step height of 2mm constructed with two gauge blocks has been measured. The standard deviation of measurement results is 2.5nm.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Development of dual-wavelength fiber ring laser and its application to step-height measurement using self-mixing interferometry

S. Ma, F. Xie, L. Chen, Y. Z. Wang, L. L. Dong, and K. Q. Zhao
Opt. Express 24(6) 5693-5698 (2016)

Large step-height measurements using multiple-wavelength holographic interferometry with tunable laser diodes

Atsushi Wada, Makoto Kato, and Yukihiro Ishii
J. Opt. Soc. Am. A 25(12) 3013-3020 (2008)

Increasing the range of unambiguity in step-height measurement with multiple-wavelength interferometry—application to absolute long gauge block measurement

Jennifer E. Decker, John R. Miles, Alan A. Madej, Ralph F. Siemsen, Klaus J. Siemsen, Sebastian de Bonth, Krijn Bustraan, Sara Temple, and James R. Pekelsky
Appl. Opt. 42(28) 5670-5678 (2003)

References

  • View by:
  • |
  • |
  • |

  1. T. Taimre, M. Nikolic, K. Bertling, Y. L. Lim, T. Bosch, and A. Rakic, “Laser feedback interferometry: a tutorial on the self-mixing effect for coherent sensing,” Adv. Opt. Photonics 7(3), 570–631 (2015).
    [Crossref]
  2. G. Mourat, N. Servagent, and T. Bosch, “Distance measurement using the self-mixing effect in a three-electrode distributed Bragg reflector laser diode,” Opt. Eng. 39(3), 738–743 (2000).
    [Crossref]
  3. Y. Tan, Z. Zeng, S. Zhang, P. Zhang, and H. Chen, “Method for in situ calibration of multiple feedback interferometers,” Chin. Opt. Lett. 11(10), 102601 (2013).
    [Crossref]
  4. X. Cheng and S. Zhang, “Multiple self-mixing effect in VCSELs with asymmetric external cavity,” Opt. Commun. 260(1), 50–56 (2006).
    [Crossref]
  5. Y. Tan, S. Zhang, S. Zhang, Y. Zhang, and N. Liu, “Response of microchip solid-state laser to external frequency-shifted feedback and its applications,” Sci. Rep. 3(10), 2912 (2013).
    [PubMed]
  6. X. Dai, M. Wang, Y. Zhao, and J. Zhou, “Self-mixing interference in fiber ring laser and its application for vibration measurement,” Opt. Express 17(19), 16543–16548 (2009).
    [Crossref] [PubMed]
  7. Y. Tan, S. Zhang, and Y. Zhang, “Laser feedback interferometry based on phase difference of orthogonally polarized lights in external birefringence cavity,” Opt. Express 17(16), 13939–13945 (2009).
    [Crossref] [PubMed]
  8. Y. Tan, C. Xu, S. Zhang, and S. Zhang, “Power spectral characteristic of microchip Nd:YAG laser subjected to frequency-shifted optical feedback,” Laser Phys. Lett. 10(2), 025001 (2013).
    [Crossref]
  9. J. Li, Y. Tan, and S. Zhang, “Generation of phase difference between self-mixing signals in a-cut Nd:YVO4 laser with a waveplate in the external cavity,” Opt. Lett. 40(15), 3615–3618 (2015).
    [Crossref] [PubMed]
  10. S. Ma, F. Xie, L. Chen, Y. Z. Wang, L. L. Dong, and K. Q. Zhao, “Development of dual-wavelength fiber ring laser and its application to step-height measurement using self-mixing interferometry,” Opt. Express 24(6), 5693–5698 (2016).
    [Crossref] [PubMed]

2016 (1)

2015 (2)

T. Taimre, M. Nikolic, K. Bertling, Y. L. Lim, T. Bosch, and A. Rakic, “Laser feedback interferometry: a tutorial on the self-mixing effect for coherent sensing,” Adv. Opt. Photonics 7(3), 570–631 (2015).
[Crossref]

J. Li, Y. Tan, and S. Zhang, “Generation of phase difference between self-mixing signals in a-cut Nd:YVO4 laser with a waveplate in the external cavity,” Opt. Lett. 40(15), 3615–3618 (2015).
[Crossref] [PubMed]

2013 (3)

Y. Tan, C. Xu, S. Zhang, and S. Zhang, “Power spectral characteristic of microchip Nd:YAG laser subjected to frequency-shifted optical feedback,” Laser Phys. Lett. 10(2), 025001 (2013).
[Crossref]

Y. Tan, S. Zhang, S. Zhang, Y. Zhang, and N. Liu, “Response of microchip solid-state laser to external frequency-shifted feedback and its applications,” Sci. Rep. 3(10), 2912 (2013).
[PubMed]

Y. Tan, Z. Zeng, S. Zhang, P. Zhang, and H. Chen, “Method for in situ calibration of multiple feedback interferometers,” Chin. Opt. Lett. 11(10), 102601 (2013).
[Crossref]

2009 (2)

2006 (1)

X. Cheng and S. Zhang, “Multiple self-mixing effect in VCSELs with asymmetric external cavity,” Opt. Commun. 260(1), 50–56 (2006).
[Crossref]

2000 (1)

G. Mourat, N. Servagent, and T. Bosch, “Distance measurement using the self-mixing effect in a three-electrode distributed Bragg reflector laser diode,” Opt. Eng. 39(3), 738–743 (2000).
[Crossref]

Bertling, K.

T. Taimre, M. Nikolic, K. Bertling, Y. L. Lim, T. Bosch, and A. Rakic, “Laser feedback interferometry: a tutorial on the self-mixing effect for coherent sensing,” Adv. Opt. Photonics 7(3), 570–631 (2015).
[Crossref]

Bosch, T.

T. Taimre, M. Nikolic, K. Bertling, Y. L. Lim, T. Bosch, and A. Rakic, “Laser feedback interferometry: a tutorial on the self-mixing effect for coherent sensing,” Adv. Opt. Photonics 7(3), 570–631 (2015).
[Crossref]

G. Mourat, N. Servagent, and T. Bosch, “Distance measurement using the self-mixing effect in a three-electrode distributed Bragg reflector laser diode,” Opt. Eng. 39(3), 738–743 (2000).
[Crossref]

Chen, H.

Chen, L.

Cheng, X.

X. Cheng and S. Zhang, “Multiple self-mixing effect in VCSELs with asymmetric external cavity,” Opt. Commun. 260(1), 50–56 (2006).
[Crossref]

Dai, X.

Dong, L. L.

Li, J.

Lim, Y. L.

T. Taimre, M. Nikolic, K. Bertling, Y. L. Lim, T. Bosch, and A. Rakic, “Laser feedback interferometry: a tutorial on the self-mixing effect for coherent sensing,” Adv. Opt. Photonics 7(3), 570–631 (2015).
[Crossref]

Liu, N.

Y. Tan, S. Zhang, S. Zhang, Y. Zhang, and N. Liu, “Response of microchip solid-state laser to external frequency-shifted feedback and its applications,” Sci. Rep. 3(10), 2912 (2013).
[PubMed]

Ma, S.

Mourat, G.

G. Mourat, N. Servagent, and T. Bosch, “Distance measurement using the self-mixing effect in a three-electrode distributed Bragg reflector laser diode,” Opt. Eng. 39(3), 738–743 (2000).
[Crossref]

Nikolic, M.

T. Taimre, M. Nikolic, K. Bertling, Y. L. Lim, T. Bosch, and A. Rakic, “Laser feedback interferometry: a tutorial on the self-mixing effect for coherent sensing,” Adv. Opt. Photonics 7(3), 570–631 (2015).
[Crossref]

Rakic, A.

T. Taimre, M. Nikolic, K. Bertling, Y. L. Lim, T. Bosch, and A. Rakic, “Laser feedback interferometry: a tutorial on the self-mixing effect for coherent sensing,” Adv. Opt. Photonics 7(3), 570–631 (2015).
[Crossref]

Servagent, N.

G. Mourat, N. Servagent, and T. Bosch, “Distance measurement using the self-mixing effect in a three-electrode distributed Bragg reflector laser diode,” Opt. Eng. 39(3), 738–743 (2000).
[Crossref]

Taimre, T.

T. Taimre, M. Nikolic, K. Bertling, Y. L. Lim, T. Bosch, and A. Rakic, “Laser feedback interferometry: a tutorial on the self-mixing effect for coherent sensing,” Adv. Opt. Photonics 7(3), 570–631 (2015).
[Crossref]

Tan, Y.

Wang, M.

Wang, Y. Z.

Xie, F.

Xu, C.

Y. Tan, C. Xu, S. Zhang, and S. Zhang, “Power spectral characteristic of microchip Nd:YAG laser subjected to frequency-shifted optical feedback,” Laser Phys. Lett. 10(2), 025001 (2013).
[Crossref]

Zeng, Z.

Zhang, P.

Zhang, S.

J. Li, Y. Tan, and S. Zhang, “Generation of phase difference between self-mixing signals in a-cut Nd:YVO4 laser with a waveplate in the external cavity,” Opt. Lett. 40(15), 3615–3618 (2015).
[Crossref] [PubMed]

Y. Tan, Z. Zeng, S. Zhang, P. Zhang, and H. Chen, “Method for in situ calibration of multiple feedback interferometers,” Chin. Opt. Lett. 11(10), 102601 (2013).
[Crossref]

Y. Tan, C. Xu, S. Zhang, and S. Zhang, “Power spectral characteristic of microchip Nd:YAG laser subjected to frequency-shifted optical feedback,” Laser Phys. Lett. 10(2), 025001 (2013).
[Crossref]

Y. Tan, C. Xu, S. Zhang, and S. Zhang, “Power spectral characteristic of microchip Nd:YAG laser subjected to frequency-shifted optical feedback,” Laser Phys. Lett. 10(2), 025001 (2013).
[Crossref]

Y. Tan, S. Zhang, S. Zhang, Y. Zhang, and N. Liu, “Response of microchip solid-state laser to external frequency-shifted feedback and its applications,” Sci. Rep. 3(10), 2912 (2013).
[PubMed]

Y. Tan, S. Zhang, S. Zhang, Y. Zhang, and N. Liu, “Response of microchip solid-state laser to external frequency-shifted feedback and its applications,” Sci. Rep. 3(10), 2912 (2013).
[PubMed]

Y. Tan, S. Zhang, and Y. Zhang, “Laser feedback interferometry based on phase difference of orthogonally polarized lights in external birefringence cavity,” Opt. Express 17(16), 13939–13945 (2009).
[Crossref] [PubMed]

X. Cheng and S. Zhang, “Multiple self-mixing effect in VCSELs with asymmetric external cavity,” Opt. Commun. 260(1), 50–56 (2006).
[Crossref]

Zhang, Y.

Y. Tan, S. Zhang, S. Zhang, Y. Zhang, and N. Liu, “Response of microchip solid-state laser to external frequency-shifted feedback and its applications,” Sci. Rep. 3(10), 2912 (2013).
[PubMed]

Y. Tan, S. Zhang, and Y. Zhang, “Laser feedback interferometry based on phase difference of orthogonally polarized lights in external birefringence cavity,” Opt. Express 17(16), 13939–13945 (2009).
[Crossref] [PubMed]

Zhao, K. Q.

Zhao, Y.

Zhou, J.

Adv. Opt. Photonics (1)

T. Taimre, M. Nikolic, K. Bertling, Y. L. Lim, T. Bosch, and A. Rakic, “Laser feedback interferometry: a tutorial on the self-mixing effect for coherent sensing,” Adv. Opt. Photonics 7(3), 570–631 (2015).
[Crossref]

Chin. Opt. Lett. (1)

Laser Phys. Lett. (1)

Y. Tan, C. Xu, S. Zhang, and S. Zhang, “Power spectral characteristic of microchip Nd:YAG laser subjected to frequency-shifted optical feedback,” Laser Phys. Lett. 10(2), 025001 (2013).
[Crossref]

Opt. Commun. (1)

X. Cheng and S. Zhang, “Multiple self-mixing effect in VCSELs with asymmetric external cavity,” Opt. Commun. 260(1), 50–56 (2006).
[Crossref]

Opt. Eng. (1)

G. Mourat, N. Servagent, and T. Bosch, “Distance measurement using the self-mixing effect in a three-electrode distributed Bragg reflector laser diode,” Opt. Eng. 39(3), 738–743 (2000).
[Crossref]

Opt. Express (3)

Opt. Lett. (1)

Sci. Rep. (1)

Y. Tan, S. Zhang, S. Zhang, Y. Zhang, and N. Liu, “Response of microchip solid-state laser to external frequency-shifted feedback and its applications,” Sci. Rep. 3(10), 2912 (2013).
[PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 The schematic diagram of dual-wavelength fiber ring laser
Fig. 2
Fig. 2 The spectrum obtained by optical spectrum analyzer while the FBG1 has been stretched
Fig. 3
Fig. 3 Fluctuations in the two emitted wavelengths from the dual-wavelength fiber ring laser
Fig. 4
Fig. 4 The principle of step height measurement technology by SMI of the dual-wavelength fiber ring laser
Fig. 5
Fig. 5 The procedure of a step height measurement
Fig. 6
Fig. 6 The measured step height constructed with two gauge blocks
Fig. 7
Fig. 7 (a) the two wavelengths used in the experiments; (b) the SMI of the two wavelengths; (c) the measurement results of the ten measurement times

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

P 1 = P 10 + k 1 cos( 4π L ext λ 1 )
P 2 = P 20 + k 2 cos( 4π L ext λ 2 )
φ 1 a = φ 10 a +2 m 1 a π=4π L ext1 λ 1
φ 2 a = φ 20 a +2 m 2 a π=4π L ext1 λ 2
Δh= L ext1 L ext2 = λ s 4π [ ( φ 10 b φ 10 a )( φ 20 b φ 20 a ) ]

Metrics