Abstract

Visible light communication (VLC) is an advanced and high-efficiency wireless communication technology. As one of the most important light sources in VLC, conventional white light emitting diode (WLED) based on Y3Al5O12:Ce3+ (YAG:Ce) phosphor limits the system transmitting rate severely due to its narrow modulation bandwidth. Considering the short fluorescent lifetime of quantum dots (QDs), QD-LEDs with wide modulation bandwidths were designed here to improve the transmitting rate of VLC. CdSe/ZnS core/shell QDs and related luminescent microspheres (LMS) were implemented as light conversion materials for the QD-LEDs. Compared with conventional phosphor WLED, the proposed QD-LED and QD-WLED reached maximum improvement on modulation bandwidth at 74.19% and 67.75% respectively. Furthermore, mathematical modeling of smearing was analyzed to establish the relationship between fluorescent lifetime and modulation bandwidth. Our findings will provide an effective solution of white LEDs for high speed VLC.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Optical characteristics and longevity of quantum dot-coated white LED

Ji Wook Moon, Jin Sung Kim, Bong Gul Min, Hyun Min Kim, and Jae Soo Yoo
Opt. Mater. Express 4(10) 2174-2181 (2014)

Impact of blue filtering on effective modulation bandwidth and wide-angle operation in white LED-based VLC systems

Noha Anous, Tarek Ramadan, Mohamed Abdallah, Khalid Qaraqe, and Diaa Khalil
OSA Continuum 1(3) 910-929 (2018)

Investigation of 4-ASK modulation with digital filtering to increase 20 times of direct modulation speed of white-light LED visible light communication system

C. H. Yeh, Y. F. Liu, C. W. Chow, Y. Liu, P. Y. Huang, and H. K. Tsang
Opt. Express 20(15) 16218-16223 (2012)

References

  • View by:
  • |
  • |
  • |

  1. P. H. Pathak, X. T. Feng, P. F. Hu, and P. Mohapatra, “Visible light communication, networking, and sensing: a survey, potential and challenges,” IEEE Comm. Surv. and Tutor. 17(4), 2047–2077 (2015).
    [Crossref]
  2. A. M. Khalid, G. Cossu, R. Corsini, P. Choudhury, and E. Ciaramella, “1-Gb/s Transmission over a phosphorescent white led by using rate-adaptive discrete multitone modulation,” IEEE Photonics J. 4(5), 1465–1473 (2012).
    [Crossref]
  3. T. Komine and M. Nakagawa, “Fundamental analysis for visible-light communication system using LED lights,” IEEE Trans. Consum. Electron. 50(1), 100–107 (2004).
    [Crossref]
  4. Y. Wang, Y. Wang, N. Chi, J. Yu, and H. Shang, “Demonstration of 575-Mb/s downlink and 225-Mb/s uplink bi-directional SCM-WDM visible light communication using RGB LED and phosphor-based LED,” Opt. Express 21(1), 1203–1208 (2013).
    [Crossref] [PubMed]
  5. S. C. Zhu, Z. G. Yu, L. X. Zhao, J. X. Wang, and J. M. Li, “Enhancement of the modulation bandwidth for GaN-based light-emitting diode by surface plasmons,” Opt. Express 23(11), 13752–13760 (2015).
    [Crossref] [PubMed]
  6. S. X. Zhu, J. X. Wang, J. C. Yan, Y. Zhang, Y. R. Pei, Z. Si, H. Yang, L. X. Zhao, Z. Liu, and J. Li, “Influence of AlGaN electron blocking layer on modulation bandwidth of GaN-based light emitting diodes,” Ecs. Solid State Lett 3(3), R11–R13 (2014).
    [Crossref]
  7. S. L. Zhang, S. Watson, J. D. McKendry, D. Massoubre, A. Cogman, E. Gu, R. K. Henderson, A. E. Kelly, and M. D. Dawson, “1.5 Gbit/s Multi-channel visible light communications using CMOS-controlled GaN-based LEDs,” J. Lightwave Technol. 31(8), 1211–1216 (2013).
    [Crossref]
  8. J. Y. Sung, C. W. Chow, and C. H. Yeh, “Is blue optical filter necessary in high speed phosphor-based white light LED visible light communications?” Opt. Express 22(17), 20646–20651 (2014).
    [Crossref] [PubMed]
  9. G. Stepniak, M. Schüppert, and C. A. Bunge, “Advanced modulation formats in phosphorous LED VLC links and the impact of blue filtering,” J. Lightwave Technol. 33(21), 4413–4423 (2015).
    [Crossref]
  10. C. H. Yeh, Y. L. Liu, and C. W. Chow, “Real-time white-light phosphor-LED visible light communication (VLC) with compact size,” Opt. Express 21(22), 26192–26197 (2013).
    [Crossref] [PubMed]
  11. C. H. Yeh, C. W. Chow, Y. F. Liu, and P. Y. Huang, “Simple digital FIR equalizer design for improving the phosphor LED modulation bandwidth in visible light communication,” Opt. Quantum Electron. 45(8), 901–905 (2013).
    [Crossref]
  12. H. Le Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, and Y. Oh, “High-speed visible light communications using multiple-resonant equalization,” IEEE Photonics Technol. Lett. 20(14), 1243–1245 (2008).
    [Crossref]
  13. X. Dai, Z. Zhang, Y. Jin, Y. Niu, H. Cao, X. Liang, L. Chen, J. Wang, and X. Peng, “Solution-processed, high-performance light-emitting diodes based on quantum dots,” Nature 515(7525), 96–99 (2014).
    [Crossref] [PubMed]
  14. T. H. Kim, K. S. Cho, E. K. Lee, S. J. Lee, J. Chae, J. W. Kim, D. H. Kim, J. Y. Kwon, G. Amaratunga, S. Y. Lee, B. L. Choi, Y. Kuk, J. M. Kim, and K. Kim, “Full-colour quantum dot displays fabricated by transfer printing,” Nat. Photonics 5(3), 176–182 (2011).
    [Crossref]
  15. W. Chen, K. Wang, J. Hao, D. Wu, J. Qin, D. Dong, J. Deng, Y. Li, Y. Chen, and W. Cao, “High efficiency and color rendering quantum dots white light emitting diodes optimized by luminescent microspheres incorporating,” Nanophotonics in press (2016).
  16. W. Chen, K. Wang, J. Hao, D. Wu, S. Wang, J. Qin, C. Li, and W. Cao, “Highly efficient and stable luminescence from microbeans integrated with Cd-free quantum dots for white-light-emitting diodes,” Part. Part. Syst. Charact. 32(10), 922–927 (2015).
    [Crossref]
  17. N. Laurand, B. Guilhabert, J. McKendry, A. E. Kelly, B. Rae, D. Massoubre, Z. Gong, E. Gu, R. Henderson, and M. D. Dawson, “Colloidal quantum dot nanocomposites for visible wavelength conversion of modulated optical signals,” Opt. Mater. Express 2(3), 250–260 (2012).
    [Crossref]
  18. M. K. Emsley, O. Dosunmu, and M. S. Unlu, “High-speed resonant-cavity-enhanced silicon photodetectors on reflecting silicon-on-insulator substrates,” IEEE Photonics Technol. Lett. 14(4), 519–521 (2002).
    [Crossref]

2015 (4)

P. H. Pathak, X. T. Feng, P. F. Hu, and P. Mohapatra, “Visible light communication, networking, and sensing: a survey, potential and challenges,” IEEE Comm. Surv. and Tutor. 17(4), 2047–2077 (2015).
[Crossref]

S. C. Zhu, Z. G. Yu, L. X. Zhao, J. X. Wang, and J. M. Li, “Enhancement of the modulation bandwidth for GaN-based light-emitting diode by surface plasmons,” Opt. Express 23(11), 13752–13760 (2015).
[Crossref] [PubMed]

G. Stepniak, M. Schüppert, and C. A. Bunge, “Advanced modulation formats in phosphorous LED VLC links and the impact of blue filtering,” J. Lightwave Technol. 33(21), 4413–4423 (2015).
[Crossref]

W. Chen, K. Wang, J. Hao, D. Wu, S. Wang, J. Qin, C. Li, and W. Cao, “Highly efficient and stable luminescence from microbeans integrated with Cd-free quantum dots for white-light-emitting diodes,” Part. Part. Syst. Charact. 32(10), 922–927 (2015).
[Crossref]

2014 (3)

J. Y. Sung, C. W. Chow, and C. H. Yeh, “Is blue optical filter necessary in high speed phosphor-based white light LED visible light communications?” Opt. Express 22(17), 20646–20651 (2014).
[Crossref] [PubMed]

X. Dai, Z. Zhang, Y. Jin, Y. Niu, H. Cao, X. Liang, L. Chen, J. Wang, and X. Peng, “Solution-processed, high-performance light-emitting diodes based on quantum dots,” Nature 515(7525), 96–99 (2014).
[Crossref] [PubMed]

S. X. Zhu, J. X. Wang, J. C. Yan, Y. Zhang, Y. R. Pei, Z. Si, H. Yang, L. X. Zhao, Z. Liu, and J. Li, “Influence of AlGaN electron blocking layer on modulation bandwidth of GaN-based light emitting diodes,” Ecs. Solid State Lett 3(3), R11–R13 (2014).
[Crossref]

2013 (4)

2012 (2)

N. Laurand, B. Guilhabert, J. McKendry, A. E. Kelly, B. Rae, D. Massoubre, Z. Gong, E. Gu, R. Henderson, and M. D. Dawson, “Colloidal quantum dot nanocomposites for visible wavelength conversion of modulated optical signals,” Opt. Mater. Express 2(3), 250–260 (2012).
[Crossref]

A. M. Khalid, G. Cossu, R. Corsini, P. Choudhury, and E. Ciaramella, “1-Gb/s Transmission over a phosphorescent white led by using rate-adaptive discrete multitone modulation,” IEEE Photonics J. 4(5), 1465–1473 (2012).
[Crossref]

2011 (1)

T. H. Kim, K. S. Cho, E. K. Lee, S. J. Lee, J. Chae, J. W. Kim, D. H. Kim, J. Y. Kwon, G. Amaratunga, S. Y. Lee, B. L. Choi, Y. Kuk, J. M. Kim, and K. Kim, “Full-colour quantum dot displays fabricated by transfer printing,” Nat. Photonics 5(3), 176–182 (2011).
[Crossref]

2008 (1)

H. Le Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, and Y. Oh, “High-speed visible light communications using multiple-resonant equalization,” IEEE Photonics Technol. Lett. 20(14), 1243–1245 (2008).
[Crossref]

2004 (1)

T. Komine and M. Nakagawa, “Fundamental analysis for visible-light communication system using LED lights,” IEEE Trans. Consum. Electron. 50(1), 100–107 (2004).
[Crossref]

2002 (1)

M. K. Emsley, O. Dosunmu, and M. S. Unlu, “High-speed resonant-cavity-enhanced silicon photodetectors on reflecting silicon-on-insulator substrates,” IEEE Photonics Technol. Lett. 14(4), 519–521 (2002).
[Crossref]

Amaratunga, G.

T. H. Kim, K. S. Cho, E. K. Lee, S. J. Lee, J. Chae, J. W. Kim, D. H. Kim, J. Y. Kwon, G. Amaratunga, S. Y. Lee, B. L. Choi, Y. Kuk, J. M. Kim, and K. Kim, “Full-colour quantum dot displays fabricated by transfer printing,” Nat. Photonics 5(3), 176–182 (2011).
[Crossref]

Bunge, C. A.

Cao, H.

X. Dai, Z. Zhang, Y. Jin, Y. Niu, H. Cao, X. Liang, L. Chen, J. Wang, and X. Peng, “Solution-processed, high-performance light-emitting diodes based on quantum dots,” Nature 515(7525), 96–99 (2014).
[Crossref] [PubMed]

Cao, W.

W. Chen, K. Wang, J. Hao, D. Wu, S. Wang, J. Qin, C. Li, and W. Cao, “Highly efficient and stable luminescence from microbeans integrated with Cd-free quantum dots for white-light-emitting diodes,” Part. Part. Syst. Charact. 32(10), 922–927 (2015).
[Crossref]

W. Chen, K. Wang, J. Hao, D. Wu, J. Qin, D. Dong, J. Deng, Y. Li, Y. Chen, and W. Cao, “High efficiency and color rendering quantum dots white light emitting diodes optimized by luminescent microspheres incorporating,” Nanophotonics in press (2016).

Chae, J.

T. H. Kim, K. S. Cho, E. K. Lee, S. J. Lee, J. Chae, J. W. Kim, D. H. Kim, J. Y. Kwon, G. Amaratunga, S. Y. Lee, B. L. Choi, Y. Kuk, J. M. Kim, and K. Kim, “Full-colour quantum dot displays fabricated by transfer printing,” Nat. Photonics 5(3), 176–182 (2011).
[Crossref]

Chen, L.

X. Dai, Z. Zhang, Y. Jin, Y. Niu, H. Cao, X. Liang, L. Chen, J. Wang, and X. Peng, “Solution-processed, high-performance light-emitting diodes based on quantum dots,” Nature 515(7525), 96–99 (2014).
[Crossref] [PubMed]

Chen, W.

W. Chen, K. Wang, J. Hao, D. Wu, S. Wang, J. Qin, C. Li, and W. Cao, “Highly efficient and stable luminescence from microbeans integrated with Cd-free quantum dots for white-light-emitting diodes,” Part. Part. Syst. Charact. 32(10), 922–927 (2015).
[Crossref]

W. Chen, K. Wang, J. Hao, D. Wu, J. Qin, D. Dong, J. Deng, Y. Li, Y. Chen, and W. Cao, “High efficiency and color rendering quantum dots white light emitting diodes optimized by luminescent microspheres incorporating,” Nanophotonics in press (2016).

Chen, Y.

W. Chen, K. Wang, J. Hao, D. Wu, J. Qin, D. Dong, J. Deng, Y. Li, Y. Chen, and W. Cao, “High efficiency and color rendering quantum dots white light emitting diodes optimized by luminescent microspheres incorporating,” Nanophotonics in press (2016).

Chi, N.

Cho, K. S.

T. H. Kim, K. S. Cho, E. K. Lee, S. J. Lee, J. Chae, J. W. Kim, D. H. Kim, J. Y. Kwon, G. Amaratunga, S. Y. Lee, B. L. Choi, Y. Kuk, J. M. Kim, and K. Kim, “Full-colour quantum dot displays fabricated by transfer printing,” Nat. Photonics 5(3), 176–182 (2011).
[Crossref]

Choi, B. L.

T. H. Kim, K. S. Cho, E. K. Lee, S. J. Lee, J. Chae, J. W. Kim, D. H. Kim, J. Y. Kwon, G. Amaratunga, S. Y. Lee, B. L. Choi, Y. Kuk, J. M. Kim, and K. Kim, “Full-colour quantum dot displays fabricated by transfer printing,” Nat. Photonics 5(3), 176–182 (2011).
[Crossref]

Choudhury, P.

A. M. Khalid, G. Cossu, R. Corsini, P. Choudhury, and E. Ciaramella, “1-Gb/s Transmission over a phosphorescent white led by using rate-adaptive discrete multitone modulation,” IEEE Photonics J. 4(5), 1465–1473 (2012).
[Crossref]

Chow, C. W.

Ciaramella, E.

A. M. Khalid, G. Cossu, R. Corsini, P. Choudhury, and E. Ciaramella, “1-Gb/s Transmission over a phosphorescent white led by using rate-adaptive discrete multitone modulation,” IEEE Photonics J. 4(5), 1465–1473 (2012).
[Crossref]

Cogman, A.

Corsini, R.

A. M. Khalid, G. Cossu, R. Corsini, P. Choudhury, and E. Ciaramella, “1-Gb/s Transmission over a phosphorescent white led by using rate-adaptive discrete multitone modulation,” IEEE Photonics J. 4(5), 1465–1473 (2012).
[Crossref]

Cossu, G.

A. M. Khalid, G. Cossu, R. Corsini, P. Choudhury, and E. Ciaramella, “1-Gb/s Transmission over a phosphorescent white led by using rate-adaptive discrete multitone modulation,” IEEE Photonics J. 4(5), 1465–1473 (2012).
[Crossref]

Dai, X.

X. Dai, Z. Zhang, Y. Jin, Y. Niu, H. Cao, X. Liang, L. Chen, J. Wang, and X. Peng, “Solution-processed, high-performance light-emitting diodes based on quantum dots,” Nature 515(7525), 96–99 (2014).
[Crossref] [PubMed]

Dawson, M. D.

Deng, J.

W. Chen, K. Wang, J. Hao, D. Wu, J. Qin, D. Dong, J. Deng, Y. Li, Y. Chen, and W. Cao, “High efficiency and color rendering quantum dots white light emitting diodes optimized by luminescent microspheres incorporating,” Nanophotonics in press (2016).

Dong, D.

W. Chen, K. Wang, J. Hao, D. Wu, J. Qin, D. Dong, J. Deng, Y. Li, Y. Chen, and W. Cao, “High efficiency and color rendering quantum dots white light emitting diodes optimized by luminescent microspheres incorporating,” Nanophotonics in press (2016).

Dosunmu, O.

M. K. Emsley, O. Dosunmu, and M. S. Unlu, “High-speed resonant-cavity-enhanced silicon photodetectors on reflecting silicon-on-insulator substrates,” IEEE Photonics Technol. Lett. 14(4), 519–521 (2002).
[Crossref]

Emsley, M. K.

M. K. Emsley, O. Dosunmu, and M. S. Unlu, “High-speed resonant-cavity-enhanced silicon photodetectors on reflecting silicon-on-insulator substrates,” IEEE Photonics Technol. Lett. 14(4), 519–521 (2002).
[Crossref]

Faulkner, G.

H. Le Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, and Y. Oh, “High-speed visible light communications using multiple-resonant equalization,” IEEE Photonics Technol. Lett. 20(14), 1243–1245 (2008).
[Crossref]

Feng, X. T.

P. H. Pathak, X. T. Feng, P. F. Hu, and P. Mohapatra, “Visible light communication, networking, and sensing: a survey, potential and challenges,” IEEE Comm. Surv. and Tutor. 17(4), 2047–2077 (2015).
[Crossref]

Gong, Z.

Gu, E.

Guilhabert, B.

Hao, J.

W. Chen, K. Wang, J. Hao, D. Wu, S. Wang, J. Qin, C. Li, and W. Cao, “Highly efficient and stable luminescence from microbeans integrated with Cd-free quantum dots for white-light-emitting diodes,” Part. Part. Syst. Charact. 32(10), 922–927 (2015).
[Crossref]

W. Chen, K. Wang, J. Hao, D. Wu, J. Qin, D. Dong, J. Deng, Y. Li, Y. Chen, and W. Cao, “High efficiency and color rendering quantum dots white light emitting diodes optimized by luminescent microspheres incorporating,” Nanophotonics in press (2016).

Henderson, R.

Henderson, R. K.

Hu, P. F.

P. H. Pathak, X. T. Feng, P. F. Hu, and P. Mohapatra, “Visible light communication, networking, and sensing: a survey, potential and challenges,” IEEE Comm. Surv. and Tutor. 17(4), 2047–2077 (2015).
[Crossref]

Huang, P. Y.

C. H. Yeh, C. W. Chow, Y. F. Liu, and P. Y. Huang, “Simple digital FIR equalizer design for improving the phosphor LED modulation bandwidth in visible light communication,” Opt. Quantum Electron. 45(8), 901–905 (2013).
[Crossref]

Jin, Y.

X. Dai, Z. Zhang, Y. Jin, Y. Niu, H. Cao, X. Liang, L. Chen, J. Wang, and X. Peng, “Solution-processed, high-performance light-emitting diodes based on quantum dots,” Nature 515(7525), 96–99 (2014).
[Crossref] [PubMed]

Jung, D.

H. Le Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, and Y. Oh, “High-speed visible light communications using multiple-resonant equalization,” IEEE Photonics Technol. Lett. 20(14), 1243–1245 (2008).
[Crossref]

Kelly, A. E.

Khalid, A. M.

A. M. Khalid, G. Cossu, R. Corsini, P. Choudhury, and E. Ciaramella, “1-Gb/s Transmission over a phosphorescent white led by using rate-adaptive discrete multitone modulation,” IEEE Photonics J. 4(5), 1465–1473 (2012).
[Crossref]

Kim, D. H.

T. H. Kim, K. S. Cho, E. K. Lee, S. J. Lee, J. Chae, J. W. Kim, D. H. Kim, J. Y. Kwon, G. Amaratunga, S. Y. Lee, B. L. Choi, Y. Kuk, J. M. Kim, and K. Kim, “Full-colour quantum dot displays fabricated by transfer printing,” Nat. Photonics 5(3), 176–182 (2011).
[Crossref]

Kim, J. M.

T. H. Kim, K. S. Cho, E. K. Lee, S. J. Lee, J. Chae, J. W. Kim, D. H. Kim, J. Y. Kwon, G. Amaratunga, S. Y. Lee, B. L. Choi, Y. Kuk, J. M. Kim, and K. Kim, “Full-colour quantum dot displays fabricated by transfer printing,” Nat. Photonics 5(3), 176–182 (2011).
[Crossref]

Kim, J. W.

T. H. Kim, K. S. Cho, E. K. Lee, S. J. Lee, J. Chae, J. W. Kim, D. H. Kim, J. Y. Kwon, G. Amaratunga, S. Y. Lee, B. L. Choi, Y. Kuk, J. M. Kim, and K. Kim, “Full-colour quantum dot displays fabricated by transfer printing,” Nat. Photonics 5(3), 176–182 (2011).
[Crossref]

Kim, K.

T. H. Kim, K. S. Cho, E. K. Lee, S. J. Lee, J. Chae, J. W. Kim, D. H. Kim, J. Y. Kwon, G. Amaratunga, S. Y. Lee, B. L. Choi, Y. Kuk, J. M. Kim, and K. Kim, “Full-colour quantum dot displays fabricated by transfer printing,” Nat. Photonics 5(3), 176–182 (2011).
[Crossref]

Kim, T. H.

T. H. Kim, K. S. Cho, E. K. Lee, S. J. Lee, J. Chae, J. W. Kim, D. H. Kim, J. Y. Kwon, G. Amaratunga, S. Y. Lee, B. L. Choi, Y. Kuk, J. M. Kim, and K. Kim, “Full-colour quantum dot displays fabricated by transfer printing,” Nat. Photonics 5(3), 176–182 (2011).
[Crossref]

Komine, T.

T. Komine and M. Nakagawa, “Fundamental analysis for visible-light communication system using LED lights,” IEEE Trans. Consum. Electron. 50(1), 100–107 (2004).
[Crossref]

Kuk, Y.

T. H. Kim, K. S. Cho, E. K. Lee, S. J. Lee, J. Chae, J. W. Kim, D. H. Kim, J. Y. Kwon, G. Amaratunga, S. Y. Lee, B. L. Choi, Y. Kuk, J. M. Kim, and K. Kim, “Full-colour quantum dot displays fabricated by transfer printing,” Nat. Photonics 5(3), 176–182 (2011).
[Crossref]

Kwon, J. Y.

T. H. Kim, K. S. Cho, E. K. Lee, S. J. Lee, J. Chae, J. W. Kim, D. H. Kim, J. Y. Kwon, G. Amaratunga, S. Y. Lee, B. L. Choi, Y. Kuk, J. M. Kim, and K. Kim, “Full-colour quantum dot displays fabricated by transfer printing,” Nat. Photonics 5(3), 176–182 (2011).
[Crossref]

Laurand, N.

Le Minh, H.

H. Le Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, and Y. Oh, “High-speed visible light communications using multiple-resonant equalization,” IEEE Photonics Technol. Lett. 20(14), 1243–1245 (2008).
[Crossref]

Lee, E. K.

T. H. Kim, K. S. Cho, E. K. Lee, S. J. Lee, J. Chae, J. W. Kim, D. H. Kim, J. Y. Kwon, G. Amaratunga, S. Y. Lee, B. L. Choi, Y. Kuk, J. M. Kim, and K. Kim, “Full-colour quantum dot displays fabricated by transfer printing,” Nat. Photonics 5(3), 176–182 (2011).
[Crossref]

Lee, K.

H. Le Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, and Y. Oh, “High-speed visible light communications using multiple-resonant equalization,” IEEE Photonics Technol. Lett. 20(14), 1243–1245 (2008).
[Crossref]

Lee, S. J.

T. H. Kim, K. S. Cho, E. K. Lee, S. J. Lee, J. Chae, J. W. Kim, D. H. Kim, J. Y. Kwon, G. Amaratunga, S. Y. Lee, B. L. Choi, Y. Kuk, J. M. Kim, and K. Kim, “Full-colour quantum dot displays fabricated by transfer printing,” Nat. Photonics 5(3), 176–182 (2011).
[Crossref]

Lee, S. Y.

T. H. Kim, K. S. Cho, E. K. Lee, S. J. Lee, J. Chae, J. W. Kim, D. H. Kim, J. Y. Kwon, G. Amaratunga, S. Y. Lee, B. L. Choi, Y. Kuk, J. M. Kim, and K. Kim, “Full-colour quantum dot displays fabricated by transfer printing,” Nat. Photonics 5(3), 176–182 (2011).
[Crossref]

Li, C.

W. Chen, K. Wang, J. Hao, D. Wu, S. Wang, J. Qin, C. Li, and W. Cao, “Highly efficient and stable luminescence from microbeans integrated with Cd-free quantum dots for white-light-emitting diodes,” Part. Part. Syst. Charact. 32(10), 922–927 (2015).
[Crossref]

Li, J.

S. X. Zhu, J. X. Wang, J. C. Yan, Y. Zhang, Y. R. Pei, Z. Si, H. Yang, L. X. Zhao, Z. Liu, and J. Li, “Influence of AlGaN electron blocking layer on modulation bandwidth of GaN-based light emitting diodes,” Ecs. Solid State Lett 3(3), R11–R13 (2014).
[Crossref]

Li, J. M.

Li, Y.

W. Chen, K. Wang, J. Hao, D. Wu, J. Qin, D. Dong, J. Deng, Y. Li, Y. Chen, and W. Cao, “High efficiency and color rendering quantum dots white light emitting diodes optimized by luminescent microspheres incorporating,” Nanophotonics in press (2016).

Liang, X.

X. Dai, Z. Zhang, Y. Jin, Y. Niu, H. Cao, X. Liang, L. Chen, J. Wang, and X. Peng, “Solution-processed, high-performance light-emitting diodes based on quantum dots,” Nature 515(7525), 96–99 (2014).
[Crossref] [PubMed]

Liu, Y. F.

C. H. Yeh, C. W. Chow, Y. F. Liu, and P. Y. Huang, “Simple digital FIR equalizer design for improving the phosphor LED modulation bandwidth in visible light communication,” Opt. Quantum Electron. 45(8), 901–905 (2013).
[Crossref]

Liu, Y. L.

Liu, Z.

S. X. Zhu, J. X. Wang, J. C. Yan, Y. Zhang, Y. R. Pei, Z. Si, H. Yang, L. X. Zhao, Z. Liu, and J. Li, “Influence of AlGaN electron blocking layer on modulation bandwidth of GaN-based light emitting diodes,” Ecs. Solid State Lett 3(3), R11–R13 (2014).
[Crossref]

Massoubre, D.

McKendry, J.

McKendry, J. D.

Mohapatra, P.

P. H. Pathak, X. T. Feng, P. F. Hu, and P. Mohapatra, “Visible light communication, networking, and sensing: a survey, potential and challenges,” IEEE Comm. Surv. and Tutor. 17(4), 2047–2077 (2015).
[Crossref]

Nakagawa, M.

T. Komine and M. Nakagawa, “Fundamental analysis for visible-light communication system using LED lights,” IEEE Trans. Consum. Electron. 50(1), 100–107 (2004).
[Crossref]

Niu, Y.

X. Dai, Z. Zhang, Y. Jin, Y. Niu, H. Cao, X. Liang, L. Chen, J. Wang, and X. Peng, “Solution-processed, high-performance light-emitting diodes based on quantum dots,” Nature 515(7525), 96–99 (2014).
[Crossref] [PubMed]

O’Brien, D.

H. Le Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, and Y. Oh, “High-speed visible light communications using multiple-resonant equalization,” IEEE Photonics Technol. Lett. 20(14), 1243–1245 (2008).
[Crossref]

Oh, Y.

H. Le Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, and Y. Oh, “High-speed visible light communications using multiple-resonant equalization,” IEEE Photonics Technol. Lett. 20(14), 1243–1245 (2008).
[Crossref]

Pathak, P. H.

P. H. Pathak, X. T. Feng, P. F. Hu, and P. Mohapatra, “Visible light communication, networking, and sensing: a survey, potential and challenges,” IEEE Comm. Surv. and Tutor. 17(4), 2047–2077 (2015).
[Crossref]

Pei, Y. R.

S. X. Zhu, J. X. Wang, J. C. Yan, Y. Zhang, Y. R. Pei, Z. Si, H. Yang, L. X. Zhao, Z. Liu, and J. Li, “Influence of AlGaN electron blocking layer on modulation bandwidth of GaN-based light emitting diodes,” Ecs. Solid State Lett 3(3), R11–R13 (2014).
[Crossref]

Peng, X.

X. Dai, Z. Zhang, Y. Jin, Y. Niu, H. Cao, X. Liang, L. Chen, J. Wang, and X. Peng, “Solution-processed, high-performance light-emitting diodes based on quantum dots,” Nature 515(7525), 96–99 (2014).
[Crossref] [PubMed]

Qin, J.

W. Chen, K. Wang, J. Hao, D. Wu, S. Wang, J. Qin, C. Li, and W. Cao, “Highly efficient and stable luminescence from microbeans integrated with Cd-free quantum dots for white-light-emitting diodes,” Part. Part. Syst. Charact. 32(10), 922–927 (2015).
[Crossref]

W. Chen, K. Wang, J. Hao, D. Wu, J. Qin, D. Dong, J. Deng, Y. Li, Y. Chen, and W. Cao, “High efficiency and color rendering quantum dots white light emitting diodes optimized by luminescent microspheres incorporating,” Nanophotonics in press (2016).

Rae, B.

Schüppert, M.

Shang, H.

Si, Z.

S. X. Zhu, J. X. Wang, J. C. Yan, Y. Zhang, Y. R. Pei, Z. Si, H. Yang, L. X. Zhao, Z. Liu, and J. Li, “Influence of AlGaN electron blocking layer on modulation bandwidth of GaN-based light emitting diodes,” Ecs. Solid State Lett 3(3), R11–R13 (2014).
[Crossref]

Stepniak, G.

Sung, J. Y.

Unlu, M. S.

M. K. Emsley, O. Dosunmu, and M. S. Unlu, “High-speed resonant-cavity-enhanced silicon photodetectors on reflecting silicon-on-insulator substrates,” IEEE Photonics Technol. Lett. 14(4), 519–521 (2002).
[Crossref]

Wang, J.

X. Dai, Z. Zhang, Y. Jin, Y. Niu, H. Cao, X. Liang, L. Chen, J. Wang, and X. Peng, “Solution-processed, high-performance light-emitting diodes based on quantum dots,” Nature 515(7525), 96–99 (2014).
[Crossref] [PubMed]

Wang, J. X.

S. C. Zhu, Z. G. Yu, L. X. Zhao, J. X. Wang, and J. M. Li, “Enhancement of the modulation bandwidth for GaN-based light-emitting diode by surface plasmons,” Opt. Express 23(11), 13752–13760 (2015).
[Crossref] [PubMed]

S. X. Zhu, J. X. Wang, J. C. Yan, Y. Zhang, Y. R. Pei, Z. Si, H. Yang, L. X. Zhao, Z. Liu, and J. Li, “Influence of AlGaN electron blocking layer on modulation bandwidth of GaN-based light emitting diodes,” Ecs. Solid State Lett 3(3), R11–R13 (2014).
[Crossref]

Wang, K.

W. Chen, K. Wang, J. Hao, D. Wu, S. Wang, J. Qin, C. Li, and W. Cao, “Highly efficient and stable luminescence from microbeans integrated with Cd-free quantum dots for white-light-emitting diodes,” Part. Part. Syst. Charact. 32(10), 922–927 (2015).
[Crossref]

W. Chen, K. Wang, J. Hao, D. Wu, J. Qin, D. Dong, J. Deng, Y. Li, Y. Chen, and W. Cao, “High efficiency and color rendering quantum dots white light emitting diodes optimized by luminescent microspheres incorporating,” Nanophotonics in press (2016).

Wang, S.

W. Chen, K. Wang, J. Hao, D. Wu, S. Wang, J. Qin, C. Li, and W. Cao, “Highly efficient and stable luminescence from microbeans integrated with Cd-free quantum dots for white-light-emitting diodes,” Part. Part. Syst. Charact. 32(10), 922–927 (2015).
[Crossref]

Wang, Y.

Watson, S.

Wu, D.

W. Chen, K. Wang, J. Hao, D. Wu, S. Wang, J. Qin, C. Li, and W. Cao, “Highly efficient and stable luminescence from microbeans integrated with Cd-free quantum dots for white-light-emitting diodes,” Part. Part. Syst. Charact. 32(10), 922–927 (2015).
[Crossref]

W. Chen, K. Wang, J. Hao, D. Wu, J. Qin, D. Dong, J. Deng, Y. Li, Y. Chen, and W. Cao, “High efficiency and color rendering quantum dots white light emitting diodes optimized by luminescent microspheres incorporating,” Nanophotonics in press (2016).

Yan, J. C.

S. X. Zhu, J. X. Wang, J. C. Yan, Y. Zhang, Y. R. Pei, Z. Si, H. Yang, L. X. Zhao, Z. Liu, and J. Li, “Influence of AlGaN electron blocking layer on modulation bandwidth of GaN-based light emitting diodes,” Ecs. Solid State Lett 3(3), R11–R13 (2014).
[Crossref]

Yang, H.

S. X. Zhu, J. X. Wang, J. C. Yan, Y. Zhang, Y. R. Pei, Z. Si, H. Yang, L. X. Zhao, Z. Liu, and J. Li, “Influence of AlGaN electron blocking layer on modulation bandwidth of GaN-based light emitting diodes,” Ecs. Solid State Lett 3(3), R11–R13 (2014).
[Crossref]

Yeh, C. H.

Yu, J.

Yu, Z. G.

Zeng, L.

H. Le Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, and Y. Oh, “High-speed visible light communications using multiple-resonant equalization,” IEEE Photonics Technol. Lett. 20(14), 1243–1245 (2008).
[Crossref]

Zhang, S. L.

Zhang, Y.

S. X. Zhu, J. X. Wang, J. C. Yan, Y. Zhang, Y. R. Pei, Z. Si, H. Yang, L. X. Zhao, Z. Liu, and J. Li, “Influence of AlGaN electron blocking layer on modulation bandwidth of GaN-based light emitting diodes,” Ecs. Solid State Lett 3(3), R11–R13 (2014).
[Crossref]

Zhang, Z.

X. Dai, Z. Zhang, Y. Jin, Y. Niu, H. Cao, X. Liang, L. Chen, J. Wang, and X. Peng, “Solution-processed, high-performance light-emitting diodes based on quantum dots,” Nature 515(7525), 96–99 (2014).
[Crossref] [PubMed]

Zhao, L. X.

S. C. Zhu, Z. G. Yu, L. X. Zhao, J. X. Wang, and J. M. Li, “Enhancement of the modulation bandwidth for GaN-based light-emitting diode by surface plasmons,” Opt. Express 23(11), 13752–13760 (2015).
[Crossref] [PubMed]

S. X. Zhu, J. X. Wang, J. C. Yan, Y. Zhang, Y. R. Pei, Z. Si, H. Yang, L. X. Zhao, Z. Liu, and J. Li, “Influence of AlGaN electron blocking layer on modulation bandwidth of GaN-based light emitting diodes,” Ecs. Solid State Lett 3(3), R11–R13 (2014).
[Crossref]

Zhu, S. C.

Zhu, S. X.

S. X. Zhu, J. X. Wang, J. C. Yan, Y. Zhang, Y. R. Pei, Z. Si, H. Yang, L. X. Zhao, Z. Liu, and J. Li, “Influence of AlGaN electron blocking layer on modulation bandwidth of GaN-based light emitting diodes,” Ecs. Solid State Lett 3(3), R11–R13 (2014).
[Crossref]

Ecs. Solid State Lett (1)

S. X. Zhu, J. X. Wang, J. C. Yan, Y. Zhang, Y. R. Pei, Z. Si, H. Yang, L. X. Zhao, Z. Liu, and J. Li, “Influence of AlGaN electron blocking layer on modulation bandwidth of GaN-based light emitting diodes,” Ecs. Solid State Lett 3(3), R11–R13 (2014).
[Crossref]

IEEE Comm. Surv. and Tutor. (1)

P. H. Pathak, X. T. Feng, P. F. Hu, and P. Mohapatra, “Visible light communication, networking, and sensing: a survey, potential and challenges,” IEEE Comm. Surv. and Tutor. 17(4), 2047–2077 (2015).
[Crossref]

IEEE Photonics J. (1)

A. M. Khalid, G. Cossu, R. Corsini, P. Choudhury, and E. Ciaramella, “1-Gb/s Transmission over a phosphorescent white led by using rate-adaptive discrete multitone modulation,” IEEE Photonics J. 4(5), 1465–1473 (2012).
[Crossref]

IEEE Photonics Technol. Lett. (2)

H. Le Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, and Y. Oh, “High-speed visible light communications using multiple-resonant equalization,” IEEE Photonics Technol. Lett. 20(14), 1243–1245 (2008).
[Crossref]

M. K. Emsley, O. Dosunmu, and M. S. Unlu, “High-speed resonant-cavity-enhanced silicon photodetectors on reflecting silicon-on-insulator substrates,” IEEE Photonics Technol. Lett. 14(4), 519–521 (2002).
[Crossref]

IEEE Trans. Consum. Electron. (1)

T. Komine and M. Nakagawa, “Fundamental analysis for visible-light communication system using LED lights,” IEEE Trans. Consum. Electron. 50(1), 100–107 (2004).
[Crossref]

J. Lightwave Technol. (2)

Nat. Photonics (1)

T. H. Kim, K. S. Cho, E. K. Lee, S. J. Lee, J. Chae, J. W. Kim, D. H. Kim, J. Y. Kwon, G. Amaratunga, S. Y. Lee, B. L. Choi, Y. Kuk, J. M. Kim, and K. Kim, “Full-colour quantum dot displays fabricated by transfer printing,” Nat. Photonics 5(3), 176–182 (2011).
[Crossref]

Nature (1)

X. Dai, Z. Zhang, Y. Jin, Y. Niu, H. Cao, X. Liang, L. Chen, J. Wang, and X. Peng, “Solution-processed, high-performance light-emitting diodes based on quantum dots,” Nature 515(7525), 96–99 (2014).
[Crossref] [PubMed]

Opt. Express (4)

Opt. Mater. Express (1)

Opt. Quantum Electron. (1)

C. H. Yeh, C. W. Chow, Y. F. Liu, and P. Y. Huang, “Simple digital FIR equalizer design for improving the phosphor LED modulation bandwidth in visible light communication,” Opt. Quantum Electron. 45(8), 901–905 (2013).
[Crossref]

Part. Part. Syst. Charact. (1)

W. Chen, K. Wang, J. Hao, D. Wu, S. Wang, J. Qin, C. Li, and W. Cao, “Highly efficient and stable luminescence from microbeans integrated with Cd-free quantum dots for white-light-emitting diodes,” Part. Part. Syst. Charact. 32(10), 922–927 (2015).
[Crossref]

Other (1)

W. Chen, K. Wang, J. Hao, D. Wu, J. Qin, D. Dong, J. Deng, Y. Li, Y. Chen, and W. Cao, “High efficiency and color rendering quantum dots white light emitting diodes optimized by luminescent microspheres incorporating,” Nanophotonics in press (2016).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 (a) Spectra of red QDs. (Insert: Red QDs solution sample and high-resolution transmission electron microscopy (HRTEM) of red QDs). (b) Spectra of green QDs. (Insert: Green QDs solution sample and HRTEM of green QDs).
Fig. 2
Fig. 2 Schematic of obtaining QDs luminescent microspheres.
Fig. 3
Fig. 3 The schematic of LED modules based on (a) YAG:Ce phosphor; (b) LMS; and (c) QDs soultion.
Fig. 4
Fig. 4 (a) Schematic of bandwidth measuring. (b) Bandwidth measuring system.
Fig. 5
Fig. 5 LED modules with (a) red QDs solution; (b) green QDs solution; and (c) mixture solution of red and green QDs.
Fig. 6
Fig. 6 Comparisons of (a) frequency responses and (b) bandwidths between different LED modules with phosphor, red, green and mixture QDs and without phosphor or QDs.
Fig. 7
Fig. 7 LED modules with (a) YAG:Ce phosphor layer; and (b) red LMS layer.
Fig. 8
Fig. 8 Comparisons of (a) frequency responses and (b) bandwidths between different LED modules with phosphor and LMS.
Fig. 9
Fig. 9 Fluorescent lifetime of (a) red QDs; and (b) green QDs.
Fig. 10
Fig. 10 The principles of smearing: (a) low frequency signal; (b) low frequency signal with smearing; (c) high frequency signal; (d) high frequency signal with smearing; (e)-(h) signal with smearing that more and more severe.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

U signal =ir
i=GM P λ R λ
Φ= K m P λ V λ
Φ= Idω
i=I λ 1 λ 2 ωGM R λ K m V λ dλ
U signal =I λ 1 λ 2 rωGM R λ K m V λ dλ
U smearing = I 0 exp(t/τ) λ 1 λ 2 rωGM R λ K m V λ dλ

Metrics